

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE

Y RECURSOS NATURALES

STATISTICS ON WATER IN MEXICO, 2015 Edition

National Water Commission

December 2015 www.conagua.gob.mx

Statistics on Water in Mexico, 2015 edition

All rights reserved. © Ministry of the Environment and Natural Resources Boulevard Adolfo Ruiz Cortines No. 4209, Col. Jardines en la Montaña, C.P. 14210 Tlalpan, Mexico, D.F. Mexico.

National Water Commission Deputy Director General's Office for Planning Insurgentes Sur No. 2416, Col. Copilco el Bajo C.P. 04340 Coyoacan, Mexico, D.F. Phone: 52-(55)5174-4000

Printed and produced in Mexico Impreso y hecho en México

Distributed free of charge. Not intended for resale. The use of this publication for purposes other than social development is prohibited. The unaltered reproduction of the material contained in this publication is authorized, for non-profit purposes and always quoting the source.

Index

CHAPTER 1

Geographical and socio-economic context

1.1	Geographical and demographic aspects	. 13
	Population centers	
	Economic indicators	
1.4	Socio-demographic conditions	. 20
	Hydrological-administrative regions (HARs) for water management	
1.6	Regional contrast between development and renewable water resources (RWR)	.24
1.7	Summary of data by state	.27

CHAPTER 2

State of water resources

2.1	Mexico's catchments and aquifers	
2.2	Renewable Water Resources	
	Precipitation	
2.3	Hydro-meteorological phenomena	
	Tropical cyclones	
	Droughts	
	Effects	
2.4	Surface water	
	Rivers	
	Mexico's transboundary catchments	
	Mexico's main lakes	
2.5	Groundwater	
	Overdrafting of aquifers	
	Aquifers with saltwater intrusion and/or suffering from the phenomena of soil salinization	
	and brackish groundwater	
2.6	Water quality	
	Monitoring of water quality	
	Evaluation of water quality	
	Summary of water quality	
	Groundwater quality	
	Water quality on beaches	
	Water quality classification criteria on beaches	

CHAPTER 3

Uses of water

3.1	Classification of the uses of water	.77
3.2	Distribution of uses throughout Mexico	. 80
	Grouped use for agriculture	
	Grouped use for public supply	
	Grouped use for self-supplying industry	
	Use in energy generation excluding hydropower	
3.7	Use in hydropower plants	. 92
	Degree of water stress	
	Virtual Water in Mexico	

CHAPTER 4

Water infrastructure

4.1	Water infrastructure	103
	Reservoirs and berms	
4.3	Hydro-agricultural infrastructure	110
	Irrigation Districts (IDs)	110
	Irrigation Units (IUs)	114
	Technified Rainfed Districts (TRDs)	
4.4	Drinking water and sanitation infrastructure	116
	Drinking water coverage	116
	Sanitation coverage	118
	Aqueducts	122
	Cutzamala System	124
	Purification plants	126
4.5	Water treatment and reuse	128
	Wastewater discharge	128
	Municipal wastewater treatment plants	130
	Industrial wastewater treatment plants	130
4.6	Emergency attention and flood protection	134

CHAPTER 5

Water management tools

5.1	Water-related institutions in Mexico	.141
5.2	Legal framework for the use of water in Mexico	.144
	Deeds registered in the Public Registry of Water Duties (REPDA)	.144
	Legal instruments	. 146
	Publication of mean annual water availabilities	. 150
	Classification declarations for Mexico's water bodies	. 150
5.3	Water economy and finances	. 152
	Duties for the use of the nation's water resources	
	The CONAGUA's income collection	
	The CONAGUA's Budget	. 162
	Water pays for water	. 162
	Drinking water and sanitation tariffs	.166
	External funding and international cooperation	. 168
5.4	Participation mechanisms	
	River basin councils and auxiliary bodies	
5.5	Water-related standards	.172
	Official Mexican Standards	. 172

CHAPTER 6

Water, health and the environment

6.1	Health	.179
6.2	Vegetation	182
6.3	Biodiversity	.186
6.4	Wetlands	188

CHAPTER 7

Future scenarios

7.1	Sustainable water policy	
7.2	Trends	
7.3	National water planning 2013-2018	

CHAPTER 8

Water in the World

8.1	Socio-economic and demographic aspects	209
8.2	Components of the water cycle	212
	Precipitation	212
	Renewable water resources	. 214
	Climate change	. 214
	Extreme hydro-meteorological phenomena	216
8.3	Uses of water and infrastructure	218
	Industrial use	218
	Use for agriculture	228
	Energy generation	
	Storage reservoirs in the world	222
	Water footprint	222
	Virtual water	224
	Water stress	224
	Drinking water, sanitation and wastewater treatment	226
	Drinking water and sanitation tariffs	228
	Water and health	230

Annexes

Annex A.	Relevant data by hydrological-administrative region	235
Annex B.	Relevant data by state	248
Annex C.	Characteristics of the hydrological regions, 2014	280
Annex D.	Glossary	281
Annex E.	Abbreviations and acronyms	287
Annex F.	Measurement units and notes	289
Annex G	Bibliographical references	291
Annex H	Analytical index	295

The document Statistics on Water in Mexico, 2015 edition is part of the National information system on water quality, quantity, uses and conservation (SINA) and is an effort from the National Water Commission of Mexico (CONAGUA) to present an integral panorama of the water sector in our country.

With the aim of clearly presenting the data included in this publication, the tables and graphs generally speaking show the last ten years of information. For the reader interested in looking into the details, the original data for the tables and graphs conserve the whole period of annual statistics available. Throughout the text you may identify them by their first letter, the number of the chapter and a consecutive number: table 7.1, graph 4.9. You may also find maps and figures which may be identified in the same way: map 4.2 and figure 2.3.

An electronic version of this publication is available for download and can be viewed on the web page http://www.conagua.gob.mx/ConsultaPublicaciones.aspx, where it is possible to have access to this original data and find the records on the theme of each chapter, in the SINA with the indication [Reporteador: <Name of the theme in Spanish>], as well as the complementary tables, graphs and maps, with the indication [Adicional: <key>].

Thirteen hydrological-administrative regions (HARs) are the basis for the federal administration of water issues, hence their territorial division is presented in most of the maps in this document. Their characteristics are listed in the map on page 234.

The calculation of renewable water resources (RWR) is proposed as an important indicator for the sector. This edition presents the calculation of RWR with the latest available studies of catchments and aquifers.

With the intention of guiding the reader, there are notes identified with numbers (1) in the footnotes, as well as notes under the tables, graphs or maps. Annex F includes some brief methodological notes on relevant issues. The sources are identified by references within the text, such as INEGI (2015a), and a complete bibliography can be found in annex G.

STATISTICS ON WATER IN MEXICO, 2015 Edition

National Water Commission

Geographical and socio-economic context

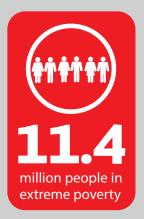
Geographical and socio-economic context

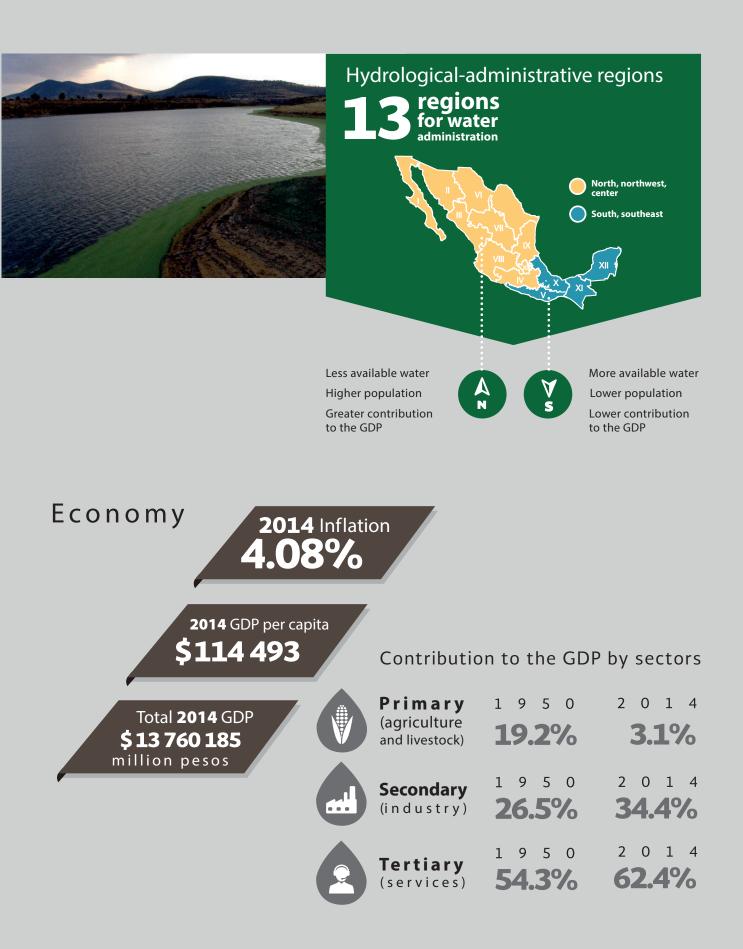
Geographical and demographic aspects

Territorial surface **1.964** millon km²

Political division **32** s t a t e s **2457**

municipalities


Projection 2014 119.7 million inhabitants Projection 2030 137.5 million inhabitants


Dynamics: Population increase and concentration in cities

In 2014 Mexico has 59 metropolitan a r e a s

56.9%

of the population of the country is concentrated in metropolitan areas

1.1 Geographical and demographic aspects

[Reporteador: Ubicación geográfica de México, Población]

The territorial extension of the United Mexican States includes 1.964 million km², of which 1.959 million km² correspond to the **continental surface** and the rest to the island area. The Exclusive Economic Zone (EEZ) should also be considered, defined as a strip, 370 kilometers wide¹ measured from the coastal baseline,² the extension of which is estimated at approximately three million km², as shown in table 1.1.

TABLE 1.1 Location and territorial extension of Mexico

Territorial extension							
Territorial area	$1 964 375 \text{ km}^2$						
Mainland	$1959248km^2$						
Island-based	$5127~\mathrm{km^2}$						
International borders of t	he mainland territory						
United States of America	3 152 km						
Guatemala	956 km						
Belize	193 km						
Coastline							
Total length 11 122 km							
Pacific Ocean 7 828 km							
Gulf of Mexico and Caribbean sea	3 294 km						
Extreme geographi	cal coordinates						
To the north: 32° 43′ 06" latitude the border with the United States							
To the south: 14° 32′27" latitude North. At the mouth of the Suchiate river, at the border with Guatemala.							
To the east: 86° 42´36" longitude	To the east: 86° 42´36" longitude West. Mujeres Island.						
To the west: 118º 22´00" longitue	de West. Guadalupe Island.						

Source: INEGI (2015a).

Internationally defined as 200 nautical miles, in the United Nations Convention on the Law of the Sea. One nautical mile is the equivalent of 1.852 km.

² Defined as the low tide line along the coast.

There are different factors which determine Mexico's climate. As a result of its **geographical** location, the southern part of the country is in the inter-tropical area of the globe, whereas the northern part is located in the temperate area. Mexico is situated at the same latitude as the Saharan and Arabian deserts, as can be appreciated in map 1.1.

The second factor is the geographical accidents which characterize Mexico's **relief**, which are illustrated in figure 1.1. The geographical location and the relief have a direct impact on the availability of water resources.

Two thirds of the territory is considered **arid** or **semi-arid**, with annual precipitation of less than 500 mm, whereas the southeast is **humid** with average precipitations of over 2 000 mm per year. In the majority of the territory, the rainfall is more intense in the summer, when it is occasionally torrential.

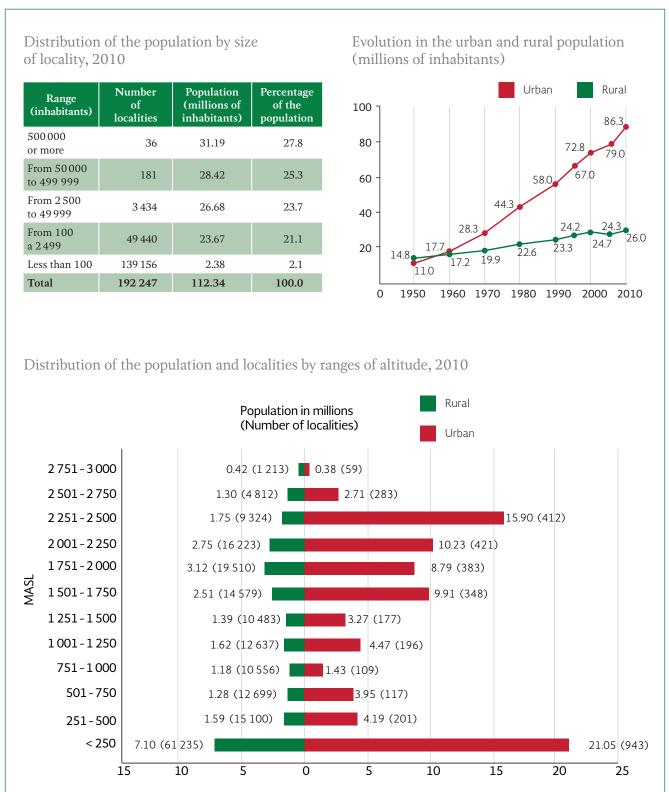
Mexico is made up of 31 states and one Federal District (Distrito Federal or D.F. in Spanish, which we shall refer to as Mexico City for the purpose of this publication), made up of 2 441 municipalities and 16 delegations respectively, giving a total of 2 457 municipalities and delegations.³

Since the mid-20th century, the population has shown a marked trend towards abandoning sma-Il rural localities and congregating in urban areas. From 1950 to 2010, the country's population quadrupled, and went from being predominantly rural to mainly urban, as can be observed in graph 1.2.⁴


According to the results of the 2010 General Census on Population and Housing, in Mexico that year there were 192 247 inhabited localities, spread out according to their size as shown in figure 1.2. 53.2% of the population of Mexico lived in areas over 1 500 meters above sea level, as can be observed in the same figure.

MAP 1.1 Geographical location of Mexico

Source: Produced based on NASA (2015).


FIGURE 1.1 Elevation profiles (MASL)

Source: Produced based on USGS (2015a).

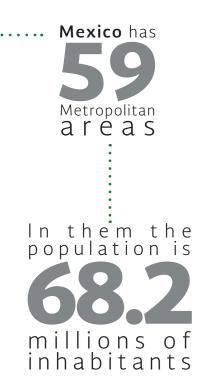
³ According to INEGI (2015b), as of 2014 there were 2 457 municipalities and delegations with geographical representation.

⁴ The 2010 General Census of Population and Housing, at the time it was carried out, found 112.3 million inhabitants. For the calculation of the 2010-2050 population projections, the National Population Council, CONAPO (2015) carried out a demographic conciliation over the 1990-2010 period, which allowed it to establish that the population halfway through 2010 was 114.3 million inhabitants. The CONAPO population projections consider 137.5 million inhabitants by 2030.

Note: Data as of the date of the Census. In 2010, there were 227 localities (225 rural and 2 urban ones) with a total of 57 821 inhabitants, located at over 3 000 meters above sea level. Rural localities are defined as those with less than 2 500 inhabitants.

Source: INEGI (2015c), INEGI (2015d).

1.2 Population centers


[Reporteador: Población]

Based on data from the 2010 General Census on Population and Housing, 59 Metropolitan Areas (MAs) were defined,⁵ in which the National Population Council (CONAPO) estimated the population in 2014 at 68.2 million inhabitants, thus constituting 56.9% of the total population projected for 2014 by that institution. Up to the same date, additionally there were 36 localities of more than 100 000 inhabitants in localities that are not part of MAs, adding up to 8.4 million people and 7% of the national population.

Of these MAs, 32 have more than 500 000 inhabitants, making a total of 60.8 million people and 50.8% of the national population at that point. Three localities that are not part of an MA (Hermosillo, Victoria de Durango and Culiacan Rosales) had more than 500 000 inhabitants in 2014. In map 1.2 those population centers are shown.

The concentration and the accelerated growth of the population in urban localities have led to stronger pressures on the environment and on institutions, due to the increasing demand for services.

The CONAPO estimated that in 2014, in the 14 MAs with a population of more than one million inhabitants, 39.3% of the total population of Mexico was concentrated, or 47.1 million inhabitants.

⁵ An MA is defined as the sum of two or more municipalities including a city of 50 000 or more inhabitants, and the urban area, functions and activities of which go beyond the limits of the municipality that it was originally part of, incorporating as part of the municipality or of its area of direct influence mainly urban neighboring municipalities, with which they maintain a high degree of socio-economic integration. That definition also includes those municipalities which, due to their particular characteristics, are relevant for urban planning and politics of the metropolitan areas in question (SEDESOL et al. 2012).

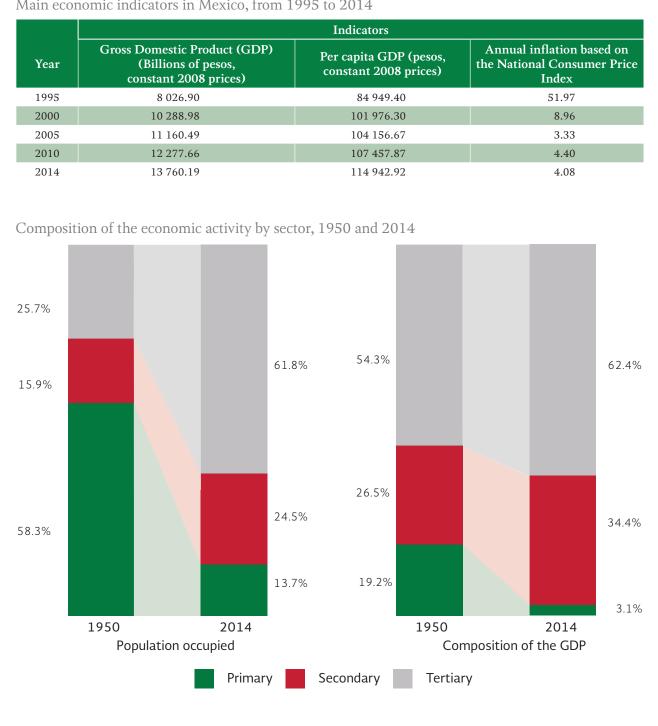
Note: Includes both MAs and localities outside them with a population of more than 500 000 inhabitants Source: Produced based on CONAPO (2015), INEGI (2015d), SEDESOL et al. (2012).



1.3 Economic indicators

[Reporteador: Indicadores económicos]

According to the Bank of Mexico (Banxico), (2015a), the first half of 2014 presented worldwide signs of moderate recovery, through the dynamism of some advanced economies such as the United States and the United Kingdom. However, for the second half of 2014 there was a weakening of the recovery, complicated by the fall in the price of oil and the appreciation of the dollar against the majority of currencies, phenomena that are foreseen to be long-term. Throughout the year, the Mexican economy showed some improvement induced by external demand, as well as through light increases in internal demand. An annual growth of 2.1% in the Gross Domestic Product (GDP) was registered (INEGI 2015e). The annual inflation was 4.08% (INEGI 2015f). The five- year trend can be observed in figure 1.3.


Throughout the 20th century, the contribution of agriculture and livestock activities, silviculture and fishing to Mexico's GDP has progressively decreased, as opposed to industry and services which have grown, as can be observed in figure 1.3. This change is also more evident in the population occupied by economic sector,⁶ with a significant reduction in the Mexicans occupied in the primary sector (from 58.3% to 13.7% in the 1950-2014 period), and the corresponding increase in those occupied in the tertiary sector (from 25.7% to 61.8% in the same period). The population occupied in Mexico up to the fourth trimester of 2014 was 49.8 million people.

⁶ The primary sector includes agriculture and livestock, silviculture and fishing activities. The secondary sector considers mining, the manufacturing industry, construction and electricity, gas and water. The tertiary sector includes trade, restaurants and hotels, transport, storage and communications, financial services, insurance, real estate and renting activities, community, social and personal services.

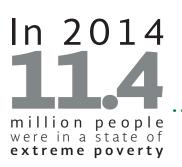
FIGURE 1.3 Main economic indicators

Main economic indicators in Mexico, from 1995 to 2014

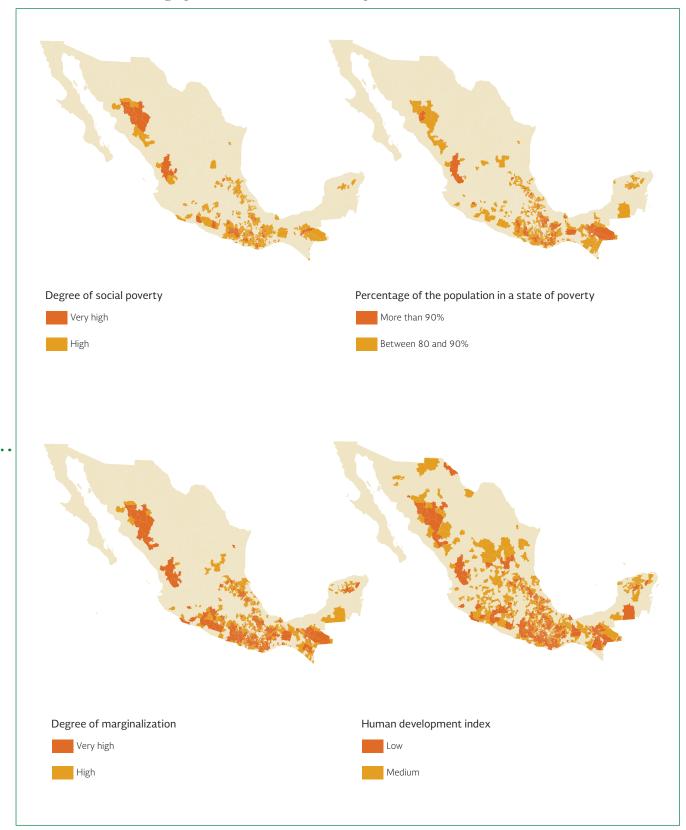
Note: For illustrative purposes only, the calculation of the percentage of the population occupied by sector of economic activity does not consider the "Others" category, which represents 0.6% of the average population occupied in 2014. Along the same lines, the representation of the charges allocated for banking services was simplified, representing indirectly measured financial intermediation services, with a negative sign.

Source: Produced based on CONAPO (2015), INEGI (2014a), INEGI (2015g), INEGI (2015h), INEGI (2015i).

1.4 Socio-demographic conditions


[Reporteador: Rezago social, Marginación social, Desarrollo humano]

According to the General Law of Social Development, it is the responsibility of the National Council for the Evaluation of Social Development Policies (CONEVAL) to establish the guidelines and criteria to define, identify and measure poverty in Mexico. The objective is to provide elements to improve public policies aiming to overcome this condition. The estimation both nationwide and by state is carried out every two years, the latest one being from 2014. At the municipal level it is carried out every five years, since it is calculated based on nationwide Censuses.


The measurement of **poverty** includes the indicators of income, educational lag, access to health services and social security, living quality and spaces, access to food and degree of social cohesion, since poverty is considered a multi-dimensional manifestation of shortages. In 2014 nationwide, it is estimated that 46.2% of the population (55.3 million people) are in a state of poverty. Of these, 11.4 million are in a state of extreme poverty.

A complementary measurement is the index of **social poverty**, also produced by the CONEVAL. This measurement includes indicators of education, assets in the home and quality and services in the house. Also complementary are the indexes of marginalization, produced by CONAPO, which considers aspects of education, housing, income from work and distribution of the population; as well as the human development index, calculated by the United Nations Development Programme (UNDP), based on the measurement of decent standard of living, education (literacy, enrollment in primary, secondary and high school, as well as the number of years of mandatory education), and life expectancy at birth.

Figure 1.4 presents these four indicators at the municipal level, highlighting the municipalities in unfavorable socio-demographic conditions. The **concentration** of municipalities in these conditions in the south and along the Western Sierra Madre stands out.

FIGURE 1.4 Socio-demographic indicators at the municipal level, 2010

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.<

:..

Source: Produced based on Coneval (2011a), Coneval (2011b), Conapo (2011), UNDP (2014).

1.5 Hydrological-administrative regions (HARs) for water management

[Reporteador: División hidrológico-administrativa]

For the purpose of the management and preservation of Mexico's water resources, the country has been divided into thirteen HARs, which are made up by grouping together catchments, considered the basic units for water resources management. The limits of the HARs respect municipal divisions, so as to facilitate the integration of socio-economic information.

The National Water Commission of Mexico (CONA-GUA), an administrative, standard-bearing, technical and consultative agency in charge of water management in the country, carries out its functions through 13 river basin organizations, the scope of competence of which are the HARs (see the map on the back inner flap).

The characteristics of the HARs are shown in table 1.2. It should be mentioned that the calculation of the contribution to the national GDP is based on the GDP by state, the latest data on which is from 2013.

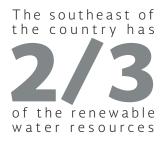
The municipalities that make up each one of these HARs are indicated in the Territorial Constituency Agreement for River Basin Organizations, published in the Official Government Gazette on April 1, 2010. In addition, the CONAGUA has 20 local offices in the states in which no river basin organization has its headquarters.

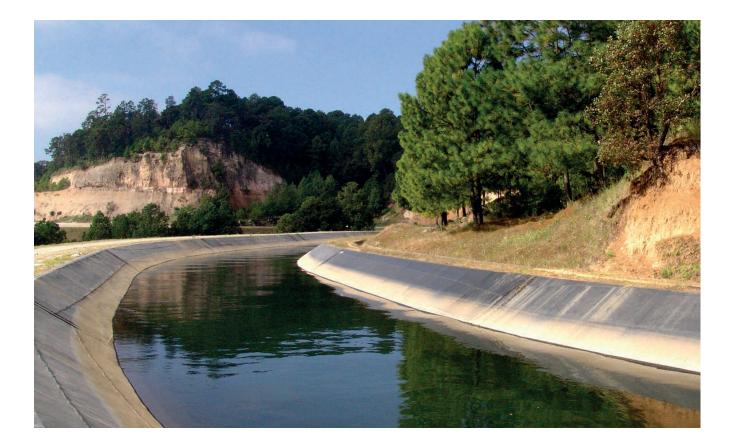
organizations

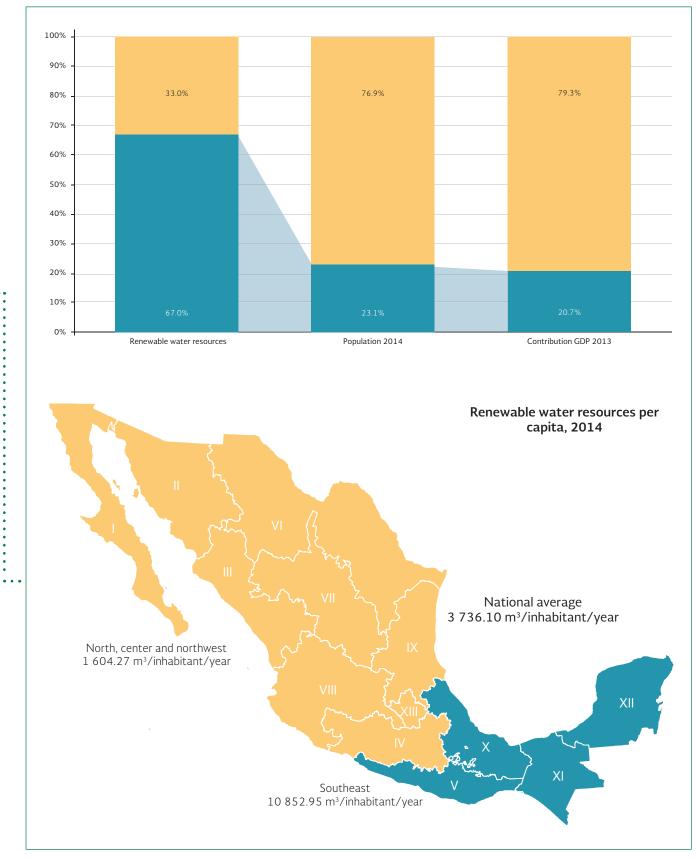
HAR	Mainland surface (km²)	Renewable water resources 2014 (hm³/year)	Population as of mid-2014 (mil- lions of inhabitants)	Per capita renewable water resources 2014 (m ³ / inhabitant/year)	Contribution to the national GDP 2013 (%)	Municipalities or delegations of Mexico City (number)
Ι	154 279	4 958	4.37	1 135	3.77	11
II	196 326	8 273	2.80	2 951	2.96	78
III	152 007	25 596	4.47	5 730	2.81	51
IV	116 439	22 156	11.69	1 896	6.11	420
V	82 775	30 565	5.02	6 084	2.20	378
VI	390 440	12 316	12.15	1 014	14.32	144
VII	187 621	7 849	4.52	1 738	4.08	78
VIII	192 722	35 093	23.89	1 469	18.24	332
IX	127 064	28 085	5.23	5 366	2.21	148
Х	102 354	95 129	10.48	9 075	5.67	432
XI	99 094	144 459	7.57	19 078	5.00	137
XII	139 897	29 324	4.52	6 494	7.83	127
XIII	18 229	3 458	23.01	150	24.81	121
Total	1 959 248	447 260	119.71	3 736	100.00	2 457

TABLE 1.2 Characteristics of the HARs

Source: Produced based on Conapo (2015), INEGI (2008), INEGI (2015j), CONAGUA (2015a).




1.6 Regional contrast between development and renewable water resources (RWR)


[Reporteador: División hidrológico-administrativa, Agua renovable]

The aggregate national values, such as population, renewable water resources (RWR) or GDP, conceal the great regional diversity in Mexico.

There are significant variations between regional characteristics. If the HARs regions V, X, XI and XII are grouped together, in the south-east of the country, they can be contrasted with the remaining regions. The regions in the south-east present two thirds of the country's RWR, with one fifth of the population which contributes one fifth of the national GDP. The regions in the north, center and northwest have one third of the country's renewable water resources, four fifths of the population and of the regional contribution to the national GDP. Considering the per capita renewable water resources, the value available in the regions of the south- east is seven times higher than that available in the rest of Mexico's HARs.

FIGURE 1.5 Regional contrast between renewable water resources and development

Source: Produced based on Conapo (2015), INEGI (2008), INEGI (2015j), CONAGUA (2015a).

1.7 Summary of data by state

[Reporteador: División hidrológico-administrativa]

The main demographic and socio-economic data and on renewable water resources (RWR) by state are presented in the following table.

TABLE 1.3 Demographic and socio-economic data by state

Code	State	Mainland surface area (km²)	Renewable water resources 2014 (hm³/year)	Population at mid-2014 (millions of inhabitants)	Per capita renewable water resources 2014 (m³/inhabitant/year)	Contribution to the national GDP 2013 (%)	Municipalities or delegations of Mexico City (number)
01	Aguascalientes	5 618	515	1.27	406	1.12	11
02	Baja California	71 446	2 994	3.43	872	2.92	5
03	Baja California Sur	73 922	1 266	0.74	1 709	0.76	5
04	Campeche	57 924	14 330	0.89	16 027	4.81	11
05	Coahuila de Zaragoza	151 563	3 160	2.93	1 080	3.33	38
06	Colima	5 625	2 138	0.71	3 008	0.58	10
07	Chiapas	73 289	113 002	5.19	21 787	1.75	118
08	Chihuahua	247 455	11 910	3.67	3 242	2.86	67
09	Federal District	1 486	480	8.87	54	17.09	16
10	Durango	123 451	13 380	1.75	7 660	1.19	39
11	Guanajuato	30 608	3 868	5.77	670	3.98	46
12	Guerrero	63 621	21 108	3.55	5 951	1.42	81
13	Hidalgo	20 846	7 267	2.84	2 556	1.59	84
14	Jalisco	78 599	15 671	7.84	1 999	6.26	125
15	Mexico	22 357	5 201	16.62	313	9.08	125
16	Michoacan de Ocampo	58 643	12 563	4.56	2 753	2.29	113
17	Morelos	4 893	1 801	1.90	949	1.19	33
18	Nayarit	27 815	6 397	1.20	5 326	0.64	20
19	Nuevo Leon	64 220	4 291	5.01	856	7.35	51
20	Oaxaca	93 793	55 369	3.99	13 890	1.56	570
21	Puebla	34 290	11 486	6.13	1 873	3.20	217
22	Queretaro	11 684	2 035	1.97	1 031	2.06	18
23	Quintana Roo	42 361	8 033	1.53	5 251	1.57	10
24	San Luis Potosi	60 983	10 606	2.73	3 888	1.93	58
25	Sinaloa	57 377	8 690	2.96	2 937	2.05	18
26	Sonora	179 503	7 035	2.89	2 432	3.01	72
27	Tabasco	24 738	31 086	2.36	13 175	3.24	17
28	Tamaulipas	80 175	8 933	3.50	2 550	3.07	43
29	Tlaxcala	3 991	911	1.26	722	0.55	60
30	Veracruz de Ignacio de la Llave	71 820	50 901	7.99	6 374	5.15	212
31	Yucatan	39 612	6 960	2.09	3 328	1.45	106
32	Zacatecas	75 539	3 873	1.56	2 478	0.93	58
	Total	1 959 248	447 260	119.71	3 736	100.00	2 457

Source: Produced based on CONAPO (2015), INEGI (2008), INEGI (2015j), CONAGUA (2015a).

State of water resources

THE STATE OF WATER RESOURCES

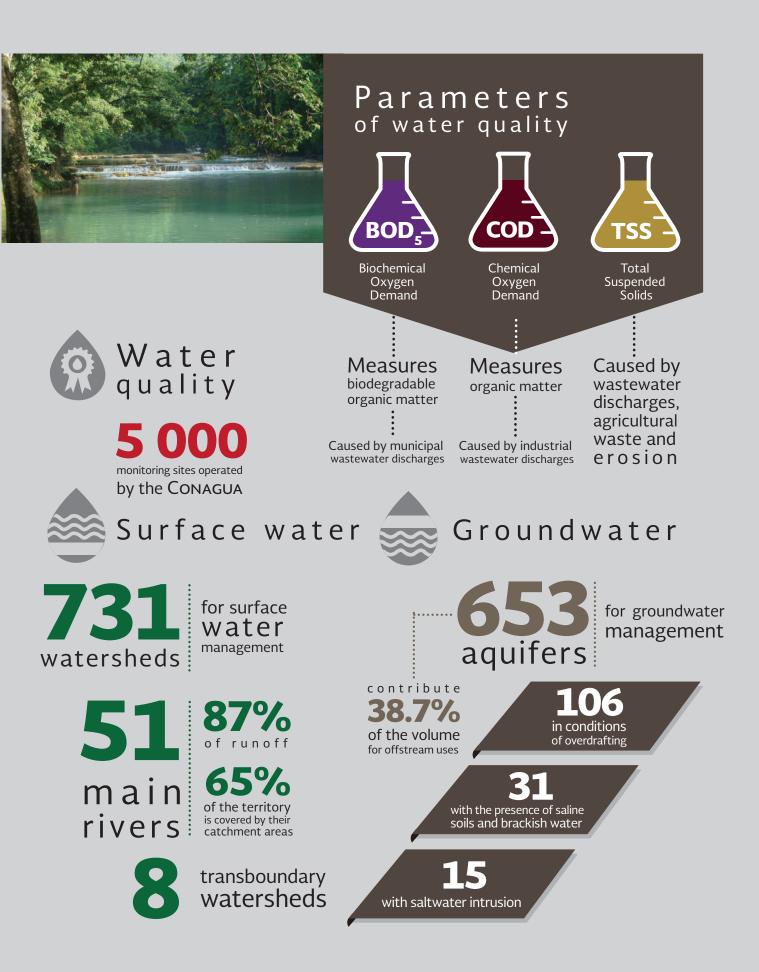
Renewable water resources

Water that can feasibly and sustainably be used in a region

Mexico 2014: 447 260 hm³ per year Precipitation Normal 1981-2010 740 mm

831 mm

Climate

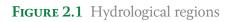

Hydro-meteorological phenomena

Hurricanes: cyclones with a wind speed equal to or more than a **119** k m / h

Droughts: rainfall lower than the normal levels of a region

2.1 Mexico's catchments and aquifers

[Reporteador: Regiones hidrológicas, Cuencas-disponibilidad]


In the hydrological cycle, a significant proportion of precipitation returns to the atmosphere in the form of evapotranspiration, whereas the rest runs off into the country's rivers and streams, grouped together in watersheds, or filters through to aquifers.

Watersheds are natural territorial units, defined by the existence of a continental divide as a result of the conformation of the relief. For the purpose of the management of the nation's water resources, especially the publication of availability,¹ the CONAGUA has defined 731 watersheds. Up to December 31, 2014, the availability of the 731 watersheds had been published, in conformity with the standard NOM-011-CONAGUA-2000.

The country's catchments have been organized into 37 hydrological regions shown in figure 2.1, which are in turn grouped into the 13 hydrological-administrative regions (HARs) mentioned in the first chapter.

As regards groundwater, the country is divided into 653 aquifers. The names of the aquifers were published in the Official Government Gazette (DOF) on December 5, 2001. In the 2003-2009 period their geographical limits were published (map 2.1), whereas the publication of their availabilities and their updates were carried out between 2003 and the present.

Availability of surface water: the value obtained from the difference between the mean annual volume of runoff from a catchment downstream and the current annual volume committed downstream.

Number	Name of hydrological region	Number	Name of hydrological region
1	Baja California Northwest	20	Lower Guerrero Coast
2	Baja California Central-West	21	Oaxaca Coast
3	Baja California South-West	22	Tehuantepec
4	Baja California North-East	23	Chiapas Coast
5	Baja California Central-East	24	Bravo-Conchos
6	Baja California South-East	25	San Fernando-Soto La Marina
7	Colorado River	26	Panuco
8	Sonora North	27	North of Veracruz (Tuxpan-Nautla)
9	Sonora South	28	Papaloapan
10	Sinaloa	29	Coatzacoalcos
11	Presidio-San Pedro	30	Grijalva-Usumacinta
12	Lerma-Santiago	31	Yucatan West
13	Huicicila	32	Yucatan North
14	Ameca River	33	Yucatan East
15	Jalisco Coast	34	Closed Catchments of the North
16	Armeria-Coahuayana	35	Mapimi
17	Michoacan Coast	36	Nazas-Aguanaval
18	Balsas	37	El Salado
19	Greater Guerrero Coast		

Source: CONAGUA (2015a).

Source: CONAGUA (2015a).

The Conagua has 3 153 stations in operation to measure **climate** variables, including temperature, precipitation, evaporation, wind speed and direction. Of these, 79 are meteorological observatories, which transmit meteorological information in real time. Stream gages measure the flow of water in rivers, as well as the extraction of water through dam intakes. In Mexico there are 861 stream gages, including some automatic ones. On the other hand, hydro-climate stations measure climatic and hydrometric parameters.

TABLE 2.1 Number of climate stations and streamgages in Mexico, 2014

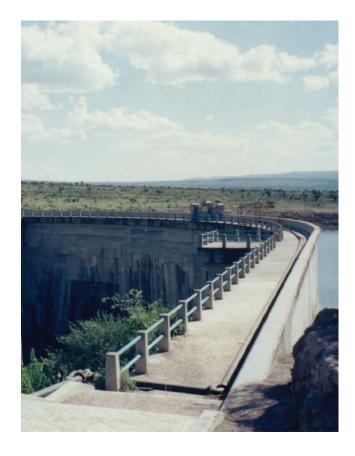
Type of station	Number of stations	
Climate stations	3 153	••••
Stream gages	861	

Source: CONAGUA (2015a), CONAGUA (2015h).

2.2 Renewable Water Resources²

[Reporteador: Ciclo hidrológico, Agua renovable]

Every year, Mexico receives around 1 449 471 million cubic meters of water in the form of precipitation. Of this water, it is estimated that 72.5% evapotranspirates and returns to the atmosphere, 21.2% runs off into rivers and streams and the remaining 6.4% naturally filters through to the subsoil and recharges aquifers.³ Taking into account the water outflows to and inflows from neighboring countries, every year the country has 447.26 billion cubic meters of **renewable** freshwater resources.


Figure 2.2 shows the components and values that make up the calculation of renewable water resources.

The inflows represent the volume of water which runs off to Mexico, generated in the transboundary watersheds Mexico shares with its neighboring countries (United States of America, Guatemala and Belize). The outflows represent the volume of water that Mexico is bound to deliver to the United States of America under the 1944 "Water Treaty"⁴

Renewable water resources should be analyzed from three perspectives:

- Distribution over time: In Mexico there are significant variations in renewable water resources throughout the year. The majority of the rainfall occurs in the summer, and the rest of the year is relatively dry.
- Distribution in **space**: Some regions of the country have abundant precipitation and low population density, whereas in others exactly the opposite occurs.

Every year Mexico has 447.26 billion cubic meters of renewable freshwater

² The maximum quantity of water that can feasibly be used in a region, meaning the quantity of water that is renewed by rainfall and the water that comes from other regions or countries (inflows). It is calculated as the mean natural annual internal surface runoff, plus the total annual recharge of aquifers, plus the water inflows, minus the water outflows to other regions (Gleick 2002).

³ Some aquifers have renewal periods, understood as the rate of their estimated storage divided by their annual recharge, which are exceptionally long. These aquifers are thus known as non-renewable ones.

^{4 &}quot;Treaty between the government of the United Mexican States and the government of the United States of America on the distribution of international water resources in the Colorado and Tijuana Rivers and the Rio Grande, from Fort Quitman, Texas, to the Gulf of Mexico".

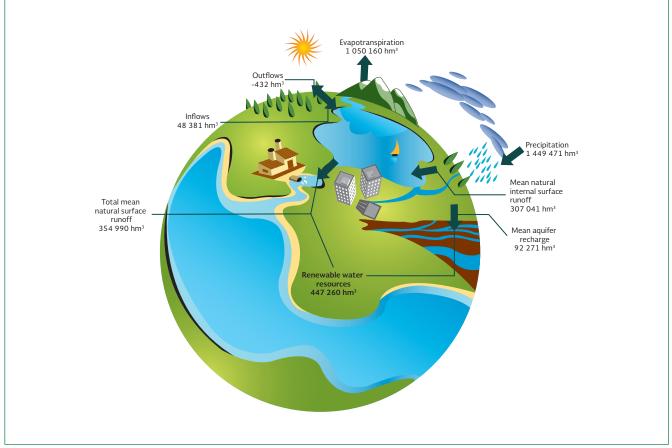


FIGURE 2.2 Mean annual values of the components of the water cycle in Mexico, 2014

Source: Produced based on CONAGUA (2015a).

TABLE 2.2	Per capita	renewable	water	resources,	2014
-----------	------------	-----------	-------	------------	------

HAR number	Renewable water resources (hm³/year)	Mid-year population (millions of inhabitants)	Per capita renewable water resources (m³/inhabitant/year)	Total mean natural surface runoff (hm³/year)	Total mean aquifer recharge (hm³/year)
Ι	4 958	4.37	1 135	3 300	1 658
II	8 273	2.80	2 951	5 066	3 207
III	25 596	4.47	5 730	22 519	3 076
IV	22 156	11.69	1 896	16 805	5 351
V	30 565	5.02	6 084	28 629	1 936
VI	12 316	12.15	1 014	6 416	5 900
VII	7 849	4.52	1 738	5 529	2 320
VIII	35 093	23.89	1 469	25 423	9 670
IX	28 085	5.23	5 366	24 016	4 069
Х	95 129	10.48	9 075	90 424	4 705
XI	144 459	7.57	19 078	121 742	22 718
XII	29 324	4.52	6 494	4 008	25 316
XIII	3 458	23.01	150	1 112	2 346
Total	447 260	119.71	3 736	354 990	92 271

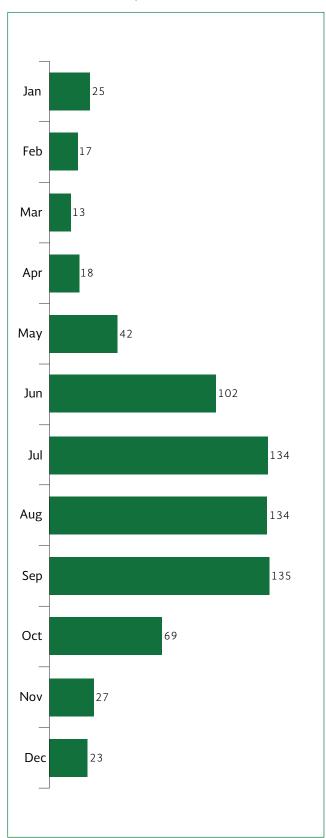
Note: for the hydrological-administrative region XIII, Mexico City's wastewater is considered. **Source:** Produced based on CONAGUA (2015a), CONAPO (2015). • The **area** of analysis: Water problems and their resolution are predominantly local in scale. Indicators calculated at a large scale may hide some strong variations which exist throughout the country.

In some HARs, such as I Baja California Peninsula, VI Rio Bravo, VII Lerma-Santiago-Pacific and XIII Waters of the Valley of Mexico, the per capita renewable water resources are alarmingly low. In table 2.2 the mean values of renewable water resources in each of the regions of the country are shown.

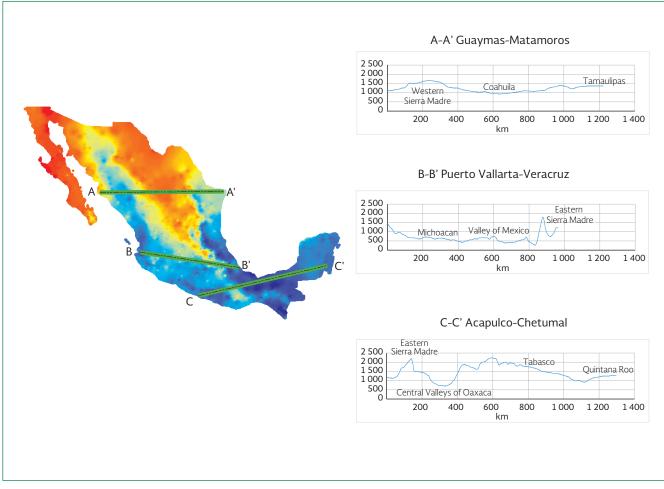
Precipitation

[Reporteador: Precipitación]

Mexico's **normal precipitation** in the period from 1981 to 2010 was 740 millimeters. According to the World Meteorological Organization (WMO), the normal values correspond to average measurements calculated for a uniform and relatively long period, which must include at least 30 years of data collection, considered as a minimum representative climate period. Furthermore, that period should start on January 1 of a year ending in one, and end on December 31 in a year ending in zero.


Table 2.3 presents the normal precipitation by HAR in the period from 1981 to 2010 (consult the data by state in [Adicional: Table 2.A]). In the majority of Mexico, precipitation mainly occurs between June and September.

It is important to mention that the monthly distribution of precipitation accentuates the problems related with the availability of water resources, since 68% of the normal monthly precipitation falls between the months of June and September, as can be observed in graph 2.1.


It may be observed, for example, that in the hydrological-administrative region XI Southern Border, which receives the greatest quantity of rain, the normal annual precipitation for 1981-2010 was eleven times higher than in the hydrological-administrative region I Baja California Peninsula, the driest one. This regional variation in the normal precipitation is highlighted in figure 2.3 and figure 2.4.

To illustrate the regional variation in rainfall, figure 2.3 shows three cross-sections that allow the precipitation profiles to be visualized in Guaymas-Matamoros (A-A'), Puerto Vallarta-Veracruz (B-B') and Acapulco-Chetumal (C-C'). The graphs show in blue the profile of the variation in the normal precipitation over the 1981-2010 period, throughout these cross-sections.

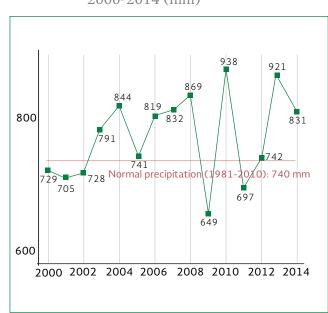
GRAPH 2.1 Monthly normal precipitation in Mexico, 1981-2010 (mm)

Source: Conagua (2015h).

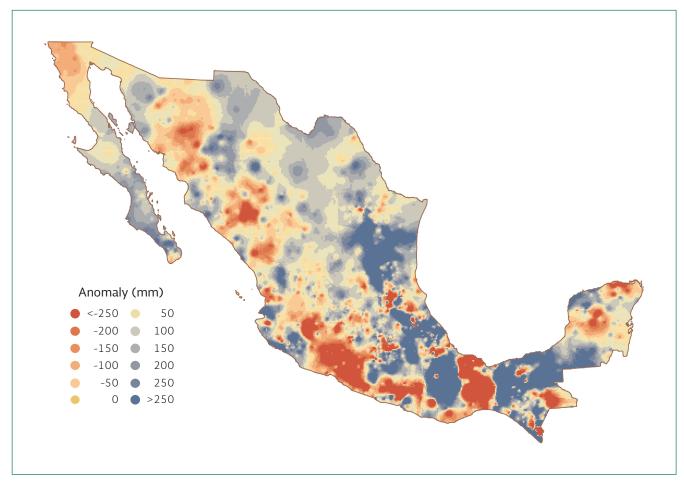
FIGURE 2.3 Normal annual precipitation profiles, 1981-2010 (mm)

Source: Produced based on CONAGUA (2015h).

TABLE 2.3 Normal monthly precipitation, 1981-2010 (mm)

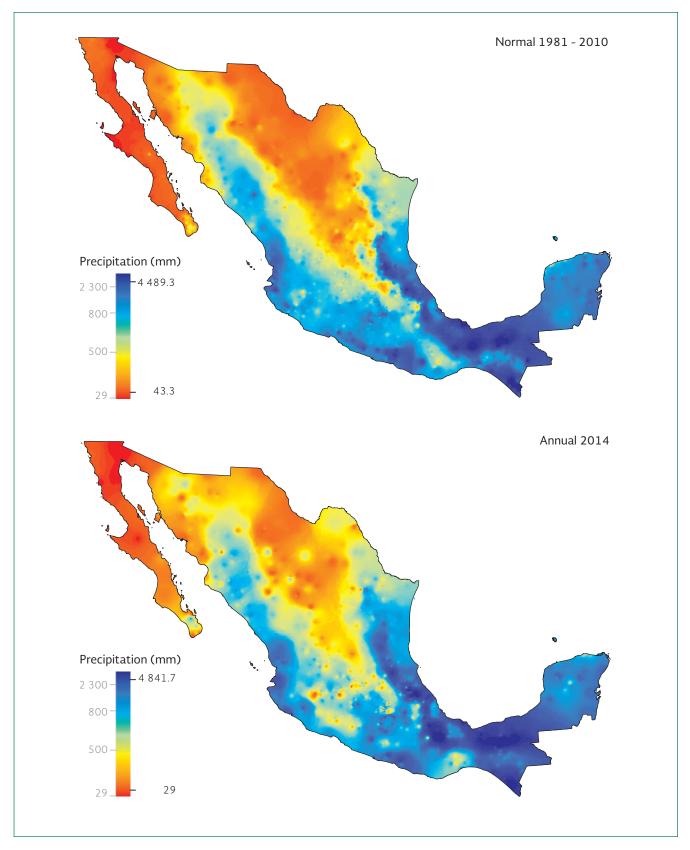

HAR number	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Ι	20	19	14	4	1	1	10	26	32	11	10	20	168
II	24	21	12	6	4	19	108	103	58	25	17	31	428
III	31	16	8	6	9	66	194	188	142	52	26	29	765
IV	12	8	6	11	48	179	199	197	194	84	15	6	962
V	26	20	19	38	67	120	137	119	166	89	30	23	855
VI	8	8	6	15	71	230	200	219	242	113	20	7	1 1 3 9
VII	19	11	11	17	28	40	63	61	64	32	12	15	372
VIII	18	9	6	12	27	56	79	71	67	29	11	13	398
IX	22	11	4	6	23	131	197	180	153	60	13	10	808
Х	51	40	30	43	84	222	261	264	293	179	97	64	1 626
XI	65	54	36	49	135	276	223	265	331	224	109	76	1 842
XII	45	35	31	39	90	167	153	173	208	147	72	49	1 207
XIII	11	11	12	28	51	109	126	115	110	57	13	6	649
Total	25	17	13	18	42	102	134	134	135	69	27	23	740

Source: Produced based on CONAGUA (2015h).


Figures 2.3 and 2.4 illustrate the characteristics of the distribution of precipitation in 2014 and its relation to the 1981-2010 normal precipitation. It is possible to compare the 2014 precipitation with the 1981-2010 normal values. Map 2.2 shows the anomaly, meaning the difference between both precipitations. The scale of colors goes from red, which means annual rain in 2014 lower than the 1981-2010 normal values, to blue in which the annual rainfall was higher than the normal one. As can be observed in the map, precipitation lower than the normal value occurred in general along the Western Sierra Madre, with a significant area of the Tehuantepec Isthmus, whereas precipitation higher than the normal values occurred generally in the Gulf of Mexico.

The accumulated precipitation in the Mexican Republic from January 1 to December 31, 2014, reached a sheet of 831 mm, which was 12% higher than the normal value for the 1981-2010 period (740 mm). The 2000-2014 annual series of accumulated precipitation is shown in graph 2.2.

GRAPH 2.2 Annual precipitation, 2000–2014 (mm)



Source: Conagua (2015h).

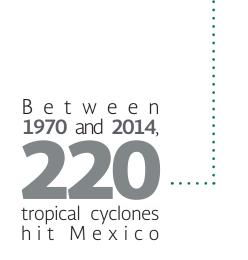
Source: Conagua (2015h).

MAP 2.2 Precipitation anomaly 2014

Source: Produced based on CONAGUA (2015h).

2.3 Hydro-meteorological phenomena

Tropical cyclones


[Reporteador: Huracanes y ciclones]

Tropical cyclones are natural phenomena that generate most of the movement of sea humidity to the semi-arid zones of the country. In several regions of the country, cyclonic rains represent the majority of the annual precipitation.

Cyclones are classified according to the intensity of the maximum sustained winds. When the latter are lower than 62 km/h they are designated as tropical depressions (TD), when they are between 62 km/h and 118 km/h, they are called tropical storms (TS); and when they are stronger than 119 km/h, they are referred to as hurricanes (see table 2.4). In the latter case, the cloudy area covers an extension of between 500 and 900 km of diameter, producing intense rains. The eye of the hurricane normally reaches a diameter that varies between 24 and 40 km, however, it can be anything up to 100 km. Hurricanes are classified through the Sa-ffir-Simpson scale.

Between 1970 and 2014, 220 tropical cyclones hit the coasts of Mexico [Adicional: Graph 2.A]. Table 2.5 presents their occurrence on the Atlantic and Pacific oceans, from which it can be observed that a greater number of cyclones have hit the Pacific coast.

In map 2.2 [Adicional: Table 2.B], the hurricanes that occurred in Mexico between 1970 and 2014 are shown. The intense hurricanes during this period (categories H3-H5) are identified with a label. In the 2014 hurricane season, the highest category that hit the Mexican coast was Odile (H3).

Category	Maximum winds (km/h)	Storm tide that it normally generates (m)	Characteristics of the possible material damage and floods
H1	From 119 to 153	1.2 a 1.8	Small trees toppled; some flooding on the lowest-lying coastal highways.
H2	From 154 to 177	1.8 a 2.5	Additionally: Rooftops, doors and windows damaged; trees uprooted.
H3	From 178 to 208	2.5 a 4.0	Additionally: Cracks appear in small buildings; flooding in low-lying and flat grounds.
H4	From 209 to 251	4.0 a 5.5	Additionally: Household roofs come loose; significant erosion on beaches and river and stream channels. Imminent damage to drinking water and sanitation services.
H5	Greater than 252	Greater than 5.5	Additionally: Very severe and extensive damage to windows and doors. Total failure of roofs in many residences and industrial buildings.

TABLE 2.4 Hurricanes and the Saffir-Simpson scale

Source: Produced based on Conagua (2014), Conagua (2015k).

Ocean	Tropical depressions	Tropical storms	Moderate hurricanes (H1 and H2)	Intense hurricanes (H3-H5)	Total
Atlantic	27	31	14	12	84
 Pacific	31	49	45	11	136
Total	58	80	59	23	220

Source: Conagua (2015h).

MAP 2.3 Hurricanes 1970-2014

Source: Produced based on CONAGUA (2015h).

Droughts

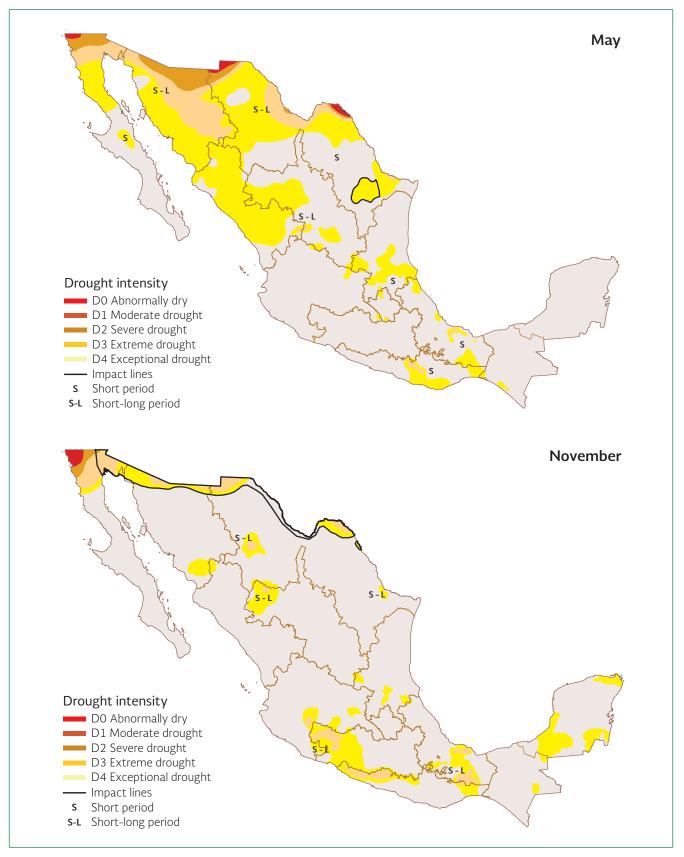
[Reporteador: Sequías]

Drought is when rainfall is significantly lower than the levels normally registered, which causes serious hydrological imbalances that jeopardize agricultural production systems. When rainfall is scarce and infrequent and the temperature increases, it becomes more difficult for vegetation to develop. Droughts are the most costly natural disasters, since they affect more people than any other form of natural disaster.

In addition drought may be associated with phenomena of soil degradation and deforestation. In the drought season, the risk of forest fires increases (INEGI 2013a).

In partnership with the United States and Canada, Mexico takes part in the "North American Drought Monitor" (NADM), which analyzes the climate conditions in order to continuously monitor drought at a large scale in North America.

A moment of interest in the year is the month of May, when the dry season generally ends and the rainy season starts. In May 2014 (figure 2.5), the meteorological conditions caused important precipitations, meaning that this month was the second rainiest May since 1943. The rain was distributed over approximately two thirds of the national territory, however the states in the northwest were very warm and with below average precipitations.


The distribution of droughts occurred mainly in the northwest, with isolated areas in the center and south of the country. The areas with D2 droughts (severe), D3 (extreme) and D4 (exceptional) occurred in small isolated areas, close to the border with the United States. 86 634 hectares were declared disaster zones due to forest fires from January to May 2014 (NADM 2015a).

Another interesting moment to review the evolution of drought is the month of November, when the **rainy** season generally finishes and the dry season starts. An improvement or disappearance is expected in the drought conditions that existed before the precipitation started.

In November 2014 (figure 2.5), precipitation occurred in the north, northeast and center-west of the country, which helped to reduce or resolve the abnormally dry areas (D0) in Nayarit, Sinaloa, Jalisco and Durango. However, the northwest of the country continued to be lacking in rainfall. The presence of an area affected by drought between Michoacan and Guerrero should be mentioned, which received below normal rainfall in the summer.

Source: Produced based on CONAGUA (2015h), NADM (2015a), NADM (2015b).

The mean temperature in November was below the normal value (1971-2000), making it the seventh coldest November since 1971, with regional variations. The National Forestry Commission (CONAFOR) reported an area affected by forest fires of 155 129 hectares accumulated from January to December 4 ••• (NADM 2015b).

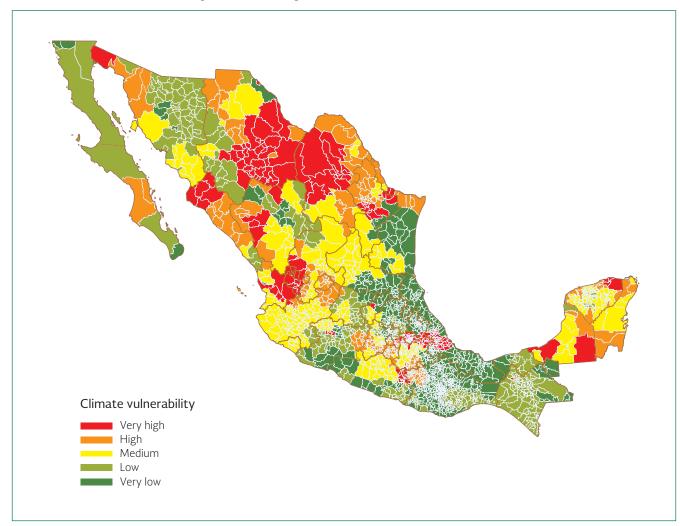
As can be seen, when the situation at the start of the 2014 rainy season (May) is compared to the end of that season (November), the areas in drought conditions fell considerably.

Effects

Both drought and intense precipitation, as well as factors such as topography, soil use and the status of vegetation cover, may cause impacts on society and economic activities.

Considering the effect of global phenomena such as "El Niño-Southern Oscillation"⁵ and climate change, within the framework of the National Program against Drought (PRONACOSE), climate vulnerability at the municipal level was analyzed, as the combination of physical factors (the location of the municipality), social ones (the population and its marginalization characteristics), economic ones (the possible loss of income) and ecological ones (the degradation of natural resources). Map 2.4 shows the climate vulnerability at the municipal level.

In Mexico there are procedures in place for the issuing of declarations⁶ as a result of these phenomena of drought⁷ or intense precipitation, in categories which describe their effects. Climate **contingencies** are affectations on productive activities, **emergencies** imply risks to life and public health, whereas **disasters** focus the state's and society's resources on the reconstruction of the affected areas.


Area affected by forest fires **155 129** hectares, from January to December 2014

⁵ The term "El Niño" originally applied to the warming of the sea surface temperature (TSS) on the coasts of Peru and Ecuador, close to Christmas time. It has been observed that this warming affects an extensive region of the Pacific along the Equator, modifying global climate patterns. Now referred to as "El Niño-Southern Oscillation" (ENSO), it presents three phases: warm (El Niño), cold (La Niña) and neutral(CONAGUA 2015j).

⁶ The declarations make it possible to employ resources from public programs to attend these affectations.

⁷ It is worth mentioning that the drought reported in the NADM is established with a different methodology to the one used for the declarations.

MAP 2.4 Climate vulnerability at the municipal level

Source: CONAGUA (2015a).

2.4 Surface water

Rivers

[Reporteador: Ríos principales]

Mexico's rivers and streams constitute a 633 000 kilometer long hydrographic network, in which 51 main rivers stand out, through which 87% of the country's surface runoff flows, and whose catchments cover 65% of the country's mainland surface area (map 2.5).

For their surface area, the catchments of the Rio Grande and Balsas river stand out, as do the Rio Grande and Grijalva-Usumacinta river for their length. The Lerma and Nazas-Aguanaval are inland-flowing rivers. In tables 2.6, 2.7 and 2.8, the most relevant data on Mexico's main rivers is shown, according to the water body into which they flow. It should be mentioned that the mean natural surface runoff represents the mean annual value of its historical registry and the maximum stream order was determined according to the Strahler method. In the case of transboundary catchments, the area and length of the river correspond to the Mexican side of the watershed, strictly speaking the catchment itself.

MAP 2.5 Mexico's main rivers

Source: Conagua (2015b).

TABLE 2.6 Characteristics of the main rivers that flow into the Pacific and Gulf of California,ordered by their mean natural surface runoff, 2014

Nº	River	HAR number	Mean natural surface runoff (hm³/year)	Catchment area (km²)	Length of the river (km)	Maximum order
1	Balsas	IV	16 279	117 406	770	7
2	Santiago	VIII	7 423	76 416	562	7
3	Verde	V	6 046	18 812	342	6
4	Ometepec	V	5 100	6 922	115	4
5	El Fuerte	III	5 024	33 590	540	6
6	Papagayo	V	4 288	7 410	140	6
7	San Pedro	III	3 347	26 480	255	6
8	Yaqui	II	3 179	72 540	410	6
9	Culiacan	III	3 122	15 731	875	5
10	Suchiate	XI	1 584	203	75	2
11	Ameca	VIII	2 205	12 214	205	5
12	Sinaloa	III	2 100	12 260	400	5
13	Armeria	VIII	1 805	9 795	240	5
14	Coahuayana	VIII	1 732	7 114	203	5
15	Colorado	Ι	1 928	3 840	160	6
16	Baluarte	III	1 830	5 094	142	5
17	San Lorenzo	III	1 665	8 919	315	5
18	Acaponeta	III	1 433	5 092	233	5
19	Piaxtla	III	1 406	11 473	220	5
20	Presidio	III	1 084	6 479	NA	4
21	Мауо	II	1 222	15 113	386	5
22	Tehuantepec	V	901	10 090	240	5
23	Coatan	XI	934	605	75	3
24	Tomatlan	VIII	1 166	2 118	NA	4
25	Marabasco	VIII	503	2 526	NA	5
26	San Nicolas	VIII	487	2 330	NA	5
27	Elota	III	463	2 324	NA	4
28	Sonora	II	412	27 740	421	5
29	Concepcion	II	113	25 808	335	2
30	Matape	II	89	6 606	205	4
31	Tijuana	Ι	95	3 231	186	4
32	Sonoyta	II	20	7 653	311	5
33	Huicicila	VIII	470	1 194	50	NA
	Total		79 455	565 128		

Note: The length of the Suchiate River belongs to the border between Mexico and Guatemala. The runoff from the Colorado River considers the inflow as per the 1944 Water Treaty.

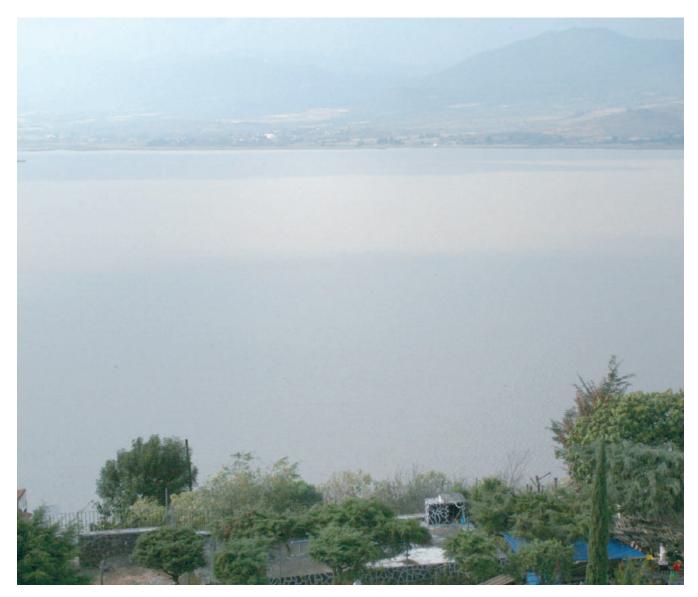

NA: Not Available.

Table 2.6 describes the rivers which flow into the Pacific and Gulf of California. For the transboundary catchments (Colorado, Suchiate, Coatan and Tijuana) the mean natural surface runoff includes the inflows from other countries, except for the Tijuana river, the runoff from which only corresponds to the Mexican share.

Table 2.7 describes the rivers that flow into the Gulf of Mexico and the Caribbean Sea. For the transboundary catchments (Grijalva-Usumacinta, Grande, Candelaria and Hondo), the mean natural surface runoff includes the inflows from other countries, except for the Rio Grande and Hondo River, the runoff from which only corresponds to the Mexican share.

Table 2.8 describes the inland-flowing rivers. Lerma River, which flows out into Lake Chapala, is one of these rivers.

With a length of **1521 km Grijalva-Usumacinta** river is Mexico's longest

TABLE 2.7 Characteristics of the main rivers that flow into the Gulf of Mexico and Caribbean Sea,ordered by their mean natural runoff, 2014

	Nº	River	HAR number	Mean natural surface runoff (hm³/year)	Catchment area (km²)	Length of the river (km)	Maximum order
• • • •	34	Grijalva-Usumacinta	XI	101 517	83 553	1 521	7
•	35	Papaloapan	Х	42 887	46 517	354	6
• • •	36	Coatzacoalcos	Х	28 679	17 369	325	5
	37	Panuco	IX	19 673	84 956	510	7
	38	Tecolutla	Х	6 098	7 903	375	5
	39	Bravo	VI	5 588	225 242	NA	7
	40	Tonala	Х	3 955	5 679	82	5
	41	Nautla	Х	2 218	2 785	124	4
	42	La Antigua	Х	2 145	2 827	139	5
	43	Tuxpan	Х	2 072	5 899	150	4
	44	Jamapa	Х	2 055	4 061	368	4
	45	Soto La Marina	IX	1 999	21 183	416	6
	46	Candelaria	XII	1 861	13 790	150	4
	47	Cazones	Х	1 712	2 688	145	4
	48	San Fernando	Х	1 573	17 744	400	5
	49	Hondo	XII	576	7 614	115	4
		Total		224 608	549 810		

Note: The length of the Hondo River reported belongs to the border between Mexico and Belize. **NA:** Not Available

Source: CONAGUA (2015a).

TABLE 2.8 Characteristics of the main inland-flowing rivers, ordered by the mean natural surface runoff, 2014

N٥	River	HAR number	Mean natural surface runoff (hm³/year)	Catchment area (km²)	Length of the river (km)	Maximum order
50	Lerma	VIII	4 742	47 116	708	6
51	Nazas-Aguanaval	VII	2 085	89 239	1 081	7
	Total		6 827	136 355		

Mexico's transboundary catchments

Mexico shares eight catchments with its neighboring countries: three with the United States of America (Grande, Colorado and Tijuana), four with Guatemala (Grijalva-Usumacinta, Suchiate, Coatan and Candelaria) and one with both Belize and Guatemala (River Hondo), the data on which is presented in figure 2.6 and table 2.9. The data on mean natural surface runoff and the catchment area in table 2.9 was obtained from available hydrological studies

The waters of the Colorado and Tijuana rivers and the Rio Grande are shared between Mexico and the United States of America, according to the indications of the "Water Treaty" signed in Washington, D.C. on February 3, 1944.

In the case of the Colorado River, the treaty specifies that the United States of America should deliver 1.85 billion cubic meters (1.5 million acre feet) every year to Mexico. The annual series of this delivery from 1945 to 2014 is shown in graph 2.3.

The United States of America should deliver **1,355** billion cubic meters to the Colorado river every year .

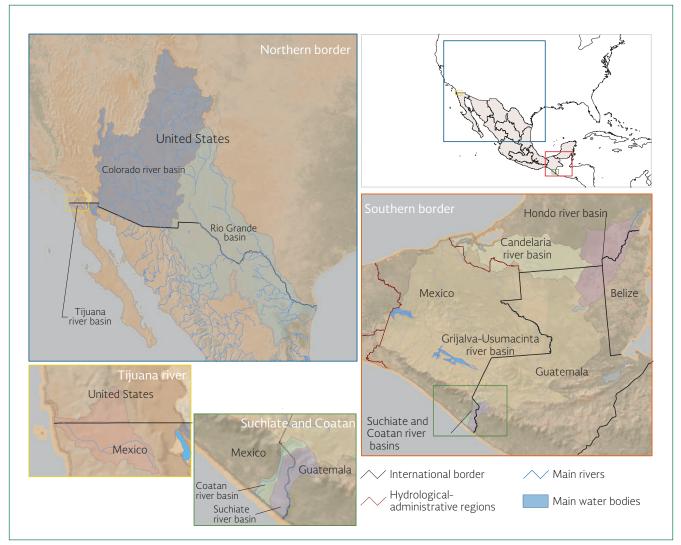
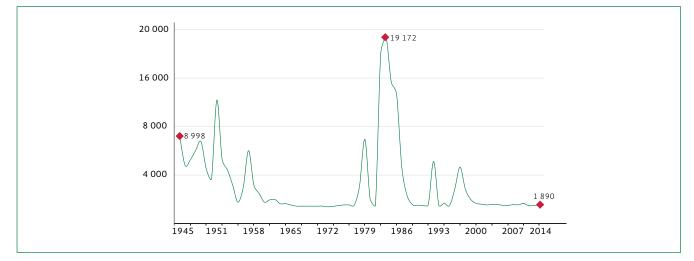

Nº	River	HAR number	Country	Mean natural surface runoff (hm³/year)	Catchment area (km²)	Length of the river (km)
1	Suchiate	XI	Mexico	291	203	75ª
			Guatemala	1 294	1 084	60
2	Colorado	Ι	Mexico	78	3 840	160
			USA	1 850*	626 943	2 140
			Bi-national	NA	NA	NA
3	Coatan	XI	Mexico	642	605	75
			Guatemala	292	280	12
4	Tijuana	Ι	Mexico	78	3 231	186
			USA	17	1 221	9
5	Grijalva-Usumacinta	XI	Mexico	57 697	83 553	1 521
			Guatemala	43 820	44 837	390
6	Bravo	VI	Mexico	5 588	225 242	NA
			USA	74*	241 697	1 074
			Bi-national	NA	NA	2 034
7	Candelaria	XI	Mexico	1 600	13 790	150
			Guatemala	261	1 558	8
8	Hondo	XII	Mexico	533	7 614	115 ^b
			Guatemala	NA	2 873	45
			Belize	NA	2 978	16

TABLE 2.9 Characteristics of the main rivers with transboundary catchments, 2014

Note: ^a The 75 km belong to the border between Mexico and Guatemala. ^b The 115 km belong to the border between Mexico and Belize.

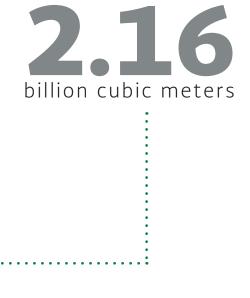

* Volumes delivered to Mexico. NA: Not Applicable.

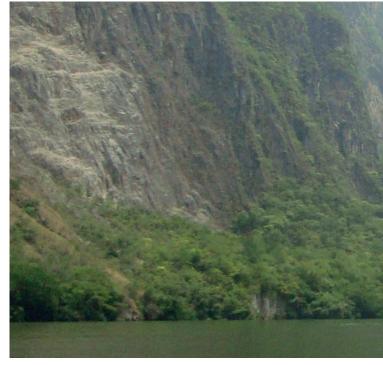
Source: CONAGUA (2015a).

GRAPH 2.3 Volume delivered in the Colorado river (hm³)

Source: Conagua (2015a).

For the **Tijuana** River, the treaty only establishes that both countries, through the International Boundary and Water Commission (IBWC), will make recommendations for the equitable sharing of its waters; will draw up projects for storage infrastructure and flood control; and estimate the costs and build the infrastructure that is agreed upon, sharing the construction and operation costs equitably.


As regards the Rio **Grande** (called the Río Bravo in Mexico), table 2.10 describes the distribution of its waters as defined in the treaty.


Three considerations are established regarding the six Mexican channels previously referred to, which should be highlighted:

- 1. The volume that Mexico should provide to the United States of America, as part of the third of the volume in the six aforementioned Mexican channels, shall not be less on the whole, as an average amount and in cycles of five consecutive years, than 431.72 million cubic meters (350 000 acre feet) per year, the equivalent of supplying a minimum volume of 2.16 billion cubic meters (1 750 000 acre feet) in each cycle.
- 2. In the event of extraordinary drought or serious accident in the hydraulic systems on the measured Mexican tributaries, making it difficult for Mexico to make available the run-off of 431.72 million cubic meters annually, any shortfall existing at the end of the aforesaid five-year cycle shall be made up in the following five-year cycle with water from the aforementioned tributaries.
- 3. If the capacity assigned to the United States of America in the international reservoirs shared by both countries (La Amistad and Falcon) is filled with waters belonging to the United States, the five-year cycle shall be considered as terminated and all volumes pending delivery fully covered, whereupon a new five-year cycle shall commence.

In terms of the capacities in these reservoirs, the allocations by country are shown in table 2.11.

The minimum volume of each cycle is

TABLE 2.10 Distribution of the waters in the Rio Grande according to the 1944 Treaty

The United Mexican States' share	The United States of America's share
All of the runoff from the San Juan and Alamo rivers	All of the runoff from the Pecos and Devils rivers, Goodenough spring and Alamito, Terlingua, San Felipe and Pinto streams.
Two thirds of the water that flows into the main channel of the Rio Grande from the following six Mexican channels: the Conchos, San Diego, San Rodrigo, Escondido and Salado rivers and the Las Vacas stream.	One third of the water that flows into the main channel of the Rio Grande from the following six Mexican channels: the Conchos, San Diego, San Rodrigo, Escondido and Salado rivers, and the Las Vacas stream.
One half of all unassigned flows in the Treaty that reach the main channel, between Quitman and Falcon.	One half of all unassigned flows in the Treaty that reach the main channel, between Quitman and Falcon.
One half of the runoff from the Rio Grande watershed, downstream from Falcon.	One half of the runoff from the Rio Grande watershed, downstream from Falcon.

Source: IBWC (2015).

TABLE 2.11 Capacities assigned in international reservoirs (hm³)

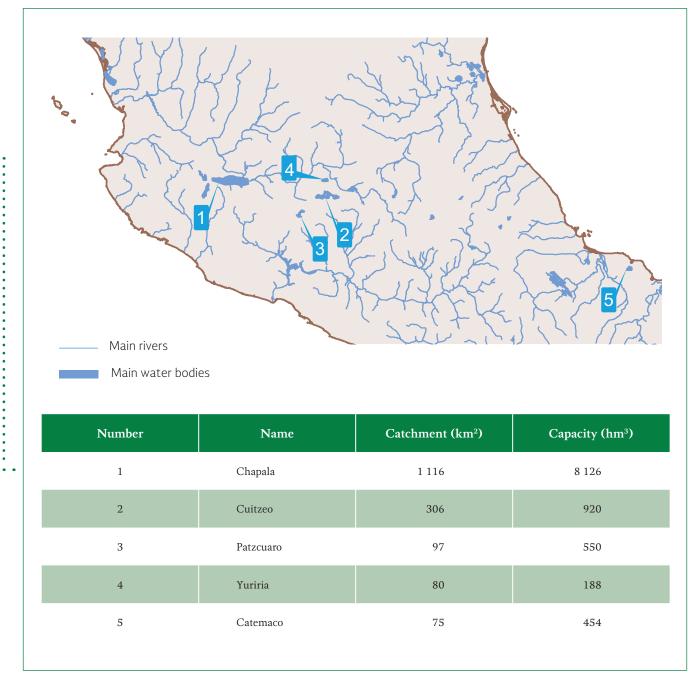
Country	La Amistad	Falcon
Mexico	1 770	1 352
United States of America	2 271	1 913

Mexico's main lakes

[Reporteador: Lagos principales]

Figure 2.7 shows some of Mexico's main lakes in the central area of the country, according to the extension of their own catchment [Adicional: Table 2.C]. The data presented corresponds to the available hydrological studies and the catchment area corresponds to the water bodies' own catchment. Lake Chapala is the biggest inland lake in Mexico, with a depth that varies between four and six meters. Its importance lies in the fact that it constitutes one of the main sources of supply for the Metropolitan Area of Guadalajara. The behavior of its volumes stored per year is shown in graph 2.4.

Lake **Chapala** has a **1116 km²** catchment area



Note: The values indicated are as of December 31 each year. **Source**: CONAGUA (2015a).

Source: CONAGUA (2015a).

2.5 Groundwater

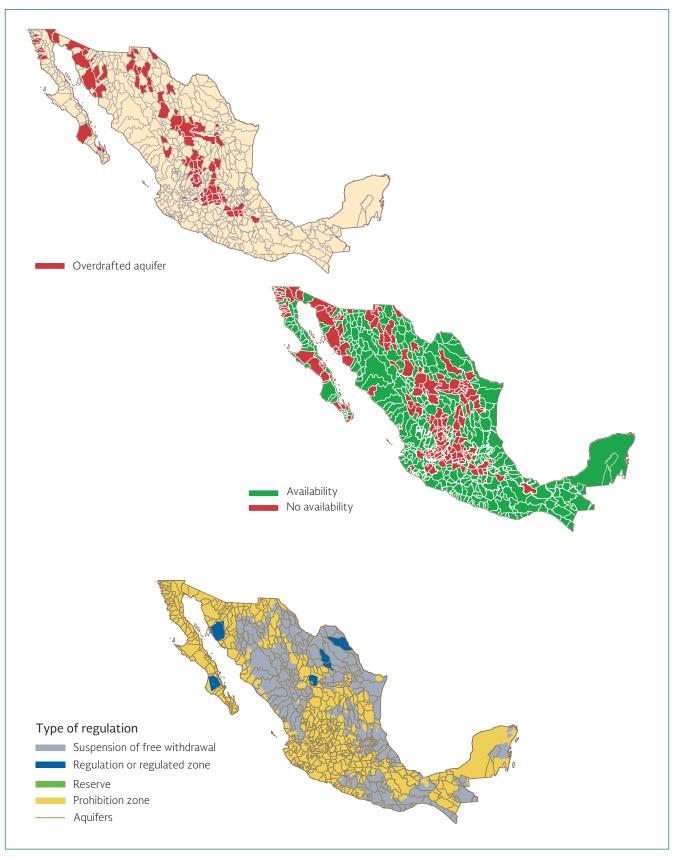
[Reporteador: Acuíferos]

Groundwater plays an increasingly important role in the country's socio-economic growth, due to its physical characteristics which allow it to be used for a number of different purposes, since it works as a storage dam and distribution network, it being possible to extract water at any point of the year from practically any point of the surface above the aquifer. It also works as a purifying filter, preserving water quality.

The importance of groundwater is manifest due to the magnitude of the volume employed by the main users. 38.7% of the total volume allocated for offstream uses (32.9 billion m³ per year in 2014) comes from groundwater sources. As already mentioned, for the purpose of groundwater management, the country has been divided into 653 aquifers, the official names of which were published in the DOF on December 5, 2001.

From that point onwards a process of outlining and studying the aquifers initiated, in order to officially make their mean natural availability public, following the official Mexican standard NOM-011-CONA-GUA-2000. As of December 31, 2014, the availability of groundwater in all 653 aquifers had been published in the DOF.⁸ It is worth highlighting the publication on December 20, 2013 of the updated calculation of availability of all the nation's aquifers.

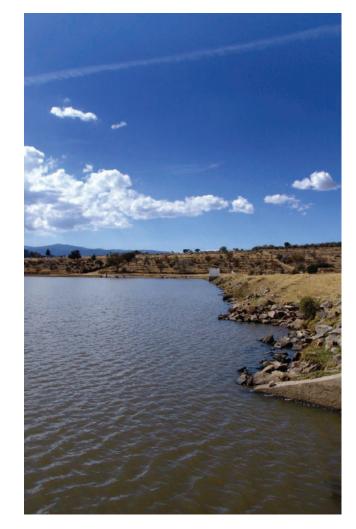
Availability is a basic indicator for the preservation of the resource through the management of the nation's water resources, through the instruments of concession or allocation of rights for the use of the nation's water resources, as well as regulatory measures for the use of aquifers such as prohibition zones, regulations, regulated zones and reserve zones (figure 2.8 and section 5.2 "Legal framework for the use of water in Mexico"). 458 aquifers in Mexico have a condition of availability.


Overdrafting of aquifers

Based on the process of identification, outlining, studying and calculation of availability, which started in 2001, the number of overdrafted aquifers has varied every year from 100 to 106. As of December 31, 2014, it was reported that there were 106 overdrafted aquifers (figure 2.8). According to the results of

⁸ Availability of groundwater: The mean annual volume of groundwater that can be withdrawn from a hydrogeological unit for different uses, in addition to the extractions already allocated and the natural discharge committed, without jeopardizing the balance of ecosystems.

Source: CONAGUA (2015a).


recent studies, it is defined whether aquifers are considered overdrafted or cease to be so, based on the **extraction/recharge** ratio. The statistics on aquifers are presented in table 2.12.

Aquifers with saltwater intrusion and/or suffering from the phenomena of soil salinization and brackish groundwater

Soil salinization and the presence of brackish groundwater occur as a result of high indices of evaporation in areas with shallow groundwater levels, the dissolution of evaporite minerals and the presence of high-salinity connate water. Brackish water occurs specifically in those aquifers located in geological provinces characterized by sedimentary formations that are ancient, shallow, of marine origin and evaporite, in which the interaction of groundwater with the geological material produces the higher salt content.

Up to the end of 2014, 31 aquifers with the presence of saline soils and brackish water had been identified, mainly located in the Baja California Peninsula and in the Mexican Plateau, which combine conditions of limited precipitation, high indices of solar radiation and thus evaporation, as well as the presence of connate water and easily-dissolved evaporite minerals.

In the same year, saltwater intrusion had occurred in 15 coastal aquifers nationwide, as shown in figure 2.9.

			of aquifers		
HAR	Total	Overdrafted	With saltwater intrusion	Under the phenomena of soil salinization and brackish groundwater	Mean recharge (hm ³)
Ι	88	15	10	4	1 658
II	62	10	5		3 207
III	24	2			3 076
IV	45	1			5 351
V	36				1 936
VI	102	18		8	5 900
VII	65	23		18	2 320
VIII	128	32			9 670
IX	40	1			4 069
Х	22				4 705
XI	23				22 718
XII	4			1	25 316
XIII	14	4			2 346
Total	653	106	15	31	92 271

TABLE 2.12 Mexico's aquifers, 2014

FIGURE 2.9 Aquifers with saltwater i	intrusion and/or soil salinization a	and brackish groundwater, 2014

Code	Aquifer	Code	Aquifer
209	Salada Laguna	833	Juarez Valley
210	Mexicali Valley	848	Palomas Laguna
211	Ensenada	1021	Pedriceña-Velardeña
212	Maneadero	1023	Ceballos
219	Camalu	1024	Oriente Aguanaval
220	Colonia Vicente Guerrero	1026	Vicente Suarez
221	San Quintin	1916	Navidad-Potosi-Raices
246	San Simon	2402	El Barril
306	Santo Domingo	2403	Salinas de Hidalgo
323	Los Planes	2603	Sonoyta-Puerto Peñasco
324	La Paz	2605	Caborca
332	Mulege	2619	Hermosillo Coast
405	Xpujil	2635	Guaymas Coast
502	Cyearn del Derramadero	2636	San Jose de Guaymas
504	Cuatrocienegas-Ocampo	2801	Lower Rio Grande
506	El Hundido	3218	Cedros
508	Paredon	3219	El Salvador
509	La Paila	3220	Guadalupe Garzaron
520	Laguna del Rey-Sierra Mojada	3221	Camacho
523	Principal - Lagunera Region	3222	El Cardito
524	Acatita	3223	Guadalupe de las Corriente
525	Las Delicias	3226	Chupaderos

Source: Produced based on CONAGUA (2015a).

2.6 Water quality

[Reporteador: Calidad del agua, Sitios fuertemente contaminados, Calidad del agua en playas]

Monitoring of water quality

In 2014, the National Monitoring Network had 5 000 •••• sites, distributed throughout the country, as described in table 2.13.

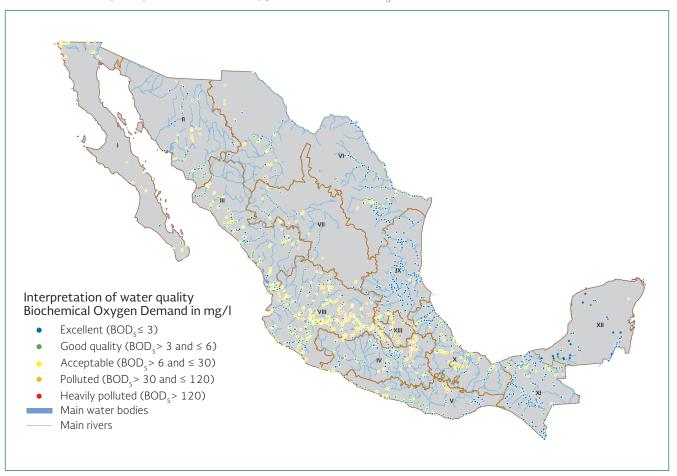
In addition to the physical-chemical and microbiological parameters monitored by the network, biological monitoring has been carried out since 2005 in some regions of the country, which allows water quality to be evaluated, using simple low-cost methods, such as the benthic organism diversity index. The results of these activities as of 2014 are shown in table 2.15.

Evaluation of water quality

The evaluation of water quality is carried out by using three indicators: five-day Biochemical Oxygen Demand (BOD_s), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS).

BOD_s and COD are used to determine the quantity of organic matter present in water bodies, mainly from municipal and non-municipal wastewater discharges.

 BOD_s determines the quantity of biodegradable organic matter, whereas COD measures the total quantity of organic matter. The increase in the concentration of these parameters has an impact on the decrease of the dissolved oxygen content in water bodies with the consequent affectation of aquatic ecosystems.


Additionally, the increase in COD indicates the presence of substances coming from non-municipal discharges.

TSS originate in wastewater and soil erosion. The increase in the levels of TSS results in the water body losing its capacity to support the diversity of aquatic life. These parameters allow gradients to be recognized that vary from a relatively normal condition or with no influence of human activity, to water that shows significant signs of municipal and non-municipal wastewater discharges, as well as areas with severe deforestation. In 2014, the National Monitoring Network had

5000 sites

TABLE 2.13 Sites in the National
Monitoring Network, 2014

Network	Area	Sites (number)
Surface water	Surface water bodies	2 514
Groundwater	Groundwater bodies	1 084
C	Surface water bodies	35
Special studies	Groundwater bodies	0
Coastal	Coastal zones	1 053
Surface water discharges		301
Groundwater discharges		13
Total		5 000

Source: CONAGUA (2015a).

TABLE 2.14 Percentage distribution of monitoring sites in surface water bodies by HAR,according to the BOD₅ indicator, 2014

HAR number	Excellent	Good quality	Acceptable	Polluted	Heavily polluted
Ι	3.9	10.5	51.3	28.9	5.3
II	31.5	31.5	34.2	2.7	0.0
III	18.4	32.5	48.1	1.0	0.0
IV	25.1	28.0	28.7	13.7	4.6
V	32.4	46.5	19.0	2.1	0.0
VI	45.5	35.2	16.8	2.5	0.0
VII	15.2	47.8	37.0	0.0	0.0
VIII	9.4	23.4	57.2	6.6	3.4
IX	74.5	11.9	11.1	1.2	1.2
Х	26.5	30.1	36.1	6.4	0.8
XI	62.0	26.0	10.4	1.2	0.4
XII	90.6	7.5	1.9	0.0	0.0
XIII	13.4	32.0	35.1	17.5	2.1
National	31.4	27.1	33.6	6.0	1.8

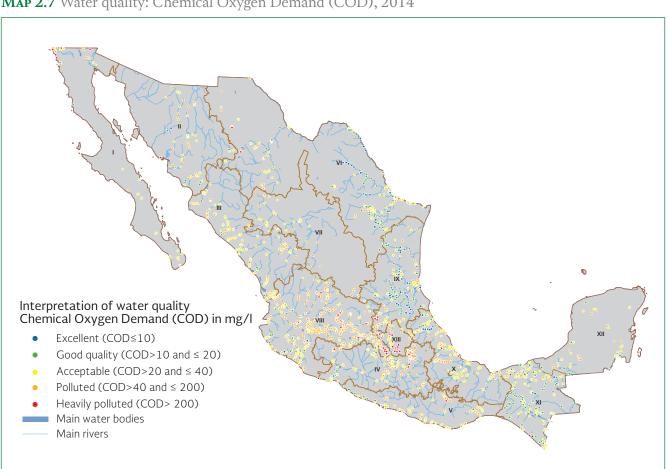
It should be mentioned that the water quality monitoring sites are situated in areas with a high anthropogenic influence. The water quality classification scale is shown in [Adicional: Table 2.D].

The evaluation for 2014 of the water quality indicators was carried out according to the terms established in table 2.16, with the results recorded in maps 2.6, 2.7 and 2.8 and tables 2.14, 2.17 and 2.18.

According to the results of the water quality evaluations of the three indicators (BOD_s, COD and TSS) applied to the monitoring sites in 2014, it was determined that 187 sites were classified as heavily polluted in one, two or all three of these indicators. These sites are shown in map 2.9 [Adicional: Table 2.E].

TABLE 2.15 Samples for biological monitoring,2014

	HAR	Number of samples
IV	Balsas	98
VI	Rio Bravo	3
VII	Central Basins of the North	10
IX	Northern Gulf	3
Х	Central Gulf	5
Total		119


TABLE 2.16 Number of monitoring sites with
data for each water quality indicator, 2014

Water quality indicator	Number of monitoring sites
Biochemical Oxygen Demand (BOD ₅)	2 636
Chemical Oxygen Demand (COD)	2 635
Total Suspended Solids (TSS)	3 607

Source: CONAGUA (2015a).

Source: CONAGUA (2015a).

TABLE 2.17 Percentage distribution of monitoring sites in surface water bodies by hydrologicaladministrative region, according to the COD indicator, 2014

HAR number	Excellent	Good quality	Acceptable	Polluted	Heavily polluted
Ι	1.3	10.5	32.9	44.7	10.5
II	1.4	9.6	45.2	42.5	1.4
III	0.0	7.3	61.2	31.6	0.0
IV	1.3	13.0	35.5	38.4	11.7
V	1.4	9.2	41.5	47.2	0.7
VI	10.2	27.0	39.3	20.9	2.5
VII	0.0	0.0	56.5	43.5	0.0
VIII	1.5	4.8	21.2	65.7	6.8
IX	14.9	31.8	30.2	21.1	2.1
Х	3.2	8.4	40.6	44.6	3.2
XI	4.0	44.8	38.8	11.2	1.2
XII	0.0	34.0	41.5	24.5	0.0
XIII	0.0	1.0	34.0	43.3	21.6
National	3.7	15.5	35.6	40.2	5.0

Summary of water quality

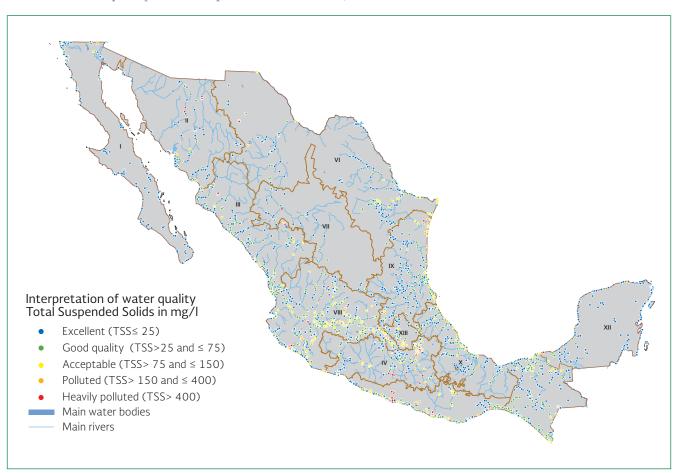
Up to 2014 there were 5 000 sites of water quality monitoring, the result of a trend in recent years to increasing this measurement, as can be observed in graph 2.5.

For the 2011-2014 period, the water quality results are presented regionally, summarized in table 2.19, which indicates for each hydrological-administrative region, parameter (BOD_5 , COD or TSS), and year, the observations with the interpretation of water quality (excellent, good quality, acceptable, polluted and heavily polluted) through a mini graph, as well as the total number of observations with data. Figure 2.10 has an example of the interpretation of table 2.19 data.

Groundwater quality

One of the parameters that allows groundwater salinization to be evaluated is the total solids. According to their concentration, groundwater is classified as fresh (<1 000 mg/l), slightly brackish (1 000-2 000 mg/l), brackish (2 000-10 000 mg/l) and saline (>10 000 mg/l).

The limit between freshwater and slightly brackish water coincides with the maximum concentration indicated by the modification of the official Mexican standard NOM-127-SSA1-1994, which "establishes the maximum permissible limits that water should comply with for human consumption and treatment as regards water quality for human consumption".


Water quality on beaches

Through the Clean Beach Program, the cleaning up of beaches and their associated catchments and aquifers is promoted. The finality of the program is to prevent and redress the pollution of Mexico's beaches, respecting the native ecology, making them competitive as well as raising the quality and standard of living of the local population, and increasing tourism.

For the development of the program, clean beach committees have been set up, which are chaired by the President of the municipality and have the active presence of representatives of SEMARNAT, PROFEPA, SEMAR, SECTUR, COFEPRIS and the CONAGUA, as well as representatives of associations and the private sector.

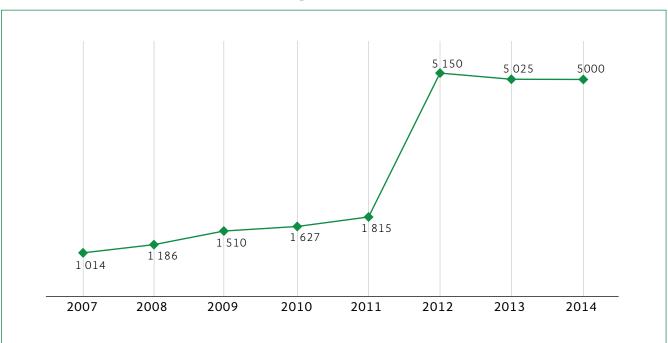
In order to evaluate water quality on beaches, the bacteriological indicator of *enterococcus faecalis* is used, which is considered the most efficient means of evaluating seawater quality for first-contact recreational use.

Source: CONAGUA (2015a).

TABLE 2.18 Percentage distribution of monitoring sites in surface water bodies by hydrological-
administrative region, according to the TSS indicator, 2014

HAR number	Excellent	Good quality	Acceptable	Polluted	Heavily polluted
Ι	79.2	12.9	3.0	4.5	0.5
II	63.0	24.4	3.9	5.5	3.1
III	49.7	40.5	3.6	4.6	1.6
IV	51.9	20.3	12.7	10.4	4.7
V	33.8	46.9	6.1	6.4	6.7
VI	56.1	29.0	10.2	3.5	1.2
VII	69.6	28.3	0.0	0.0	2.2
VIII	41.2	34.5	15.7	7.5	1.2
IX	60.5	25.7	10.1	3.4	0.3
Х	50.5	39.2	6.8	3.2	0.3
XI	45.8	46.4	6.3	1.4	0.0
XII	89.1	9.4	0.5	0.0	1.0
XIII	51.5	30.9	14.4	2.1	1.0
National	52.2	32.3	8.7	4.9	1.9

For the above reason, the Ministry of Health, in accordance with studies carried out by the World Health Organization (WHO), determined that a level of enterococcus of 200 MLN⁹/100 ml is considered the ••••••• maximum limit for recreational use.

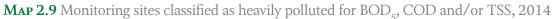

Water quality classification criteria on beaches:

 \bullet 0-200 MLN/100 ml, the beach is considered SUIT-ABLE for recreational use.

• > 200 MLN/100 ml, the beach is considered UN-SUITABLE for recreational use.

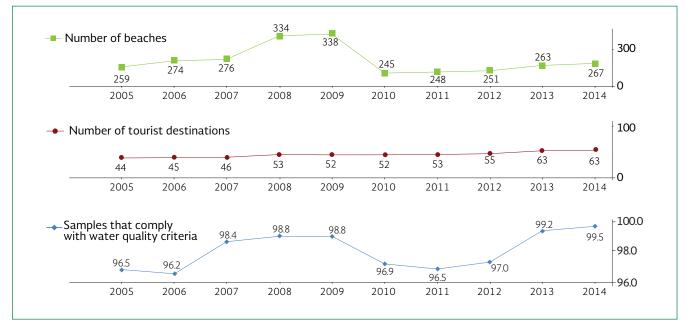
According to the findings in the National Information System on Water Quality on Mexican Beaches, the bacteriological monitoring on beaches, carried out by the Ministry of Health through its state representations and published on the website of COFEPRIS, water quality on Mexico's beaches tended to improve between 2005 and 2014, as shown in graph 2.6. For 2014, the graph shows the data corresponding to the latest monitoring campaign from that year.

In map 2.10 bacteriological quality on beaches of tourist destinations is shown for 2014.


GRAPH 2.5 Stations of the National Monitoring Network, 2007-2014

Source: CONAGUA (2015a).

A level of enterococcus of **200 MLN/100 ml** is considered the maximum limit for recreational use


⁹ MLN (most likely number).

Source: CONAGUA (2015a).

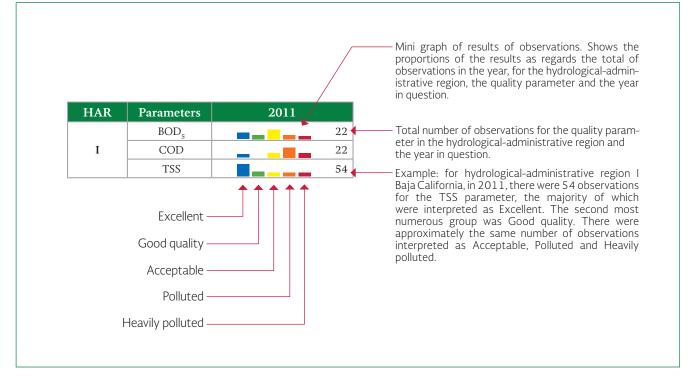

Source: SEMARNAT et al. (2015).

FIGURE 2.10 Code to interpret table 2.19

Source: Conagua (2015b).

HAR number	Parameter	2011		2012		2013		2014	
	BOD ₅		13		85		84		76
I	COD		18		85		84		76
	TSS		45		239	_ =	210		202
	BOD ₅		36		71		76		73
П	COD		53	— — —	71	— — — — —	76		73
	TSS		52	— — — — —	116	_ = -	128	—	127
	BOD ₅		41	— — —	195		215	 _	206
ш	COD		30	— — — —	184	— — — —	215		206
	TSS		41	— — — — —	269		303		306
	BOD ₅		179		337		312		307
IV	COD		180		338	— — — —	312		307
	TSS		184		349	— — —	325	— <u> </u>	316
	BOD ₅		0		116		122	— — <u>—</u>	142
v	COD		71		142		122		142
	TSS		84		373		361		358
	BOD ₅		81		221	— — <mark>—</mark> — —	286	— — —	244
VI	COD		88	— — — —	222	— — — —	287		244
	TSS		88		233	_	293		255
	BOD ₅		20		43		46		46
VII	COD		20		43		46		46
	TSS		20		44		46		46
	BOD ₅		160		672		639		650
VIII	COD		165		671	— — — —	641		650
	TSS		179		773		733		746
	BOD ₅		43		235	-	242	— — — —	243
IX	COD		57	- - - -	235	— — — —	243	— — — —	242
	TSS		57		306		292		296
	BOD ₅		54		238		249	— — — —	249
х	COD		46		232	— — — —	249		249
	TSS		54		285		306		309
	BOD ₅		33		253	— — — — —	256	— — — — —	250
XI	COD		34		256		256		250
	TSS		33		350	— — <u>—</u> —	353	— — — —	347
	BOD ₅		22		67	— —	53		53
XII	COD		22		67	— — —	53		53
	TSS		37		225		199	—	202
	BOD ₅		20		55		67		97
XIII	COD		20		55		67		97
	TSS		20		55	— — —	67		97
	BOD ₅		702		2588	— — — —	2647		2636
Nal.	COD		804		2601		2651		2635
1 1 d1,	TSS		894		3617		3616		3607

TABLE 2.19Summary of water quality 2011-2014

Source: Produced based on CONAGUA (2015a).

Uses of water

USES OF WATER

Classification

Offstream

Difference between the volume extracted and the discharge once an activity has been completed

Instream

The activity does not modify the volume

Sources Surface water: 61.3% of offstream uses

Groundwater: **38.7%** of offstream uses

Variation between regions

volume allocated: VIII Lerma-Santiago-Pacific 1 539.4 hm³ L o w e s t volume allocated: V Southern Pacific

Grouped offstream uses

supply

Self-supplying industry

Energy generation excluding hydropower

76.7% 14.2% 4.2% 4.9% Water and the economy

Environmental and economic accounting

Degree of water stress

Volume allocated for offstream uses / Renewable water resources

Relates the environment with the economy

Facilitates comparisons and decision makings

Virtual water

Quantity of water employed in the productive process of a good

Virtual water exchanges due to product trade

Mexico: Net importer of virtual water

22 259 hm³

in 2014

More than is considered a high or **very high** degree of water stress

Mexico: 19% (Iow)

Regions: **Highest stress**

Lowest stress XI Southern Border

Valley of Mexico 8% (Very high)

XIII Waters of the

(No stress)

3.1 Classification of the uses of water

[Reporteador: Usos del agua]

Water is used in different ways in all human activities, be it to meet basic needs or to produce and exchange goods and services.

The volumes allocated or assigned¹ to the users of the nation's water are registered in the Public Registry of Water Duties (REPDA). The REPDA has the uses of water classified in different categories. In this chapter, the term **grouped use** will be used, with the categorization shown in table 3.1, which also distinguishes between **offstream** and **instream** uses.² It should be mentioned that in 2014, a new instream use was added: ecological conservation, with a volume allocated of 9.46 hm³/year.

Throughout this chapter, the data on volumes allocated for 2014 are those as of December 31, 2014. It should be mentioned that the regionalization of volumes was carried out based on the location of the use as registered in the REPDA, rather than the jurisdictional area of the respective deeds.

Graph 3.1 shows the evolution in the volume allocated for offstream uses, in the period from 2005 to 2014. As may be appreciated, 61.3% of the water used for offstream uses comes from surface water sources (rivers, streams and lakes), whereas the remaining 38.7% corresponds to groundwater sources (aquifers). There are both increases and decreases in the volumes allocated throughout time. Compared to 2005, the first year in the graph, in 2014 the volume of surface water allocated was 18.6% higher, whereas the groundwater allocated was 6.7% higher.

¹ In the case of volumes destined for public urban or domestic use.

² Offstream use: The volume of water of a given quality that is consumed during the implementation of a specific activity, and which is determined as the difference between the volume of a given quality that is extracted, minus the volume of a given quality that is discharged, and which is shown in the respective deed (National Water Law).

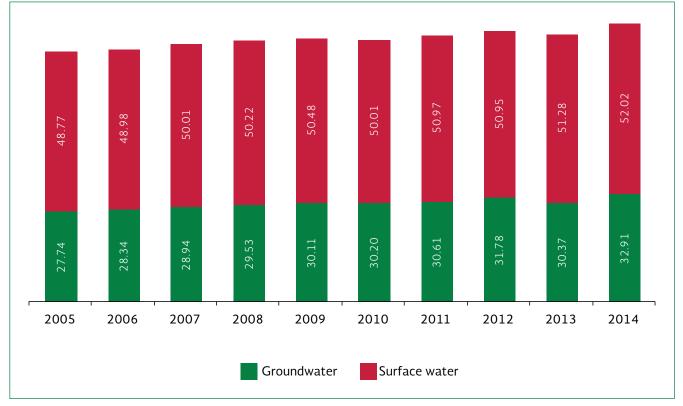
The greatest volume allocated for offstream uses is for the grouped use for agriculture, mainly for irrigation, as can be observed in table 3.2 and graph 3.2. It is also important to mention that Mexico is one of the countries with the most substantial irrigation infrastructures in the world (see chapters 4 and 8).

As regards hydropower generation, which represent an instream use of water resources, 133.0 billion cubic meters of water (or 133 km³) were used nationwide in 2014. It should be pointed out that, for this use, the same water is used for plants and counted several times, in all the country's plants.

263 551 hm³ were allocated in 2014

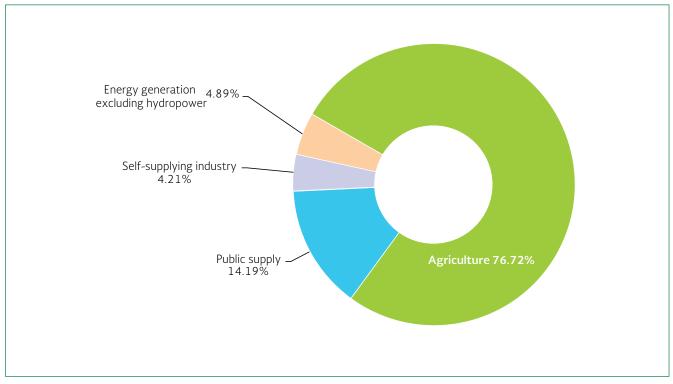
Code	Headings of the REDPA classification	Volume allocated (hm³)	Grouped offstream uses	Definition	Volume allocated (hm³)
А	Agriculture registered and pending	58 434	Agriculture	A+D+G+I+L	65 155
В	Agro-industry	4	Public supply C+H		12 052
С	Domestic	40	Self-supplying industry B+E+F1+K		3 572
D	Aquaculture	1 114	Energy generation excluding F2		4 150
Е	Services	1 426	Subtotal offstream		84 929
F1	Industrial	2 142	Grouped instream use		
F2	Thermoelectrics	4 150	Hydropower	Hydropower J	
G	Livestock	202		Subtotal instream	178 622
Н	Public urban	12 013		Total	263 551
Ι	Multiple	5 405			
Κ	Trade	0.1			
L	Others	0.5			
	Subtotal offstream	84 929			
J	Hydropower	178 622			
	Subtotal instream	178 622			
	Total	263 551			

TABLE 3.1 Grouping of uses in the REPDA classification


Note: The F1 and F2 classification was added in order to distinguish the offstream generation of electricity (in thermoelectric plants) from instream generation (hydropower).

Source: Produced based on CONAGUA (2015c).

TABLE 3.2 Grouped offstream uses according to the type of source, 2014

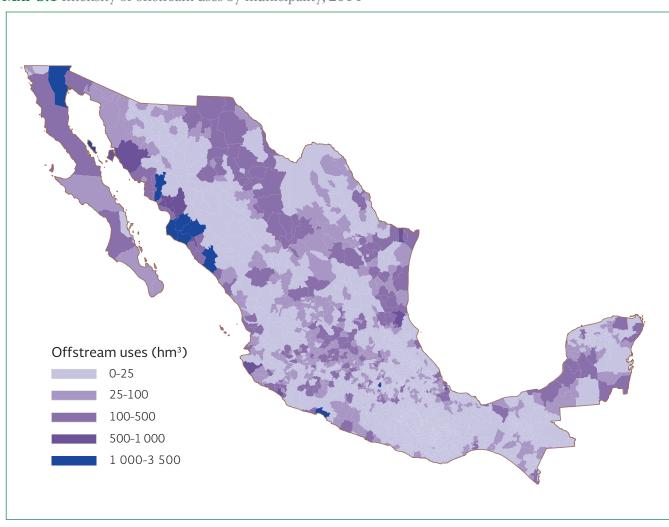

	Ori	igin	Total volume	Dercentare of	
Grouped use	Surface water (thousands of hm ³)	Groundwater (thousands of hm ³)	Groundwater (thousands of extraction	U	
Agriculture	42.00	23.16	65.15	76.7	
Public supply	4.76	7.29	12.05	14.2	
Self-supplying industry	1.57	2.01	3.57	4.2	
Energy generation excluding hydropower	3.70	0.45	4.15	4.9	
Total	52.02	32.91	84.93	100.0	

Source: Conagua (2015c).

GRAPH 3.1 Volume allocated for offstream uses by type of source, 2005-2014 (thousands of hm³)

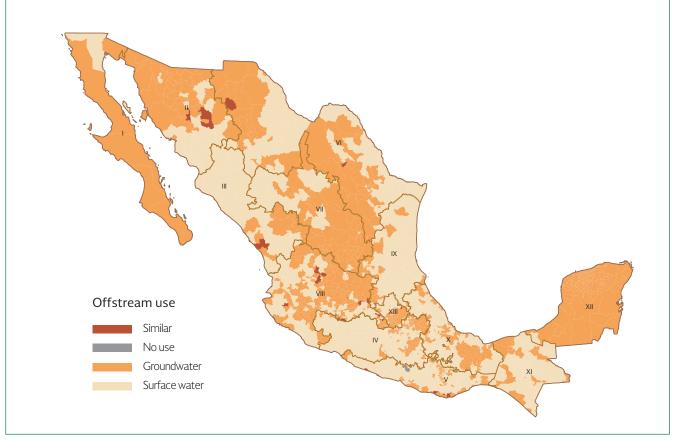
GRAPH 3.2 Distribution of the volumes allocated for grouped offstream uses, 2014

Note: Agriculture includes 1.3 km³ of water corresponding to irrigation districts that are awaiting registration. Source: CONAGUA (2015c).


Source: Produced based on CONAGUA (2015c).

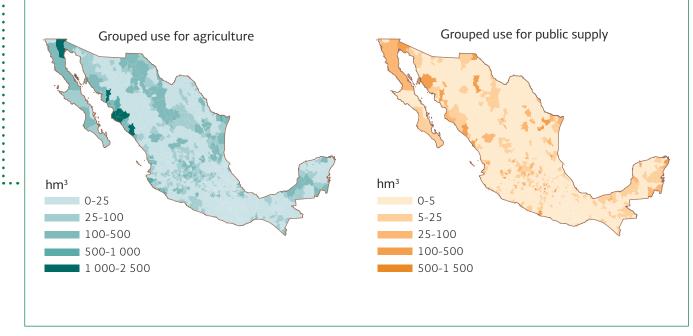
3.2 Distribution of uses throughout Mexico

[Reporteador: Usos del agua]


Map 3.1 shows the volume allocated for offstream uses in 2014 by municipality, and map 3.2 shows the predominant or main **source** for the volumes allocated in each municipality, be it surface or groundwater. When there is a difference of less than 5% between surface and groundwater sources, it is considered that there is no predominant source, and they are referred to as similar sources.

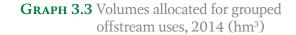
The grouped uses in agriculture and public supply represent 90.9% of the volume allocated nationwide. Their distribution is shown in figure 3.1 90.9% of the volume allocated nationally consists of the grouped uses in agriculture and public supply

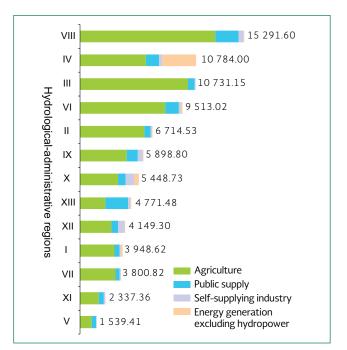
MAP 3.1 Intensity of offstream uses by municipality, 2014


Source: Produced based on CONAGUA (2015c).

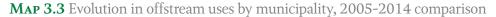
MAP 3.2 Predominant source for offstream uses by municipality, 2014

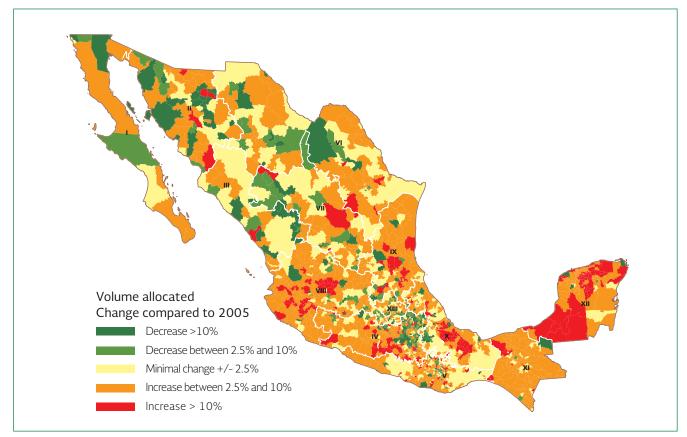
Source: Produced based on CONAGUA (2015c).




Source: Produced based on CONAGUA (2015c).

The distribution of uses can also be visualized over time according to the evolution of volumes allocated. Map 3.3 compares the volume allocated or assigned by municipality in 2014 compared to the volume in 2005, in order to indicate if it increased or decreased.


Graph 3.3 [Adicional: Table 3.A] shows how volumes of water have been allocated for grouped offstream uses throughout the country. The hydrological-administrative regions (HARs) with the greatest allocation of water are as follows: VIII Lerma-Santiago-Pacific, IV Balsas, III Northern Pacific and VI Rio Bravo. It is worth noting that agriculture accounts for over 80% of the total allocations in these HARs, with the exception of IV Balsas, where the Petacalco thermoelectric plant, located near the estuary of the Balsas river, uses a significant volume of water.


Table 3.3 [Adicional: Graph 3.A] shows the information on the volumes of water allocated by state, among which Sinaloa and Sonora stand out, due to their large areas under irrigation.

Source: Produced based on CONAGUA (2015c).

Source: Produced based on CONAGUA (2015c).

TABLE 3.3 Volumes allocated for grouped offstream uses, 2014 (hm³)

Code	State	Volume allocated	Agriculture	Public supply	Self-supplying industry	Energy generation excluding hydropower
1	Aguascalientes	622.2	479.9	127.1	15.1	0.0
2	Baja California	3 048.2	2 586.2	187.9	82.6	191.5
3	Baja California Sur	415.5	334.3	63.0	13.9	4.3
4	Campeche	1 284.1	1 111.6	144.3	24.5	3.6
5	Coahuila de Zaragoza	2 038.1	1 648.0	240.0	75.2	74.9
6	Colima	1 784.5	1 660.7	97.0	26.8	0.0
7	Chiapas	1 843.6	1 506.2	299.5	37.8	0.0
8	Chihuahua	5 149.6	4 578.4	489.8	53.9	27.5
9	Federal District	1 122.6	1.2	1 089.6	31.8	0.0
10	Durango	1 545.2	1 362.5	153.7	17.4	11.5
11	Guanajuato	4 083.1	3 443.8	546.9	71.9	20.5
12	Guerrero	4 422.3	893.0	382.7	24.5	3 122.1
13	Hidalgo	2 390.8	2 099.2	176.2	32.8	82.6
14	Jalisco	4 672.9	3 710.6	764.2	198.0	0.1
15	Mexico	2 708.7	1 156.8	1 342.6	178.6	30.6
16	Michoacan de Ocampo	5 418.8	4 775.6	372.0	223.0	48.2
17	Morelos	1 311.8	985.7	278.3	47.7	0.0
18	Nayarit	1 270.0	1 094.0	114.8	61.2	0.0
19	Nuevo Leon	2 069.1	1 473.6	511.9	83.4	0.2
20	Oaxaca	1 301.6	1 005.2	261.9	34.4	0.0
21	Puebla	2 118.2	1 610.9	428.2	72.6	6.5
22	Queretaro	1 007.2	637.1	304.5	59.9	5.7
23	Quintana Roo	983.8	239.7	212.3	531.7	0.0
24	San Luis Potosi	2 039.1	1 320.2	653.4	34.4	31.0
25	Sinaloa	9 525.8	8 973.9	509.2	42.6	0.0
26	Sonora	7 010.3	6 100.4	769.8	123.6	16.5
27	Tabasco	456.3	197.6	182.7	76.0	0.0
28	Tamaulipas	4 177.2	3 670.7	334.8	116.2	55.5
29	Tlaxcala	268.4	161.2	90.0	17.2	0.0
30	Veracruz de Ignacio de la Llave	5 388.9	3 381.5	546.1	1 053.6	407.8
31	Yucatan	1 881.5	1 573.7	254.2	44.6	9.1
32	Zacatecas	1 569.8	1 381.5	123.5	64.8	0.0
	Total	84 928.8	65 155.0	12 052.3	3 572.0	4 149.5

Source: Conagua (2015c).

3.3 Grouped use for agriculture

[Reporteador: Usos del agua]

The largest use of water in Mexico is in agriculture. According to the VII Agricultural, Livestock and Forest Census from 2007 (the latest one available nationwide), the surface area in agricultural production units was 30.2 million hectares, of which 18% was for irrigation and the remainder was rainfed.

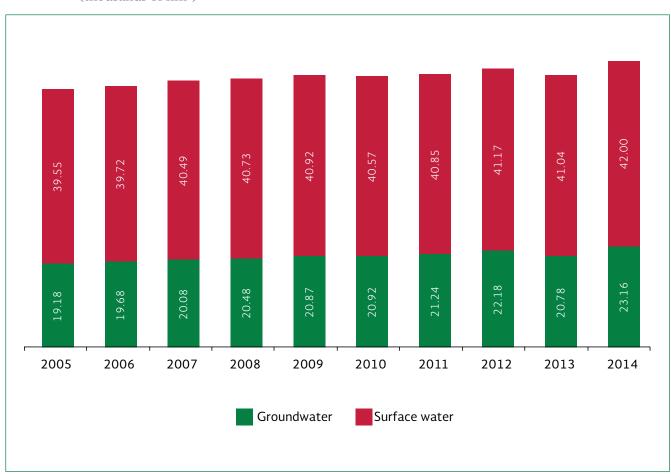
The area harvested every year (considering the agricultural year and perennial crops, under both irrigated and rainfed regimes) varied between 21.8 and 22.1 million hectares during the 2008-2012 period.³

Every year the area harvested in this same period (considering the agricultural year and perennial crops, under both irrigated and rainfed regimes) varied between 18.1 and 20.5 million hectares per year.⁴ At constant 2008 prices, the contribution of the agriculture, livestock, forest use, fishing and hunting sector to the Gross Domestic Product (GDP) in 2014 was 3.1%.⁵

According to the National Inquiry of Occupation and Employment (ENOE), the population occupied in this sector of primary activities (agriculture, livestock, forest use, fishing and hunting) up to the fourth trimester of 2014 was 6.8 million people, which represents 13.4% of the economically active population.⁶

The yield in tons per hectare of irrigation agriculture is 2.2 to 3.6 times higher than in areas under a rainfed regime (see chapter 4).

Mexico is in seventh place worldwide in terms of the area with irrigation infrastructure, with 6.4 million hectares, of which just over half corresponds to 86 irrigation districts and the remainder to more than 39 000 irrigation units (see glossary).


35.5% of the water allocated for the grouped use for agriculture is of groundwater origin, as can be observed in graph 3.4. Taking into account that there are annual variations, the volume of groundwater allocated for this grouped use is 20.8% higher than in 2005, the reference year of the graph.

³ SIAP (2014).

⁴ INEGI (2015h).

⁵ INEGI (2015i).

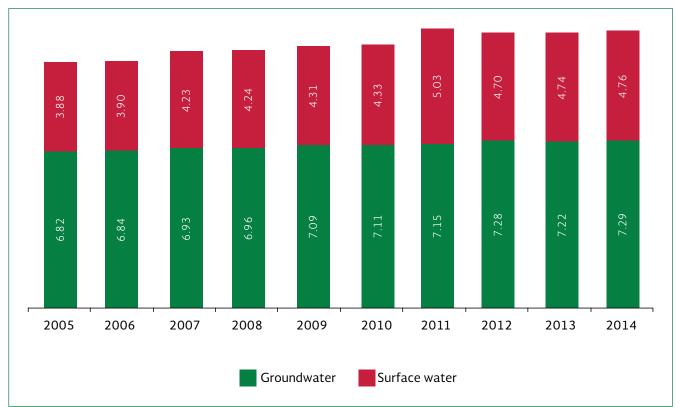
GRAPH 3.4 Evolution in the volume allocated for grouped use for agriculture by type of source, 2005-2014 (thousands of hm³)

Source: Produced based on CONAGUA (2015c).

3.4 Grouped use for public supply

[Reporteador: Usos del agua]

The grouped use for public supply consists of the water delivered through drinking water networks, which supply domestic users (homes), as well as different industries and services.


Having access to water of sufficient quantity and quality for human consumption is one of the basic needs of the population, since it has a direct influence on their health and general wellbeing. This characteristic is recognized by the guiding tools for national planning: the 2013-2018 National Development Plan and the 2014-2018 National Water Program.

In the grouped use for public supply, the predominant source is groundwater, with 60.5% of the volume, as can be appreciated in graph 3.5. It is worth noting that between 2005 and 2014, the surface water assigned for this use increased by 22.8%.

In Mexico, drinking water services, sanitation, sewerage, wastewater treatment and disposal are under the responsibility of municipalities, generally speaking through water utilities. From **2005** to **2014**, the surface water assigned to the grouped use for public supply grew by



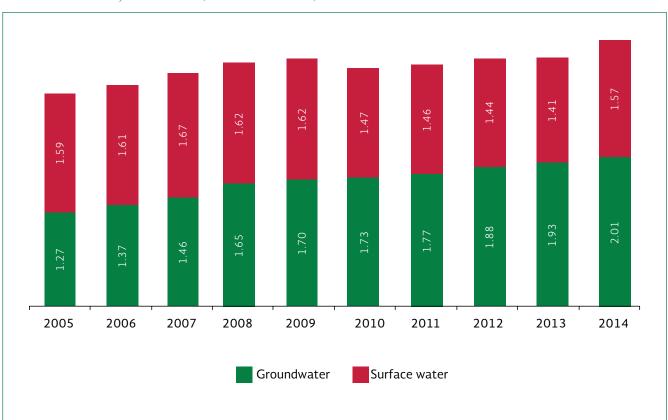
GRAPH 3.5 Evolution in the volume allocated for grouped use for public supply by type of source, 2005-2014 (thousands of hm³)

Source: Produced based on CONAGUA (2015c).

3.5 Grouped use for self-supplying industry

[Reporteador: Usos del agua]

This grouped use includes the industry that takes its water directly from the country's rivers, streams, lakes or aquifers.


According to the North American Industrial Classification System (NAICS), secondary activities, known as "industry", are made up of the mining, electricity, water and piped gas sectors of supply to end users, as well as the construction and the manufacturing industries.⁷ It should be added that the classification of uses in the REPDA does not exactly follow this classification, although it is considered that there is a reasonable degree of correlation.

Although it only represents 4.2% of the total use of water, the grouped use for self-supplying industry presents the growth trend shown in graph 3.6. It should be mentioned that in the 2005-2014 period, the volume allocated from groundwater sources increased significantly, with a growth of 57.9% in that period, whereas the allocation from surface water fell by 1.7%. Grouped use for selfsupplying industry was

4.2% of the volume allocated for offstream uses

7 INEGI (2013b).

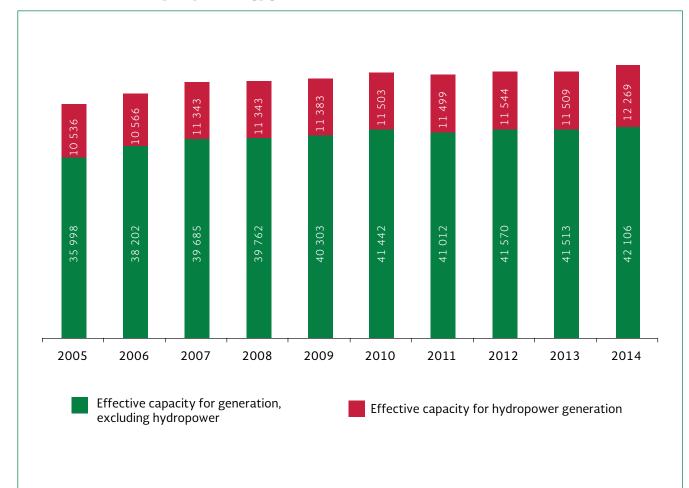
GRAPH 3.6 Evolution in the volume allocated for the grouped use for self-supplying industry by type of source, 2005–2014 (thousands of hm³)

Source: Produced based on CONAGUA (2015c).

3.6 Use in energy generation excluding hydropower

[Reporteador: Usos del agua, Generación de energía]

This grouped use refers to dual steam, coal-electric, combined cycle, turbo-gas and internal combustion plants, which are offstream uses of water, and includes renewable technologies (wind, photovoltaic solar and geothermal). Hydropower is excluded since it represents an instream use of water resources.


According to the findings of the Ministry of Energy (SENER 2015) and the Federal Commission for Electricity (CFE 2015), in 2014 CFE's plants considered in this use, including External Energy Producers (EEPs) for public service, had an **effective capacity** of 42 106 MW, which represented 77.4% of the national total. The gross generation of these plants was 213.4 TWh, or 85.1% of the national total.

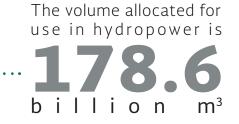
It should be noted that 75.2% of the water allocated for this use correspond to the coal-electric plant in Petacalco, situated on the Guerrero coast, close to the estuary of the Balsas river.

Graph 3.7 shows the annual evolution in the effective capacity of generation under this use in the period from 2005 to 2014, whereas graph 3.8 shows the gross generation for this same period.

In 2014 gross generation in CFE's plants was **213.4 TWh**

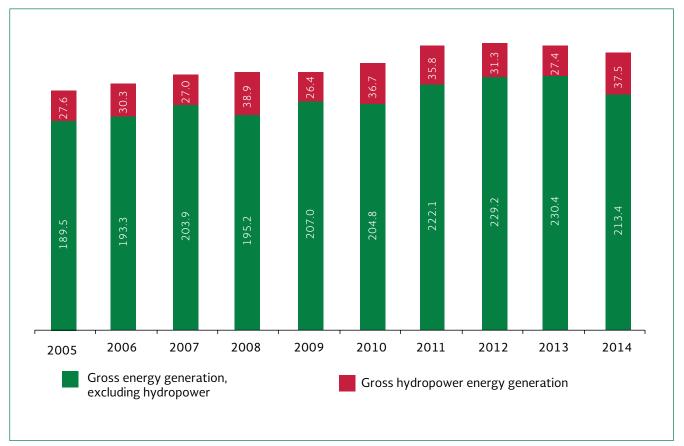
GRAPH 3.7 Effective capacity for energy generation, 2005-2014 (MW)

Source: Produced based on CFE (2015), SENER (2015).



3.7 Use in hydropower plants

[Reporteador: Usos del agua, Generación de enrgía, Volúmenes declarados]


Nationwide, the HARs XI Southern Border and IV Balsas are those which have the greatest allocation of water for this use, since they are home to the rivers with the heaviest flows and consequently the country's largest hydropower plants, as shown in table 3.4. The volume allocated for this use nationwide is 178.6 billion cubic meters (CONAGUA 2015c), of which variable quantities are used every year.

In 2014, hydropower plants used 133.0 billion cubic meters of water, which allowed 37.5 TWh of electricity to be generated, corresponding to 14.9% of Mexico's total generation. The installed capacity in these hydropower plants was 12 269 MW, which corresponds to 22.6% of Mexico's installed capacity (see graphs 3.7 and 3.8).

Source: Produced based on CFE (2015), SENER (2015).

TABLE 3.4 Volumes declared	for the payment of duti	ies for hydropower producti	on, 2005-2014

Number	Volume of water declared (hm ³)									
of HAR	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Ι	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
II	3 250.8	2 928.6	3 350.7	3 404.7	3 127.7	4 140.6	3 416.5	3 032.7	2 627.2	2 456.3
III	11 598.4	10 747.0	11 183.9	13 216.7	11 405.1	11 912.1	11 100.3	5 176.6	6 127.9	7 475.4
IV	32 141.0	21 820.3	31 099.4	30 572.8	28 059.6	34 487.9	35 539.9	32 177.7	28 126.2	29 688.3
V	1 890.3	1 949.1	2 139.6	2 244.7	2 063.4	3 528.0	16 313.8	2 028.2	1 716.9	26.3
VI	2 073.6	2 262.7	2 889.6	1 967.7	2 960.4	2 987.7	3 350.1	3 771.8	2 556.8	2 125.5
VII	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VIII	7 361.0	4 657.8	10 516.6	13 516.9	9 030.9	11 764.6	7 741.4	5 733.5	5 598.0	10 693.3
IX	1 487.8	809.7	1 105.3	2 912.1	1 441.0	1 525.9	1 243.0	1 312.4	1 273.5	1 225.7
Х	13 978.5	17 835.0	14 279.1	14 040.5	13 673.7	15 029.1	4 254.6	17 286.7	16 463.1	12 319.4
XI	41 573.3	77 245.7	46 256.8	68 793.3	64 304.7	49 406.9	81 813.4	85 197.3	48 325.9	67 007.6
XII	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XIII	31.0	39.1	10.6	0.0	18.8	0.5	0.0	0.0	0.3	0.5
Total	115 385.8	140 294.9	122 831.6	150 669.4	136 085.3	134 783.3	164 773.0	155 716.9	112 815.9	133 018.3

Source: CONAGUA (2015c).

3.8 Degree of water stress

[Reporteador: Grado de presión, Usos del agua, Agua renovable]

The percentage of water used for offstream uses as compared to the renewable water resources is an indicator of the degree of **water stress** in any given country, catchment or region. The degree of water stress can be very high, high, medium, low and with no stress. It is considered that if the percentage is greater than 40%, there is a high or very high degree of water stress (see the scale of water stress in map 3.4).

Nationwide, Mexico is experiencing a degree of water stress of 19%, which is considered low; however, the ••• central, northern and northwestern areas of the country are experiencing a high degree of water stress. In table 3.5 and map 3.4, this indicator is shown for each of the country's HARs. Nationwide, the degree of water stress in 2014 was **1996** which is considered low

MAP 3.4 Degree of water stress, 2014

Source: Produced based on CONAGUA (2015a), CONAGUA (2015c).

TABLE 3.5 Degree of water stress, 2014

Number of HAR	Total volume of water allocated 2014 (hm³)	Renewable water resources 2014 (hm³/year)	Degree of water stress (%)	Classification of water stress
Ι	3 949	4 958	79.6	High
II	6 715	8 273	81.2	High
III	10 731	25 596	41.9	High
IV	10 784	22 156	48.7	High
V	1 539	30 565	5.0	No stress
VI	9 513	12 316	77.2	High
VII	3 801	7 849	48.4	High
VIII	15 292	35 093	43.6	High
IX	5 899	28 085	21.0	Medium
Х	5 449	95 129	5.7	No stress
XI	2 337	144 459	1.6	No stress
XII	4 149	29 324	14.2	Low
XIII	4 771	3 458	138.0	Very high
Total	84 929	447 260	19.0	Low

Source: Produced based on CONAGUA (2015a), CONAGUA (2015c).

3.9 Virtual Water in Mexico

[Reporteador: Agua virtual/Huella hídrica]

Virtual water is defined as the total quantity of water used by or embedded in a product, good or service. For example, one kilogram of wheat in Mexico requires an average of 1 860 liters of water (Mekonnen and Hoekstra 2010a), whereas a kilogram of beef requires 15 415 liters (Mekonnen and Hoekstra 2010b); these values vary between countries.

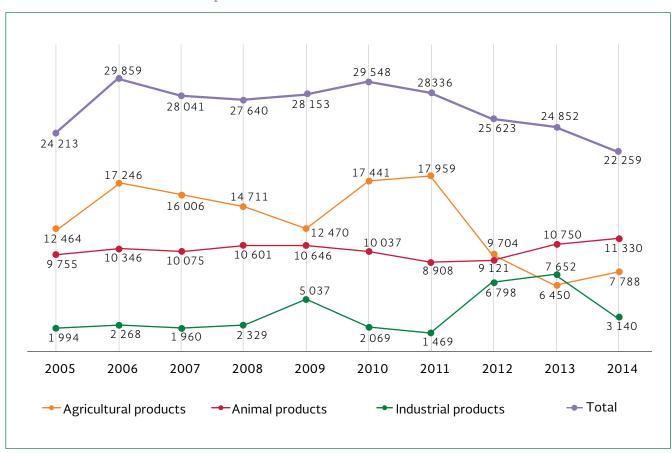
As a result of Mexico's commercial exchanges with other countries, in 2014 Mexico exported 9.14 billion cubic meters of virtual water (VWE), and imported 31 395 (VWI), meaning that it had a net virtual water import (NVWI) of 22.26 billion cubic meters of water. In graph 3.9 [Adicional: Table 3.B] the evolution in the 2005-2014 period is shown.

Of the resulting net virtual water import (NVWI), the evolution registered in recent years shows relevant variations, with a trend towards the reduction in the import of agricultural products, which affects a similar reduction in the total importation, as can be observed in graph 3.10.

One kilogram of wheat in

Mexico requires an average of

liters of water


Net virtual water imports

GRAPH 3.9 Virtual water imports and exports in Mexico 2005-2014 (hm³)

Virtual water exports

Virtual water imports

Source: Produced based on Economía (2015a).

Source: Produced based on Economía (2015a).

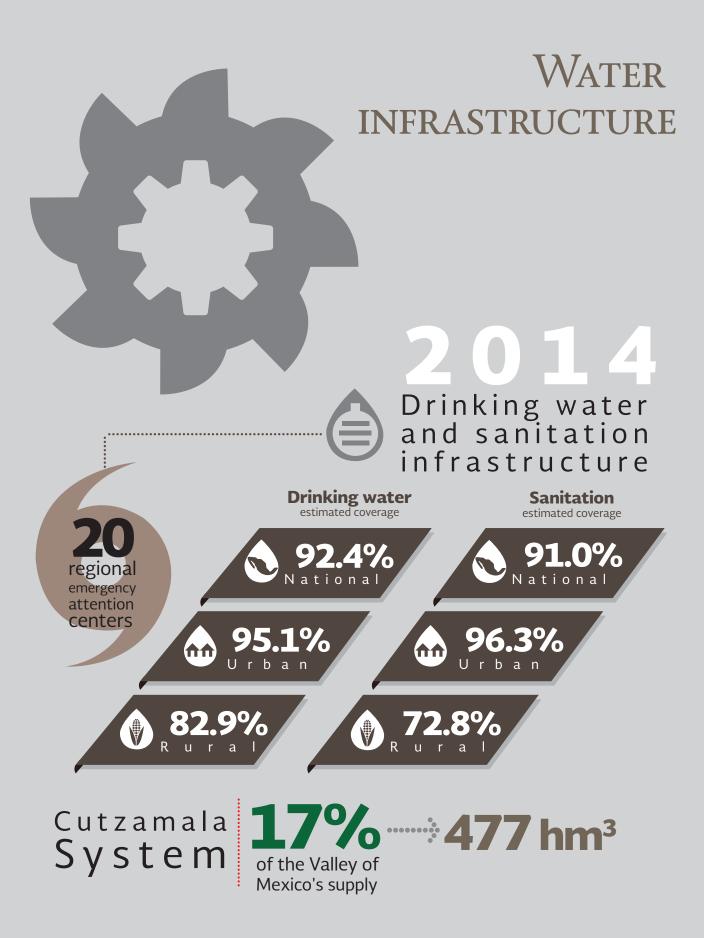
Box 3.1 Environmental-economic accounts in Mexico

hrough international collaboration, the System of Environmental-Economic Accounting (SEEA) has been developed, as a series of tables, accounting rules, classifications, definitions and standard concepts, the objective of which is to produce comparable statistics at the international level about the environment and its relationship with the economy. It follows an accounting structure similar to the System of National Accounts in order to facilitate the integration of environmental and economic statistics.

In Mexico, INEGI leads the inter-institutional effort to put together environmental and economic accounting, part of which are the integrated environmental and economic water accounts. As a result of the integration of these accounts, aspects of the economic valuation of the environmental impact as a consequence of the production, distribution and consumption of goods and services have been identified.

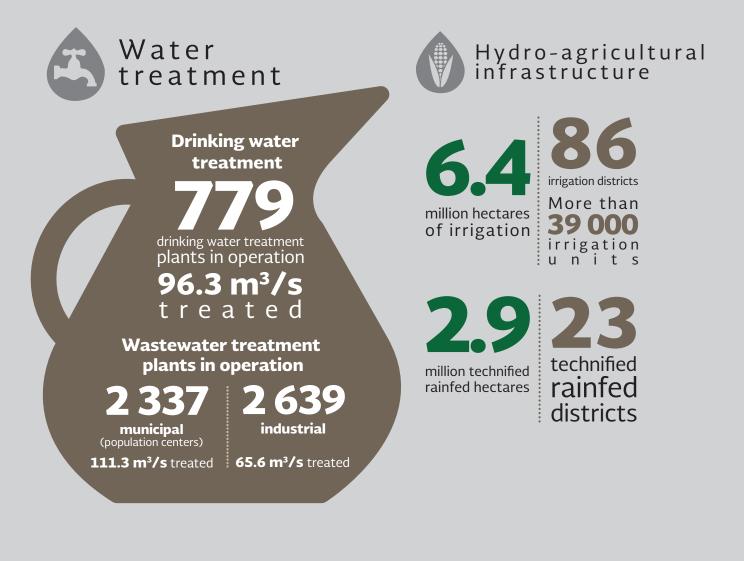
In this way, the annual depletion of groundwater can be quantified in monetary terms, which for 2012 was estimated at 29.48 billion pesos, or the equivalent of 1.5 times the household expenditure in health care. Another relevant comparison is the estimation of the cost of treating the untreated wastewater in 2012, for 64.63 billion pesos.

This information provides context for public policy decisions. In 2012 the total costs for the depletion and degradation of the environment (985.06 billion pesos) were almost seven times more than the expense for environmental protection for that year (143.07 billion pesos).


Source: INEGI (2014b), Unstats (2012), Unstats (2014).

Chapter 4

Water infrastructure



Reservoirs and berms

More than Total 5 163 St

4.1 Water infrastructure

The water infrastructure available within the country to provide the water required by the various national users includes the following:

More than 5 163 reservoirs and water retention berms¹

6.4 million hectares with irrigation.

2.9 million hectares with technified rainfed infrastructure.

779 drinking water treatment plants in operation.

2 337 municipal wastewater treatment plants in operation.

2 639 industrial wastewater treatment plants in operation.

More than 3 000 km of aqueducts.

- Sanitation of the Valley of Mexico: Atotonilco wastewater treatment plant (35 m³/s) and El Caracol (2 m³/s in stage 1); Eastern Drainage Tunnel (TEO) for 150 m³/s, Western Drainage Tunnel II for 112 m³/s and General Canal Tunnel for 20 m³/s.
- Monterrey VI: 372 km aqueduct to supply 5 m³/s to Monterrey.
- El Zapotillo: Reservoir and 140 km aqueduct to supply Guadalajara, Leon and Los Altos de Jalisco.

- El Purgatorio: Reservoir and infrastructure to make use of 5.6 m³/s in conjunction with El Zapotillo to supply the Guadalajara metropolitan area.
- Cutzamala: third line of the system (12 m³/s and 77.6 km) to offer greater security in the supply to the Valley of Mexico.
- Vicente Guerrero-Ciudad Victoria: Aqueduct under review, 54.5 km and 1.25 m³/s to supply water to Ciudad Victoria.
- Puebla: Extension of Puebla Treatment Plant 4 to treat 3.15 m³/s.

- Riviera Veracruzana: Aqueduct under review, 25 km and 1.5 m³/s for supply.
- La Paz: Treatment plant for 0.7 m³/s in the first stage.
- La Paz: Desalinization plant under review, with a flow of 0.2 m³/s in the first stage.
- Picachos-Mazatlan: under review, with a flow of 0.75 m³/s in the first stage to supply Mazatlan.
- Ensenada: Desalinization plant with a flow of 0.25 m³/s.

Source: Produced based on CONAGUA (2015I).

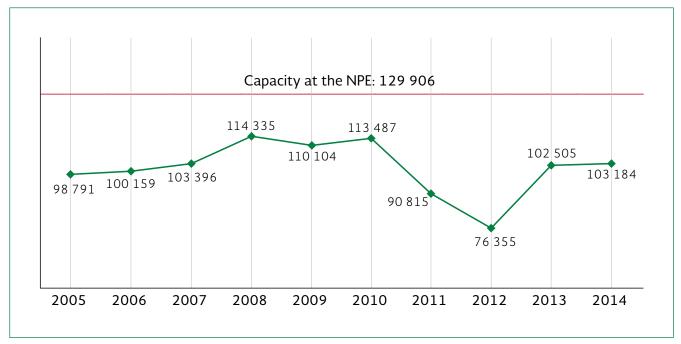
¹ An approximate number, due to the insufficient registry of berms.

4.2 Reservoirs and berms

[Reporteador: Principales presas]

There are more than 5 163 reservoirs and water retention berms in Mexico, some of which are classified as large dams, according to the definition of the International Commission on Large Dams.²

There is an incomplete registry of water retention berms. Efforts are currently underway to register these small storage works, mainly made of soil.


The storage capacity in the country's reservoirs is approximately 150 billion m³. This edition presents statistics on the 181 reservoirs that represent 80% of the national storage capacity. The annual volume stored in these 181 reservoirs in the period from 2005 to 2014 is shown at the national scale in graph 4.1 and regionally in [Adicional: Graph 4.A]. This volume depends upon the precipitation and runoff in the different regions of the country, as well as the reservoirs' operation policies, determined by their storage purposes for various uses and flood control. Graph 4.1 shows the volume stored as of December 31 each year, with the reference of the normal pool elevation (NPE).

Their location is shown in map 4.1 and their main characteristics in table 4.1. The localization of those reservoirs follows, among other factors, the hydrological regime of the current, the topography and the geological characteristics of the site, as well as the uses for which they were intended, among them electricity generation, public supply, irrigation and flood control. Table 4.1 employs the abbreviations of G: Electricity generation. I: Irrigation. P: Public supply. C: Flood control; the code corresponds to the one used in the inventory of the Conagua's Deputy Director General's Office for Technical Affairs. In Mexico there are more than **5 163** reservoirs and water retention berms

² The reservoir should be at least 15 meters high; or between 10 and 15 meters high with a storage volume of more than 3 hm³ (ICOLD 2007).

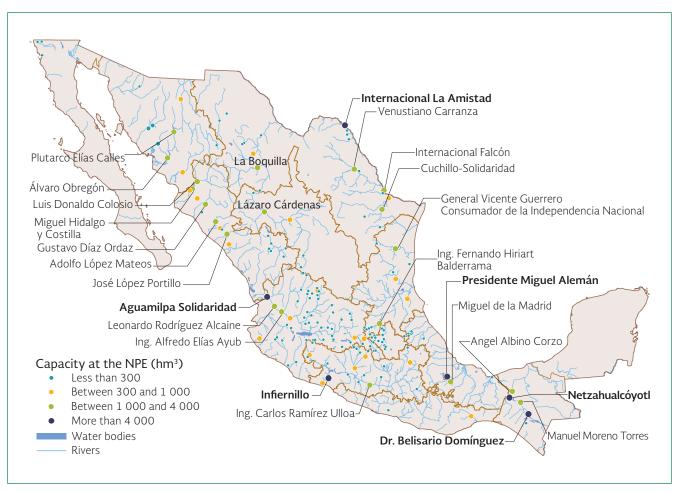
Source: CONAGUA (2015a).

.

TABLE 4.1181Main reservoirs, 2014

Nº	SGT Code	Official name	Given name	Capacity at the NPE (hm ³)	HAR	Uses
1	693	Dr. Belisario Domínguez	La Angostura	15 549.20	Southern Border	G
2	706	Netzahualcóyotl	Malpaso or Raudales	12 373.10	Southern Border	G, I, C
3	1453	Infiernillo	Infiernillo	9 340.00	Balsas	G, C
4	1810	Lago de Chapala	Chapala	8 126.41	Lerma-Santiago-Pacific	I, P
5	2754	Presidente Miguel Alemán	Temascal	8 119.10	Central Gulf	G, I, C
6	2516	Aguamilpa Solidaridad	Aguamilpa	5 540.00	Lerma-Santiago-Pacific	G, I
7	345	Internacional La Amistad	La Amistad	4 174.00	Rio Bravo	G, I, P, C
8	3617	General Vicente Guerrero Consumador de la Independencia Nacional	Las Adjuntas	3 910.69	Northern Gulf	Р, І
9	3440	Internacional Falcon	Falcón	3 258.00	Rio Bravo	P, C, G
10	3148	Adolfo López Mateos	El Humaya or Varejonal	3 086.61	Northern Pacific	G, I
11	3243	Álvaro Obregón	El Oviachic	3 023.14	Northwest	G, I, P
12	3218	Miguel Hidalgo y Costilla	El Mahone	2 921.42	Northern Pacific	G, I
13	3216	Luis Donaldo Colosio	Huites	2 908.10	Northern Pacific	G, I
14	750	La Boquilla	Lago Toronto	2 893.57	Rio Bravo	G, I
15	1084	Lázaro Cárdenas	El Palmito	2 872.97	Central Basins of the North	I, C
16	3320	Plutarco Elías Calles	El Novillo	2 833.10	Northwest	G, I
17	2742	Miguel de la Madrid	Cerro de Oro	2 599.51	Central Gulf	Ι
18	3210	José López Portillo	El Comedero	2 580.19	Northern Pacific	G, I
19	2538	Leonardo Rodríguez Alcaine	El Cajon	2 551.70	Lerma-Santiago-Pacific	G
20	2519	Ing. Alfredo Elías Ayub	La Yesca	2 292.92	Lerma-Santiago-Pacific	G
21	3203	Gustavo Díaz Ordaz	Bacurato	1 737.33	Northern Pacific	G,I
22	1463	Ing. Carlos Ramírez Ulloa	El Caracol	1 458.21	Balsas	G
23	1679	Ing. Fernando Hiriat Balderrama	Zimapan	1 390.11	Northern Gulf	G
24	701	Manuel Moreno Torres	Chicoasen	1 384.86	Southern Border	G

N٥	SGT Code	Official name	Given name	Capacity at the NPE (hm ³)	HAR	Uses
25	494	Venustiano Carranza	Don Martin	1 312.86	Rio Bravo	P, C, I
26	2689	Cuchillo-Solidaridad	El Cuchillo	1 123.14	Rio Bravo	P, I
27	688	Ángel Albino Corzo	Peñitas	1 091.10	Southern Border	G
28	3241	Adolfo Ruíz Cortines	Mocuzari	950.30	Northwest	G, I, P
29	1436	Solís	Solís	800.03	Lerma-Santiago-Pacific	I, C
30	3490	Ing. Marte R. Gómez	El Azucar	781.70	Rio Bravo	Ι
31	2708	Presidente Benito Juárez	El Marques	720.32	Southern Pacific	Ι
32	3302	Lázaro Cárdenas	La Angostura	703.38	Northwest	P, I
33	3229	Sanalona	Sanalona	673.47	Northern Pacific	G, I, P
34	2206	Constitución de Apatzingán	Chilatán	601.19	Balsas	I, C
35	3557	Estudiante Ramiro Caballero Dorantes	Las Animas	571.07	Northern Gulf	Ι
36	2257	José María Morelos	La Villita	540.80	Balsas	G, I
37	3211	Josefa Ortíz de Domínguez	El Sabino	513.86	Northern Pacific	Ι
38	1710	Cajón de Peña	Tomatlan or El Tule	466.69	Lerma-Santiago-Pacific	P, I
39	3693	Chicayán	Paso de Piedras	456.92	Northern Gulf	Ι
40	2382	Tepuxtepec	Tepuxtepec	425.20	Lerma-Santiago-Pacific	G, I
41	3154	Ing. Aurelio Benassini Vizcaíno	El Salto or Elota	403.90	Northern Pacific	I, C
42	1825	Manuel M. Diéguez	Santa Rosa	403.00	Lerma-Santiago-Pacific	G
43	1477	El Gallo	El Gallo	400.04	Balsas	I
44	2126	Valle de Bravo	Valle de Bravo	394.39	Balsas	Р
45	813	Francisco I. Madero	Las Vírgenes	355.29	Rio Bravo	I, C
46	49	Plutarco Elías Calles	Calles	350.00	Lerma-Santiago-Pacific	I
47	1045	Francisco Zarco	Las Tortolas	309.24	Central Basins of the North	I, C
-17	1045		Valsequillo or	507.24	Central Dashis of the North	1,0
48	2826	Manuel Ávila Camacho	Balcón del Diablo	303.70	Balsas	Ι
49	2631	José López Portillo	Cerro Prieto	300.00	Rio Bravo	P, I
50	3202	Ing. Guillermo Blake Aguilar	El Sabinal	294.56	Northern Pacific	I, C
51	825	Ing. Luis L. León	El Granero	292.47	Rio Bravo	I, C
52	1507	Vicente Guerrero	Palos Altos	250.00	Balsas	Ι
53	1782	General Ramón Corona Madrigal	Trigomil	250.00	Lerma-Santiago-Pacific	Ι
54	1035	Federalismo Mexicano	San Gabriel	245.43	Rio Bravo	P, C, I
55	3478	Presidente Lic. Emilio Portes Gil	San Lorenzo	230.78	Northern Gulf	Ι
56	4365	Solidaridad	Trojes	220.81	Lerma-Santiago-Pacific	Ι
57	3239	Abelardo Rodríguez Luján	Hermosillo	219.50	Northwest	P, C, I
58	2167	El Bosque	El Bosque	202.40	Balsas	P, C
59	2286	Melchor Ocampo	El Rosario	200.00	Lerma-Santiago-Pacific	I
60	1328	Laguna de Yuriria	B. de Tavamatacheo	187.97	Lerma-Santiago-Pacific	Ι
61	2136	Villa Victoria	Villa Victoria	185.72	Balsas	P
62	3662	Canseco	Laguna de Catemaco	185.70	Central Gulf	G
63	1583	Endhó	Endhó	182.90	Waters of the Valley of Mexico	I, C
64	1315	Ignacio Allende	La Begoña	150.05	Lerma-Santiago-Pacific	I, C
65	1926	Tacotán	Tacotán	149.24	Lerma-Santiago-Pacific	I, C
66	1720	Basilio Vadillo	Las Piedras	145.72	Lerma-Santiago-Pacific	I
67	3747	El Chique	El Chique	139.95	Lerma-Santiago-Pacific	I
68	1203	Santiago Bayacora	Bayacora	130.05	Northern Pacific	I
69	3308	Ing. Rodolfo Félix Valdéz	El Molinito	130.04	Northwest	I, C
70	1499	Revolución Mexicana	El Guineo	126.69	Southern Pacific	I, C
70	917	El Tintero	El Tintero	125.08	Rio Bravo	I, C I, C
72	2011	Huapango	Huapango	121.50	Northern Gulf	Ι


Nº	SGT Code	Official name	Given name	Capacity at the NPE (hm ³)	HAR	Uses
73	3790	Gobernador Leobardo Reynoso	Trujillo	118.07	Central Basins of the North	Ι
74	1365	La Purísima	La Purisima	110.03	Lerma-Santiago-Pacific	I, C
75	1459	Andrés Figueroa	Las Garzas	102.50	Balsas	Ι
76	3197	Lic. Eustaquio Buelna	Guamuchil	90.06	Northern Pacific	P, C, I
77	731	Abraham González	Guadalupe	85.44	Northwest	I, C
78	1887	El Salto	El Salto	85.00	Lerma-Santiago-Pacific	Р
79	2202	Cointzio	Cointzio	84.80	Lerma-Santiago-Pacific	P, I
80	1057	Presidente Guadalupe Victoria	El Tunal	84.75	Northern Pacific	Ι
81	5133	Derivadora Las Blancas	Las Blancas	84.00	Rio Bravo	I, C
82	836	Las Lajas	Las Lajas	83.27	Rio Bravo	I, C
83	1800	Ing. Elías González Chávez	Puente Calderon	80.00	Lerma-Santiago-Pacific	Р
84	237	Abelardo L. Rodríguez	Rodriguez or Tijuana	76.90	Baja California Peninsula	P, C
85	1040	Francisco Villa	El Bosque	73.26	Northern Pacific	Ι
86	3807	Miguel Alemán	Excame	71.61	Lerma-Santiago-Pacific	G, I, C
87	2886	Constitución de 1917	Presa Hidalgo	69.86	Northern Gulf	Ι
88	711	Juan Sabines	El Portillo II or Cuxquepeques	68.15	Southern Border	Ι
89	2113	San Andrés Tepetitlán	Tepetitlan	67.62	Lerma-Santiago-Pacific	Ι
90	2359	San Juanico	La Laguna	60.48	Balsas	I, C
91	2005	Guadalupe	Guadalupe	56.70	Waters of the Valley of Mexico	Ι
92	4677	Ing. Juan Guerrero Alcocer	Vinoramas	55.00	Northern Pacific	P, C, I
93	3562	República Espyearla	Real Viejo or El Sombrero	54.78	Northern Gulf	Ι
94	3639	San José Atlanga	Atlanga	54.50	Balsas	Ι
95	2931	San Ildefonso	El Tepozán	52.75	Northern Gulf	Ι
96	1639	Requena	Requena	52.42	Waters of the Valley of Mexico	Ι
97	4531	Ing. Guillermo Lugo Sanabria	La Polvora	51.70	Lerma-Santiago-Pacific	Ι
98	867	Pico del Águila	Pico del Aguila	51.21	Rio Bravo	Ι
99	2408	Zicuirán	La Peña	50.00	Balsas	Ι
100	1602	Javier Rojo Gómez	La Peña	50.00	Waters of the Valley of Mexico	Ι
101	461	San Miguel	San Miguel	47.30	Rio Bravo	Ι
102	2782	Yosocuta	San Marcos Arteaga	46.80	Balsas	P, I
103	981	Caboraca	Canoas	45.00	Northern Pacific	I
104	1918	Ing. Santiago Camarena	La Vega	44.00	Lerma-Santiago-Pacific	Ι
105	1666	La Laguna	Tejocotal	43.53	Central Gulf	G
106	1664	Taxhimay	Taxhimay	42.80	Waters of the Valley of Mexico	Ι
107	3267	Cuauhtémoc	Santa Teresa	41.47	Northwest	Ι
108	241	El Carrizo	El Carrizo	40.87	Baja California Peninsula	Р
109	2668	Rodrigo Gómez	La Boca	39.49	Rio Bravo	Р
110	514	Laguna de Amela	Tecoman	38.34	Lerma-Santiago-Pacific	Ι
111	4559	Guaracha	San Antonio	38.20	Lerma-Santiago-Pacific	Ι
112	2024	José Antonio Alzate	San Bernabe	35.31	Lerma-Santiago-Pacific	I
113	3782	Ing. Julián Adame Alatorre	Tayahua	34.48	Lerma-Santiago-Pacific	I
114	1120	Peña del Águila	Peña del Aguila	31.73	Northern Pacific	I
115	3524	Pedro José Méndez	Pedro Jose Méndez	31.26	Northern Gulf	Р, I
116	1995	Danxhó	Danxhó	31.05	Northern Gulf	I
117	1505	Valerio Trujano	Tepecoacuilco	31.01	Balsas	Р, I
118	1757	El Cuarenta	El Cuarenta	30.60	Lerma-Santiago-Pacific	I
	1,01		Di Gualditu	00.00	ucine	

Nº	SGT Code	Official name	Given name	Capacity at the NPE (hm ³)	HAR	Uses
120	2829	Necaxa	Necaxa	29.06	Central Gulf	G
121	2458	La Laguna	El Rodeo	28.00	Balsas	Ι
122	3827	Ramon López Velarde	Boca del Tesorero	27.00	Lerma-Santiago-Pacific	Ι
123	3739	El Cazadero	El Cazadero	26.85	Central Basins of the North	Ι
124	2848	Tenango	Tenango	26.82	Central Gulf	G
125	2840	Los Reyes	Omiltepec	26.05	Central Gulf	G
126	1237	Villa Hidalgo	Villa Hidalgo	25.00	Central Basins of the North	I, P
127	363	El Centenario	El Centenario	24.68	Rio Bravo	Ι
128	1357	Peñuelitas	Peñuelitas	23.83	Lerma-Santiago-Pacific	Ι
129	2282	Malpaís	La Ciénega	23.74	Lerma-Santiago-Pacific	Ι
130	777	Chihuahua	Chihuahua	23.38	Rio Bravo	Р
131	2298	Los Olivos	Los Olivos	21.75	Balsas	Ι
132	1799	Hurtado	Hurtado	21.73	Lerma-Santiago-Pacific	Ι
133	1337	Mariano Abasolo	San Antonio de Aceves	21.42	Lerma-Santiago-Pacific	Ι
134	381	La Fragua	La Fragua	21.17	Rio Bravo	Ι
135	1107	Los Naranjos	Naranjos	20.93	Central Basins of the North	Ι
136	1673	Vicente Aguirre	Las Golondrinas	20.80	Northern Gulf	Ι
137	2013	Ignacio Ramírez	La Gavia	20.50	Lerma-Santiago-Pacific	Ι
138	2671	Salinillas	Salinillas	19.01	Rio Bravo	Ι
139	3661	La Cangrejera	La Cangrejera	18.84	Central Gulf	Ι
140	2161	Aristeo Mercado	Wilson	18.34	Lerma-Santiago-Pacific	Ι
141	1487	Laguna de Tuxpan		17.65	Balsas	I
142	2045	Ñadó	Ñadó	16.80	Northern Gulf	Ι
143	152	El Niágara	El Niagara	16.19	Lerma-Santiago-Pacific	I
144	3297	Ignacio R. Alatorre	Punta de Agua	16.16	Northwest	Ι
145	2	Abelardo L. Rodríguez	Abelardo L. Rodríguez	15.99	Lerma-Santiago-Pacific	Ι
146	2144	Agostitlán	Mata de Pinos	15.95	Balsas	Ι
147	2194	Tercer Mundo	Chincua	15.58	Lerma-Santiago-Pacific	Ι
148	1078	José Jerónimo Hernández	Santa Elena	15.10	Northern Pacific	Ι
149	142	Media Luna	Media Luna	15.00	Lerma-Santiago-Pacific	Ι
150	1950	Vicente Villaseñor	Valle de Juárez	14.44	Lerma-Santiago-Pacific	Ι
151	1879	La Red	La Red	14.25	Lerma-Santiago-Pacific	Ι
152	2400	Urepetiro	Urepetiro	13.00	Lerma-Santiago-Pacific	Ι
153	2037	Madín	Madín	12.95	Waters of the Valley of Mexico	Р
154	2830	Nexapa	Nexapa	12.50	Central Gulf	G
155	1989	La Concepción	La Concepcion	12.11	Waters of the Valley of Mexico	I
156	2263	Laguna del Fresno		12.08	Lerma-Santiago-Pacific	Ι
157	3850	Santa Rosa	Santa Rosa	11.36	Central Basins of the North	Ι
158	118	Derivadora Jocoque	Derivadora Jocoque	10.98	Lerma-Santiago-Pacific	Ι
159	1935	Tenasco	Boquilla de Zaragoza	10.50	Lerma-Santiago-Pacific	I
160	2253	Jaripo	Jaripo	10.20	Lerma-Santiago-Pacific	Ι
161	1354	El Palote	El Palote	10.01	Lerma-Santiago-Pacific	Р
162	3780	José María Morelos	La Villita	10.00	Lerma-Santiago-Pacific	I
163	2003	Francisco José Trinidad Fabela	Isla de las Aves o El Salto	9.93	Lerma-Santiago-Pacific	I
164	2321	Pucuato	Pucuato	9.58	Balsas	I
165	3019	Ing. Valentín Gama	Ojo Caliente	9.51	Central Basins of the North	I
166	1462	La Calera	La Calera	9.39	Balsas	I
167	2903	La Llave	Divino Redentor	9.31	Northern Gulf	I

N٥	SGT Code	Official name	Given name	Capacity at the NPE (hm ³)	HAR	Uses
168	2881	El Centenario	El Centenario	8.99	Northern Gulf	Ι
169	2847	La Soledad	Apulco or Mazatepec	8.99	Central Gulf	G
170	2039	El Molino	Arroyo Zarco	7.70	Northern Gulf	Ι
171	1762	Cuquío	Los Gigantes	7.50	Lerma-Santiago-Pacific	Ι
172	881	El Rejón	El Rejon	6.53	Rio Bravo	Р
173	2207	Copándaro	Copandaro de Corrales	6.50	Lerma-Santiago-Pacific	Ι
174	1773	El Estribón	El Estribon	6.40	Lerma-Santiago-Pacific	P, I
175	1307	La Golondrina	La Golondrina	6.00	Lerma-Santiago-Pacific	Ι
176	67	La Codorniz	La Codorniz	5.37	Lerma-Santiago-Pacific	Ι
177	2347	Sabaneta	Sabaneta	5.19	Balsas	Ι
178	1585	La Esperanza	La Esperanza	3.92	Northern Gulf	Ι
179	242	Emilio López Zamora	Ensenada	2.73	Baja California Peninsula	Р
180	2954	La Venta	La Venta	2.48	Northern Gulf	Ι
181	158	Derivadora Pabellón	Derivadora Potrerillos	2.04	Lerma-Santiago-Pacific	Ι
		Total		129 906.23		

Source: CONAGUA (2015a).

MAP 4.1 Main reservoirs in Mexico, 2014

Note: The reservoirs with a capacity greater than 1 000 hm³ are named. **Source:** CONAGUA (2015a).

4.3 Hydro-agricultural infrastructure

In Mexico, the area with infrastructure that allows irrigation is approximately 6.4 million hectares, of which 3.4 million correspond to 86 irrigation districts (IDs) and the remaining three million to more than 39 thousand irrigation units (IUs).

IDs and IUs considered the prevailing technology at the time of their design for the application of water to plots by means of gravity. In many cases, only the networks of channels and main drains were built, with the construction on the plots the responsibility of the users. This situation, along with the deterioration of the infrastructure, which has worsened over decades through the insufficient economic resources for their conservation and improvement, has brought about a decrease in the overall efficiency of water management.

It should be mentioned that the yield in areas under irrigation regimes is greater than in areas using rainfed agriculture. In 2013, for the main crops by area harvested -corn grain, sorghum grain and beans-, the yield in areas under irrigation, measured in tons/ha, was 2.2 to 3.3 times higher than in rainfed areas (produced based on SIAP 2014).

Irrigation Districts (IDs)

[Reporteador: Distritos de riego]

IDs are irrigation projects developed by the federal government since 1926, the year in which the National Irrigation Commission was created, and include various works, such as storage basins, direct diversions, pumping plants, wells, channels and pathways, among others.

The existing IDs are shown in map 4.2 and table 4.2. It should be mentioned that the ID 113 Alto Río Conchos was inaugurated on January 27, 2012, meaning that there are now 86 IDs. In [Adicional: Table 4.A], data is presented by the IDs, whereas graph 4.2 illustrates the evolution of water used in the IDs for the agricultural years 2004-05 to 2013-14. The agricultural year in Mexico includes the period from October to September of the following year.

Source: Conagua (2015f).

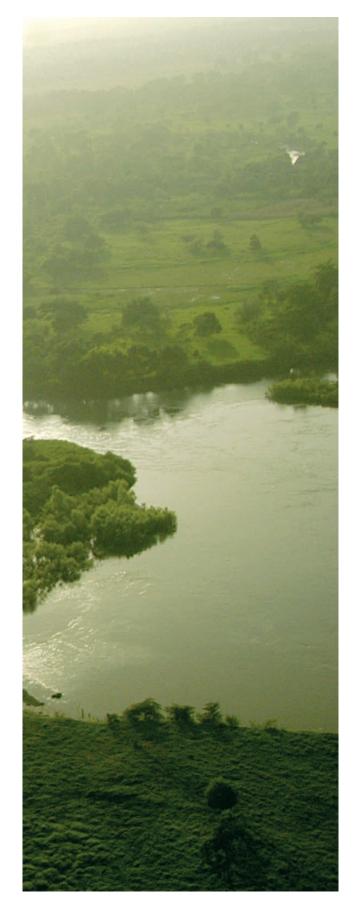
TABLE 4.2 Irrigation districts by hydrological-administrative region, 2014

Number of HAR	Number of irrigation districts	Total surface area (ha)	Users	Physical surface irrigated (ha)	Volume distributed (hm³) 2014
Ι	2	245 678	18 457	220 674	2 556
II	7	466 272	30 007	398 036	3 933
III	9	806 643	94 121	735 291	7 428
IV	9	199 396	71 549	150 796	2 127
V	5	71 927	12 749	32 883	594
VI	13	469 451	49 639	359 949	2 311
VII	1	71 964	38 016	47 845	796
VIII	14	501 196	120 187	322 226	3 518
IX	13	257 993	38 534	110 877	822
Х	2	41 416	8 987	30 559	536
XI	4	36 180	7 223	27 095	338
XII	2	18 490	4 867	14 787	73
XIII	5	97 950	52 151	87 311	1 463
Total	86	3 284 555	546 487	2 538 325	26 496

Source: Conagua (2015f).

Water is employed in IDs by means of gravity or pumping. In turn, the surface water source may be a dam, diversion or pump directly from the current; whereas the groundwater source is used by pumping wells. The volume distributed by each type of use is shown in [Adicional: Table 4.B].

The **productivity** of water in IDs is a key indicator to evaluate the efficiency with which water is used for food production, and depends upon the piping from the supply sources to plots and its use there. The evolution in this aspect is shown in graph 4.2, which shows the gross volume used corresponding to the vegetative cycle, which is why it does not coincide with the annual volumes used.

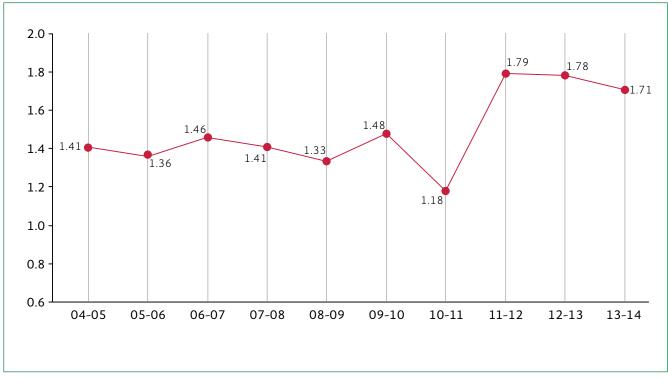

Graph 4.3 shows the evolution in productivity (within the scope of irrigation districts, considering only irrigated and not rainfed crops) for the period of agricultural years from 2004-05 to 2013-14.

In the current environment in which a decrease in availability is predicted as a result of climate change, it is imperative to increase piping **efficiencies**. It should be mentioned that water productivity may fluctuate greatly according to the meteorological conditions, as well as the phenological characteristics of each crop.

For the 2013-14 agricultural year, the main crops according to the area harvested were corn grain and wheat grain, which together represented 41.9% of the surface area. It should be mentioned that these two crops combined were 20.4% of the production in tons and 27.9% of the value of production. The main crops are shown in [Adicional: Table 4.C].

The transfer of IDs to the users commenced with the creation of the CONAGUA in 1989 and the passing of the new National Water Law in 1992, with the support of a program of partial rehabilitation of the infrastructure that was allocated via irrigation modules to irrigation user associations.

Up to December 2014, more than 99% of the total surface of the IDs had been transferred to the users. Up to that date, only two districts had not been totally transferred to the users, as shown in [Adicional: Table 4.D].



GRAPH 4.2 Volume employed in IDs by source and agricultural year (thousands of hm³)

Source: Conagua (2015f).

GRAPH 4.3 Productivity of water in IDs by agricultural year (kg/m³)

Source: Conagua (2015f).

Irrigation Units (IUs)

[Reporteador: Distritos de riego]

IUs, also known as URDERALES in Spanish, are operated by members of cooperatives and small landholders, who in some cases are organized within these units. Annual statistics were generated from the 2004-2005 cycle. The data from the 2011-2012 agricultural year is shown in table 4.3.

Technified Rainfed Districts (TRDs)

[Reporteador: Distritos de temporal y unidades de riego]

In Mexico's tropical and subtropical plains, which have an excess of humidity and constant floods, the federal government has established TRDs, in which infrastructure has been built to remove the excess volumes of water.

Table 4.4 lists the main characteristics of the TRDs. Similarly to the irrigation districts, the TRDs have gradually been transferred to organized users.

TABLE 4.3 Area harvested, production and yield of irrigation units by hydrological-administrative region,2011-2012 agricultural year

Number of HAR	Area harvested (ha)	Production (ton)	Yield (ton/ha)
I	37 857	1 400 957	37.01
II	130 196	2 773 990	21.31
III	178 641	3 222 881	18.04
IV	356 934	8 388 421	23.50
V	94 554	1 270 249	13.43
VI	586 700	10 116 336	17.24
VII	305 139	9 810 342	32.15
VIII	870 791	21 371 261	24.54
IX	289 840	7 253 031	25.02
Х	109 477	4 224 262	38.59
XI	32 677	1 479 263	45.27
XII	60 655	1 137 750	18.76
XIII	82 831	2 728 637	32.94
Total	3 136 292	75 177 380	23.97

Source: Conagua (2013).

.

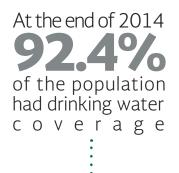
TABLE 4.4 Characteristics of the technified rainfed districts, 2014

No	Code	Name	Number of HAR	State	Area (thousands of ha)	Users (number)
1	1	La Sierra	XI	Tabasco	32.1	1 178
2	2	Zanapa Tonala	XI	Tabasco	106.9	6 919
3	3	Tesechoacan	Х	Veracruz de Ignacio de la Llave	18.0	1 139
4	5	Pujal Coy II	IX	San Luis Potosi, Tamaulipas and Veracruz de Ignacio de la Llave	236.0	9 987
5	6	Acapetahua	XI	Chiapas	103.9	5 050
6	7	Centro de Veracruz	Х	Veracruz de Ignacio de la Llave	75.0	6 367
7	8	Oriente de Yucatan	XII	Yucatan	667.0	25 021
8	9	El Bejuco	III	Nayarit	24.0	2 261
9	10	San Fernando	IX	Tamaulipas	505.0	13 975
10	11	Margaritas-Comitan	XI	Chiapas	41.9	5 397
11	12	La Chontalpa	XI	Tabasco	91.1	10 344
12	13	Balancán-Tenosique	XI	Tabasco	115.6	4 289
13	15	Edzna-Yohaltun	XII	Campeche	85.1	1 120
14	16	Sanes Huasteca	XI	Tabasco	26.4	1 321
15	17	Tapachula	XI	Chiapas	94.3	5 852
16	18	Huixtla	XI	Chiapas	107.6	6 010
17	20	Margaritas-Pijijiapan	XI	Chiapas	67.9	4 712
18	23	Isla Rodríguez Clara	Х	Veracruz de Ignacio de la Llave	13.7	627
19	24	Zona sur de Yucatan	XII	Yucatan	26.1	880
20	25	Río Verde	XII	Campeche	134.9	1 984
21	26	Valle de Ucum	XII	Quintana Roo	104.8	1 739
22	27	Frailesca	XI	Chiapas	56.8	3 083
23	35	Los Naranjos	Х	Veracruz de Ignacio de la Llave	92.6	6 045
	Total				2 826.7	125 300

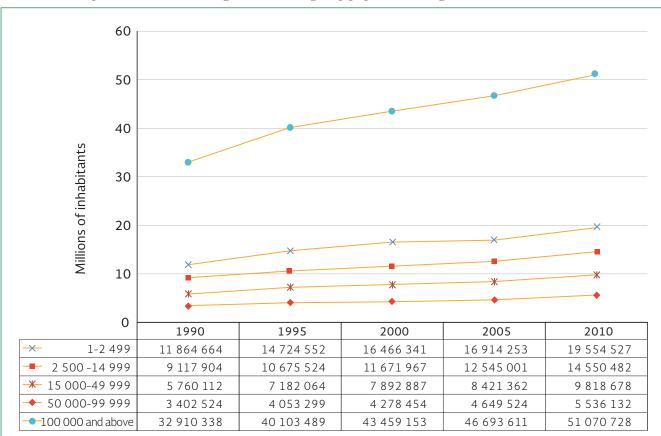
Source: Conagua (2015f).

4.4 Drinking water and sanitation infrastructure

Drinking water coverage

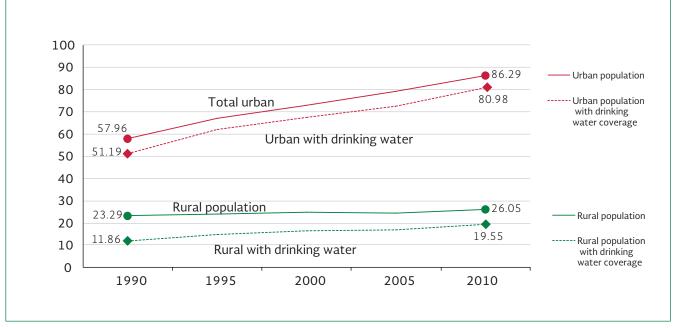

[Reporteador: Cobertura universal]

In the CONAGUA it is considered that drinking water coverage includes all those who have tap water in their household, outside their household, but within their grounds, from a public tap or from another household. The calculation of the coverage is carried out from different censuses on population. For the years without any type of census, the CONAGUA carries out an estimation.


Taking into account the aforementioned definition and the results of the 2010 Census on Population and Housing, up to June 25 that year, 90.9% of the population had drinking water coverage. In [Adicional: Table 4.E] the evolution in the country's drinking water coverage is shown, which has been calculated from the different censuses. The CONAGUA estimates that by the end of 2014, the drinking water coverage was 92.4%, which breaks down as 95.1% in urban zones and 82.9% in rural areas. The evolution in the percentages of coverage should be considered in line with population growth and urban concentration, meaning that the percentages in successive years increasingly represent greater numbers of inhabitants: just maintaining the percentage of coverage actually implies providing these services to more inhabitants.

The evolution in the population with coverage is differentiated according to the population range in the locality. The coverage for populations in large localities (more than 100 000 inhabitants) increases more rapidly than in smaller localities, as can be observed in graph 4.4, which shows the population at the time of the Censuses.

However, it should be taken into account that the increase in the population is greater in urban localities, whereas in rural localities the population is growing at a slower pace. Graph 4.5 illustrates the evolution in the population with drinking water coverage and the total population, considering in both cases both their rural and urban components.



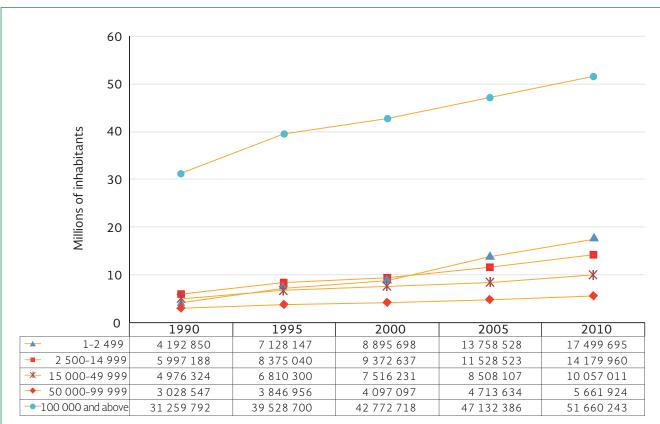
GRAPH 4.4 Population with drinking water coverage, by population ranges

Source: Produced based on Conagua (2007), Conagua (2015m), INEGI (2015c).

Source: Produced based on Conagua (2007), Conagua (2015m), INEGI (2015c).

Sanitation coverage

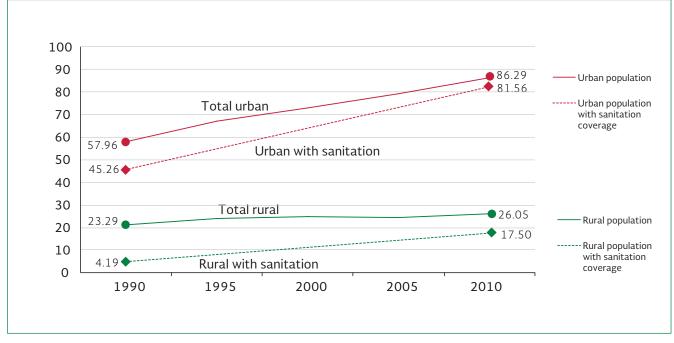
[Reporteador: Cobertura universal]


On the other hand, the CONAGUA considers that sanitation coverage includes those citizens connected to the sanitation network or a septic tank, wastepipe, ravine, crevice, lake or sea. Similarly to drinking water coverage, for sanitation it is calculated based on the different censuses of the population. For years without any form of census, the CONAGUA carries out an estimation.

It should be mentioned that for the purpose of this document, sanitation and sewerage are considered as synonyms. Taking into account that definition and the results of the 2010 Census on Population and Housing, up to June 25 of that year, 89.6% of the population had sanitation coverage.

The CONAGUA estimates that by the end of 2014, sanitation coverage was 91%, composed of 96.3% coverage in urban areas and 72.8% in rural zones. [Adicional: Table 4.F] shows the composition of the sanitation coverage nationwide, calculated based on the different censuses. As was commented for drinking water, the percentages of coverage in successive years increasingly represent greater numbers of inhabitants: just maintaining the percentage of coverage actually implies providing these services to more inhabitants.

As in the case of drinking water, the evolution in the population with sanitation coverage is also differentiated as regards the size of the population in each locality. In this case, the population with sanitation coverage in rural localities increased significantly from 2000 onwards, as can be appreciated in graphs 4.6 and 4.7. At the end up 2014 **9196** of the population had sanitation c o v e r a g e :



Source: Produced based on Conagua (2007), Conagua (2015m), INEGI (2015c).

Source: Produced based on Conagua (2007), Conagua (2015m), INEGI (2015c).

The evolution in coverage both for drinking water and sanitation, considering the urban and rural contexts, is illustrated in table 4.5.

In table 4.6 the drinking water and sanitation coverage and in table 4.7 the sanitation coverage are shown by hydrological-administrative region (HAR). It can be observed that the regions with the greatest backlogs in drinking water are V Southern Pacific, IX Northern Gulf, X Central Gulf and XI Southern Border; whereas for sanitation the greatest backlogs are concentrated in the regions V Southern Pacific, IX Northern Gulf, X Central Gulf and XII Yucatan Peninsula.

The states with the greatest backlogs in drinking water coverage are: Guerrero, Oaxaca and Chiapas; whereas in terms of sanitation it is Oaxaca, Guerrero and Yucatan, as shown in [Adicional: Table 4.G].

TABLE 4.5 Coverage of the national population with drinking water and sanitation, by urbanand rural scopes, series of Census years from 1990 to 2010

Donulation	1990 Census (%)	1995 Census (%)	2000 Census (%)	2005 Census (%)	2010 Census (%)				
Population -	12/03/1990	5/11/1995	14/02/2000	17/10/2005	25/06/2010				
	Drinking water								
Rural	51.19	61.23	67.95	70.66	75.69				
Urban	89.41	93.00	94.60	95.03	95.59				
Total	78.39	84.58	87.83	89.20	90.94				
		Sar	nitation						
Rural	18.09	29.64	36.71	57.48	67.74				
Urban	79.05	87.82	89.62	94.47	96.28				
Total	61.48	72.40	76.18	85.62	89.61				

Source: Produced based on INEGI (2015c).

_				
TABLE 4.6 Coverage	of the population) with drinking water	services (vea	rs of (Censuses)
India in Conciuse	of the population	i mitti armitting mater	Services (yea	

Number of ITAD	Drinking water							
Number of HAR	12/03/1990	5/11/1995	14/02/2000	17/10/2005	25/06/2010			
Ι	81.89%	87.83%	92.35%	93.10%	95.46%			
II	89.58%	93.04%	95.04%	94.58%	96.28%			
III	78.68%	85.58%	88.82%	89.04%	91.29%			
IV	72.66%	81.11%	83.27%	84.70%	85.76%			
V	60.07%	69.49%	73.68%	73.49%	75.60%			
VI	91.25%	93.95%	95.75%	95.84%	97.00%			
VII	84.49%	89.07%	91.74%	94.10%	95.04%			
VIII	84.01%	90.18%	92.14%	93.31%	94.86%			
IX	58.05%	67.92%	75.40%	80.76%	84.94%			
Х	58.81%	64.58%	71.92%	77.23%	81.24%			
XI	56.71%	65.44%	73.29%	74.42%	78.51%			
XII	73.87%	84.79%	91.80%	94.03%	94.22%			
XIII	92.18%	96.02%	96.71%	96.43%	96.79%			
Total	78.39%	84.58%	87.83%	89.20%	90.94%			

Source: Produced based on INEGI (2015c).

TABLE 4.7 Coverage of the population with sanitation services (years of Censuses)

Number of LLAD	Sanitation							
Number of HAR	12/03/1990	5/11/1995	14/02/2000	17/10/2005	25/06/2010			
Ι	65.41%	75.22%	80.51%	88.89%	93.08%			
II	62.23%	71.94%	76.33%	83.94%	88.08%			
III	51.65%	63.94%	69.89%	82.65%	87.45%			
IV	48.44%	62.80%	67.42%	81.38%	86.87%			
V	34.67%	47.58%	48.51%	64.12%	72.55%			
VI	73.21%	83.23%	87.66%	93.34%	95.42%			
VII	57.17%	67.20%	75.03%	86.94%	90.72%			
VIII	67.82%	79.62%	82.36%	89.96%	93.05%			
IX	34.55%	42.59%	50.55%	65.68%	72.98%			
Х	46.04%	56.06%	60.26%	74.94%	81.60%			
XI	45.51%	62.28%	67.70%	80.74%	85.61%			
XII	45.03%	57.54%	63.12%	76.37%	84.48%			
XIII	85.26%	92.57%	93.86%	96.81%	97.82%			
Total	61.48%	72.40%	76.18%	85.62%	89.61%			

Source: Produced based on INEGI (2015c).

Aqueducts

[Reporteador: Acueductos principales]

There are more than 3 000 kilometers of aqueducts in Mexico that convey water to various cities and rural communities around the country, with a total capacity of more than 112 cubic meters per second. The main ones, as regards their length and flow, are listed in table 4.8.

TABLE 4.8 Main aqueducts in Mexico, 2014

Nº	Aqueduct	Region	Length (km)	Design flow (1/s)	Year of completion	Supplies	Operator
1	Colorado River- Tijuana	I Baja California Peninsula	130	4 000	1982	Cities of Tijuana and Tecate and the village of La Rumoro- sa in Baja California.	Comisión de Servicios de Agua del Estado de Baja California (COSAE).
2	Vizcaino- Northern Pacific	I Baja California Peninsula	206	62	1990	Localities of Bahia Asuncion, Bahia Tortugas and the fishing villages of Punta Abreojos in Baja California	Organismo operador del municip- io de Mulegé, B.C.
3	Cutzamala System	IV Balsas and XIII Waters of the Valley of Mexico	162	19 000	1993	The Metropolitan Area of the Valley of Mexico with water from the Valle de Bravo, Villa Victoria and El Bosque reser- voirs, among others	Conagua
4	Linares- Monterrey	VI Rio Bravo	133	5 000	1984	The Metropolitan Area of the city of Monterrey, Nuevo Leon, with water from the Cerro Prieto reservoir	Servicios de Agua y Drenaje de Monterrey, I.P.D.
5	El Cuchillo- Monterrey	VI Rio Bravo	91	5 000	1994	The Metropolitan Area of the city of Monterrey, Nuevo Leon, with water from the Cuchillo reservoir	Servicios de Agua y Drenaje de Monterrey, I.P.D.
6	Lerma	VIII Lerma- Santiago-Pacific and XIII Waters of the Valley of Mexico	60	14 000	1975	Mexico City with water from the aquifers located in the upper area of Lerma River	Sistema de Aguas de la Ciudad de México.
7	Armeria- Manzanillo	VIII Lerma- Santiago-Pacific	50	250	1987	Manzanillo, Colima.	Comisión de Drinking water, Drenaje y Sanitation de Manzanillo, Colima.
8	Chapala- Guadalajara	VIII Lerma- Santiago-Pacific	42	7 500	1991	The Metropolitan Area of the city of Guadalajara with water from Lake Chapala	Sistema Intermunicipal para los Servicios de Drinking water y Sanitation (SIAPA).
9	Vicente Guerrero res- ervoir-Ciudad Victoria	IX Northern Gulf	54	1 000	1992	Ciudad Victoria, Tamaulipas, with water from the Vicente Guerrero reservoir	Comisión Municipal de Drinking water y Sanitation (CoMAP Victoria).
10	Uxpanapa- La Cangrejera	X Central Gulf	40	20 000	1985	22 industries located in the southern part of the state of Veracruz	Conagua
11	Yurivia-Coa- tzacoalcos and Minatitlan	X Central Gulf	64	2 000	1987	Coatzacoalcos and Minatitlan, Veracruz with water from the Ocotal and Tizizapa rivers.	Comisión Municipal de Agua y Saneamiento de Coatzacoalcos Ver. (Смарѕ Coatzacoalcos).
12	Aqueduct II Queretaro	VIII Lerma-Santiago- Pacific and IX Northern Gulf	122	1 500	2011	Santiago de Queretaro, Queretaro	Comisión State-wide de Aguas - Controladora de Operaciones de Infraestructura S.A. de C.V. (ICA).
13	Huitzilapan River-Xalapa	X Central Gulf	55	1 000	2000	Xalapa-Enriquez, Veracruz	Comisión Municipal de Agua y Saneamiento de Xalapa (CMAS Xalapa).
14	Chicbul- Ciudad del Carmen	XII Yucatan Pen- insula	122	390	1975	Sabancuy, Isla Aguida and Ciudad del Carmen, Campeche	Sistema Municipal de Drinking water de Ciudad del Carmen, Campeche.
15	Conejos-Med- anos	VI Rio Bravo	25	1 000	2009	Ciudad Juarez, Chihuahua	Junta Municipal de Agua y Sanea- miento de Ciudad Juárez, Chihua- hua - Administradora de Proyectos Hidráulicos de Ciudad Juárez, S.A. de C.V. (Grupo Carso).
16	Independencia	II Northwest	135	2 380	2013	Hermosillo, Sonora	Conagua
17	Paralelo Chicbul- Ciudad del Carmen	XII Yucatan Pen- insula	120	420	2014	Sabancuy, Isla Aguida and Ci- udad del Carmen, Campeche	Sistema Municipal de Drinking water de Ciudad del Carmen, Campeche.
18	Lomas de Chapultepec	V Southern Pacific	34	1 250	2014	Acapulco, Guerrero	Comisión de Drinking water, San- itation y Saneamiento del Estado de Guerrero (CAPASEG)
	Totales		1 645	83 752			

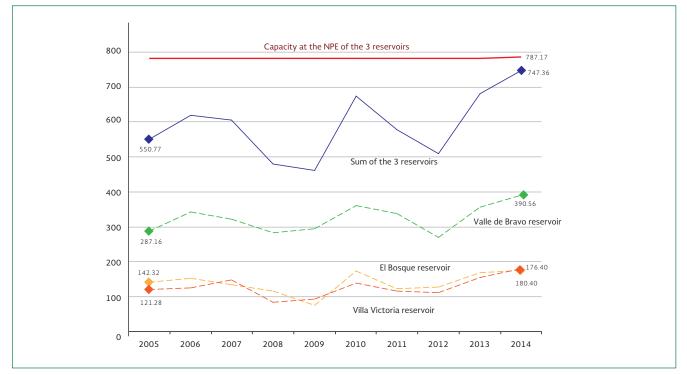
Source: Conagua (2015e), Semarnat (2010), CAPASEG (2014), Gobierno de la República (2014).

Cutzamala System

[Reporteador: Sistema Cutzamala]

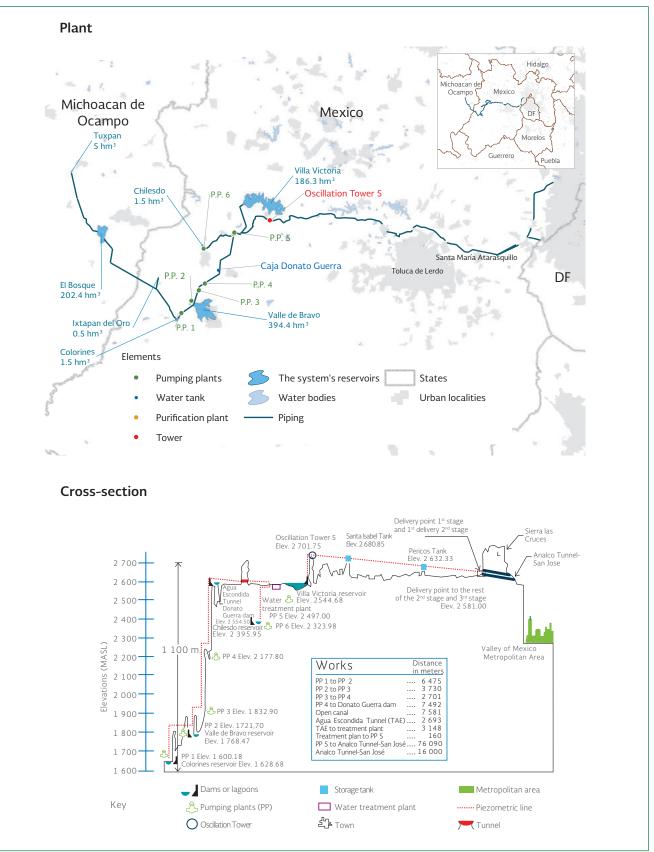
The Cutzamala System, which supplies 11 delegations of the Federal District (Mexico City) and 11 municipalities of the State of Mexico, is one of the biggest drinking water supply systems in the world, not only for the **quantity** of water that it supplies (approximately 450 million cubic meters every year –see table 4.9–), but also because of the difference in **elevation** (1 100 m) that it overcomes. It contributes 17% of the supply for all uses in the Valley of Mexico catchment, calculated at 88 m³/s, which is complemented by the Lerma System (5%), groundwater extraction (68%) and rivers and springs (3%) and water reuse (7%) (WB 2013).

The Cutzamala System is made up of seven diversion and storage reservoirs, six pumping stations and one treatment plant with the characteristics indicated in [Adicional: Table 4.H]. The evolution in storage in the main reservoirs is shown in graph 4.8.


Figure 4.1 shows the location of the system and the difference in elevation that has to be overcome from the lowest point of Pumping Plant No. 1 to convey water to Oscillation Tower No. 5 and subsequently by gravity to the Metropolitan Area of the Valley of Mexico.

Year	Supplied to Mexico City	Supplied to the State of Mexico	Total
2005	310.39	182.80	493.19
2006	303.53	177.26	480.79
2007	303.90	174.56	478.46
2008	306.25	179.47	485.72
2009	244.60	155.38	399.97
2010	266.85	165.84	432.69
2011	296.46	182.17	478.63
2012	272.54	190.96	463.50
2013	255.05	165.19	420.24
2014	294.86	181.85	476.71

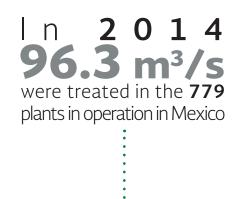
TABLE 4.9	Volumes and flows	supplied by the
	Cutzamala System	(hm^3)

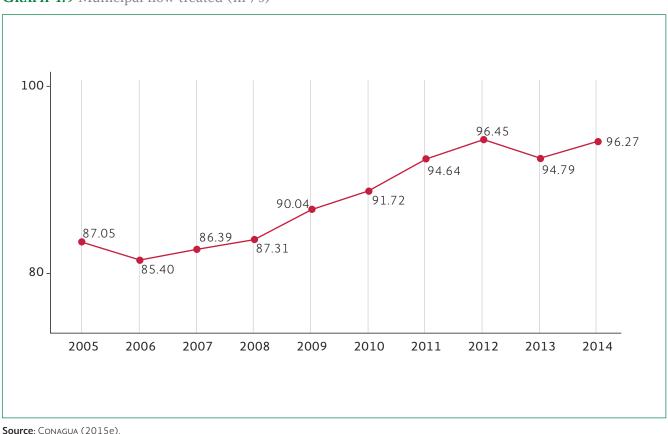

Source: Conagua (2015n).

GRAPH 4.8 Evolution in storage in the reservoirs of the Cutzamala System (hm³)

Source: Produced based on CONAGUA (2015n).

Source: Produced based on Conagua (2015n), INEGI (2013c), INEGI (2013d).


Purification plants


[Reporteador: Plantas Drinking water]

Municipal purification plants condition the water quality in surface and/or groundwater sources for public urban use. In 2014, 96.3 m³/s were treated in the 779 plants in operation in Mexico. The evolution in the flow treated annually is illustrated in graph 4.9.

The distribution of purification plants is listed in table 4.10 by HAR, and at the state level in [Adicional: Table 4.1]. It should be mentioned that the Los Berros treatment plant is included, found in the hydrological-administrative region IV Balsas. This plant is in the locality of the same name in the municipality of Villa de Allende, State of Mexico, and is part of the Cutzamala System. It is operated by the Waters of the Valley of Mexico River Basin Organization.

Table 4.11 illustrates the main treatment processes applied in those plants.

GRAPH 4.9 Municipal flow treated (m³/s)

TABLE 4.10 Purificati	on plants	in operati	on, 2014
-----------------------	-----------	------------	----------

Number of HAR	Number of plants in operation	Installed capacity (m ³ /s)	Flow treated (m ³ /s)
Ι	44	12.37	7.17
II	24	5.58	2.29
III	156	9.47	8.44
IV	23	22.89	17.25
V	9	3.23	2.61
VI	63	27.17	14.28
VII	123	0.71	0.53
VIII	164	20.24	15.40
IX	47	8.19	7.40
Х	13	7.09	4.59
XI	46	14.62	11.05
XII	1	0.03	0.02
XIII	66	6.47	5.25
Total	779	138.05	96.27

Source: Conagua (2015e).

TABLE 4.11 Main purification processes applied, 2014

Main nuasas	Dumoso	Pla	ants	Flow tr	reated
Main process	Purpose	Number	%	m³/s	%
Softening	Elimination of hardness	18	2.3	0.47	0.49
Adsorption	Elimination of organic traces	3	0.4	0.06	0.07
Conventional clarification	Elimination of suspended solids	213	27.3	68.81	71.47
Patented clarification	Elimination of suspended solids	157	20.2	5.09	5.28
Direct filtration	Elimination of suspended solids	76	9.8	15.34	15.94
Slow filtering	Elimination of suspended solids	10	1.3	0.06	0.06
Carbon activated filters	Elimination of suspended solids	35	4.5	0.03	0.03
Reverse osmosis	Elimination of dissolved solids	240	30.8	1.81	1.88
Removal of iron and manganese		11	1.4	4.20	4.36
Others		16	2.1	0.41	0.42
	Total	779	100.0	96.27	100.00

Source: Conagua (2015e).

4.5 Water treatment and reuse

Wastewater discharge

[Reporteador: Descarga de Wastewater]

Wastewater discharges are classified as either municipal or industrial. Municipal ones are those which are managed in the urban and rural sanitation systems, whereas the latter are those that are discharged directly to national receiving water bodies, as is the case for self-supplying industry.

The sequence of wastewater generation, its collection in sewerage systems and treatment/disposal is shown in table 4.12. The table employs the abbreviation BOD_s , which corresponds to the parameter of five-day Biochemical Oxygen Demand.

TABLE 4.12 Municipal and non-municipal wastewater discharges, 2014

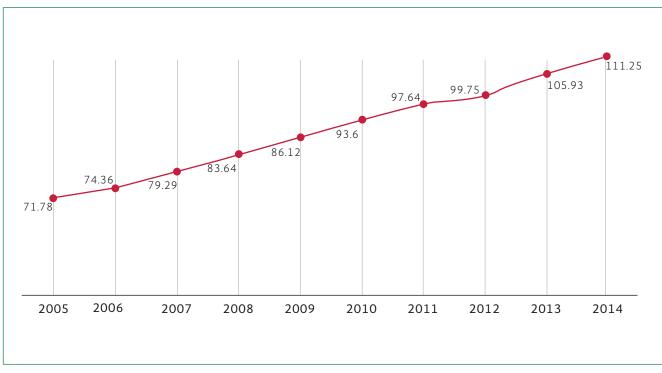
Urban centers (municipal discharges)				
Volume				
Municipal wastewater	7.21	thousand hm³/year (228.7 m³/s)		
Collected in sewerage systems	6.65	thousand hm³/year (211.0 m³/s)		
Treated	3.51	thousand hm ³ /year (111.3 m ³ /s)		
Polluting load				
Generated	1.95	million tons of BOD_s per year		
Collected in sewerage systems	1.80	million tons of BOD _s per year		
Removed in treatment systems	0.77	million tons of BOD _s per year		
Non-municipal uses, including industry				
Volume				
Non-municipal wastewater	6.67	thousand hm ³ /year (211.4 m ³ /s)		
Treated	2.07	thousand hm ³ / year (65.6 m ³ /s)		
Polluting load				
Generated	9.99	million tons of BOD _s per year		
Removed in treatment systems	1.39	million tons of BOD _s per year		

Source: Conagua (2015e), Conagua (2015a).

Municipal wastewater treatment plants

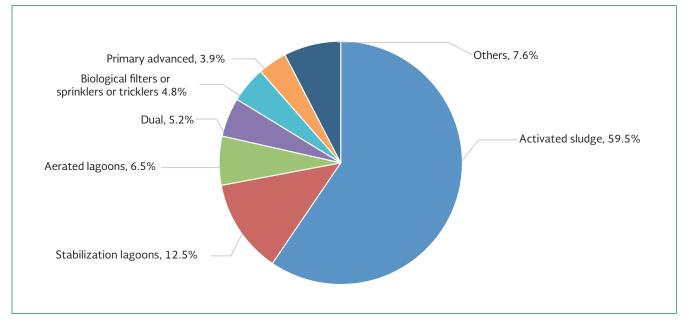
[Reporteador: Plantas de tratamiento]

In 2014, the 2 337 plants in operation in Mexico treated 111.3 m³/s, or 52.8% of the 211.0 m³/s collected in sewer systems. The evolution in the flow treated per year is shown in graph 4.10.


The wastewater treatment plants in operation by hydrological-administrative region are shown in table 4.13, as well as at the state level in [Adicional: T4.J].

The distribution of treatment plants is shown in map 4.3, and their main treatment processes are illustrated in graph 4.11.

Number of HAR	Number of plants in operation	Installed capacity (m³/s)	Flow treated (m ³ /s)
Ι	66	9.86	6.87
II	101	4.94	3.44
III	362	10.26	7.88
IV	199	9.89	7.54
V	94	4.92	4.01
VI	225	34.15	24.04
VII	151	6.80	5.36
VIII	582	39.84	30.52
IX	86	5.53	4.16
Х	137	6.80	5.30
XI	114	4.42	2.52
XII	81	2.95	2.03
XIII	139	11.54	7.58
Total	2 337	151.88	111.25


TABLE 4.13	Municipal	wastewater	treatment	plants in
	operation,	2014		

Source: Conagua (2015e).

GRAPH 4.10 Flow of municipal wastewater treated (m³/s)

Source: CONAGUA (2015e).

GRAPH 4.11 Main municipal wastewater treatment processes, by flow treated 2014

Source: CONAGUA (2015e).

Industrial wastewater treatment plants

[Reporteador: Plantas de tratamiento]

In 2014, industry treated 65.6 m 3 /s of wastewater, in 2 639 plants in operation nationwide.

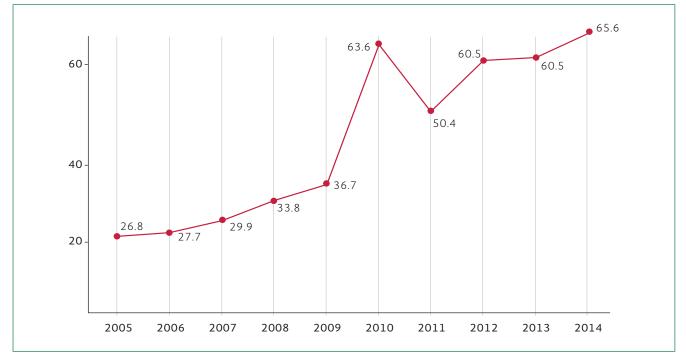

In table 4.14 the main processes into which industrial treatment is broken down are shown; the evolution in the 2005-2014 period is shown in graph 4.12, whereas table 4.15 illustrates the distribution by states. In 2014 65.6 m³/s of wastewater were treated in 2 639 industrial plants

TABLE 4.14 Types of industrial wastewater treatment, 2014

Type of treatment	Purpose	Number of plants	Operating flow (m³/s)	Percentage
Primary	To adjust the pH and remove organic and/or inor- ganic materials in suspension, with a size equal to or greater than 0.1 mm.	826	26.55	40.5
Secondary	To remove colloidal and dissolved organic materials.	1 569	31.63	48.2
Tertiary	To remove dissolved materials, including gases, nat- ural and synthetic organic substances, ions, bacteria and viruses.	83	1.18	1.8
Unspecified		161	6.20	9.5
	Total	2 639	65.56	100.0

Source: CONAGUA (2015a).

Source: Produced based on CONAGUA (2015e).

TABLE 4.15 Industrial wastewater treatment plants in operation, 2014

State	Number of plants in operation	Installed capacity (m³/s)	Flow treated (m ³ /s)
Aguascalientes	47	0.34	0.14
Baja California	62	0.50	0.49
Baja California Sur	26	4.96	4.96
Campeche	129	1.93	1.92
Coahuila de Zaragoza	59	0.76	0.52
Colima	7	0.44	0.31
Chiapas	91	8.36	6.42
Chihuahua	15	0.65	0.28
Federal District (Mexico City)	7	0.01	0.01
Durango	43	1.08	0.62
Guanajuato	89	0.70	0.56
Guerrero	7	0.03	0.02
Hidalgo	46	1.84	1.38
Jalisco	71	1.54	1.54
Mexico	226	2.79	1.94
Michoacan de Ocampo	83	8.33	7.15
Morelos	97	2.13	2.09
Nayarit	6	0.16	0.16
Nuevo Leon	181	4.05	2.92
Oaxaca	18	2.77	2.45
Puebla	206	0.82	0.59
Queretaro	141	1.25	0.65
Quintana Roo	4	0.06	0.06
San Luis Potosi	57	0.79	0.53
Sinaloa	109	5.88	3.37
Sonora	235	6.46	6.26
Tabasco	117	0.85	0.86
Tamaulipas	115	8.36	7.72
Flaxcala	82	0.28	0.25
Veracruz de Ignacio de la Llave	159	12.93	9.05
Yucatan	88	0.30	0.29
Zacatecas	16	0.16	0.05
Total	2 639	81.51	65.56

Source: CONAGUA (2015a).

Box 4.2 Water reuse

he CONAGUA estimates that in 2014, 21.8 m ³ /s of treated wastewater were directly reused (before being discharged), whereas 69.4 m ³ /s of treated wastewater were re-	used indirectly (after being dis- charged). Exchanging treated wastewater, in which it replaces first-use wa- ter, is estimated at 8.9 m ³ /s.	Reuse has several advantages: in cost, it reduces pressures on first-use water bodies and meets the demand for water that does not require drinking water quality.
--	---	---

Source: Conagua (2015e).

4.6 Emergency attention and flood protection

[Reporteador: Atención a emergencias]

As part of the Infrastructure Protection and Emergency Attention program (IPEA), the CONAGUA has set up 20 Regional Emergency Attention Centers (REACs) in various areas of the country, with the aim of supporting states and municipalities in supplying drinking water and sanitation in situations of risk. Map 4.4 shows the location of these centers.

Among the equipment at the disposal of the REACs are mobile treatment plants, pumping equipment, generators for independent electricity generation, water trucks and transportation equipment for the machinery. This emergency attention is carried out by the CONAGUA in coordination with the states, municipalities and federal agencies.

As regards the issue of the impacts of extreme hydro-meteorological phenomena, the most obvious manifestation of which is **floods**, emergency attention actions range from early warning on risks, to the development of prevention plans, the construction and maintenance of protection infrastructure and inter-institutional coordination.

MAP 4.4 Regional Emergency Attention Centers, 2014

Source: Produced based on CONAGUA (2015d).

Chapter 5

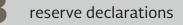
Water management tools

WATER MANAGEMENT TOOLS

Legal framework

Availability to extract an additional volume:

watersheds



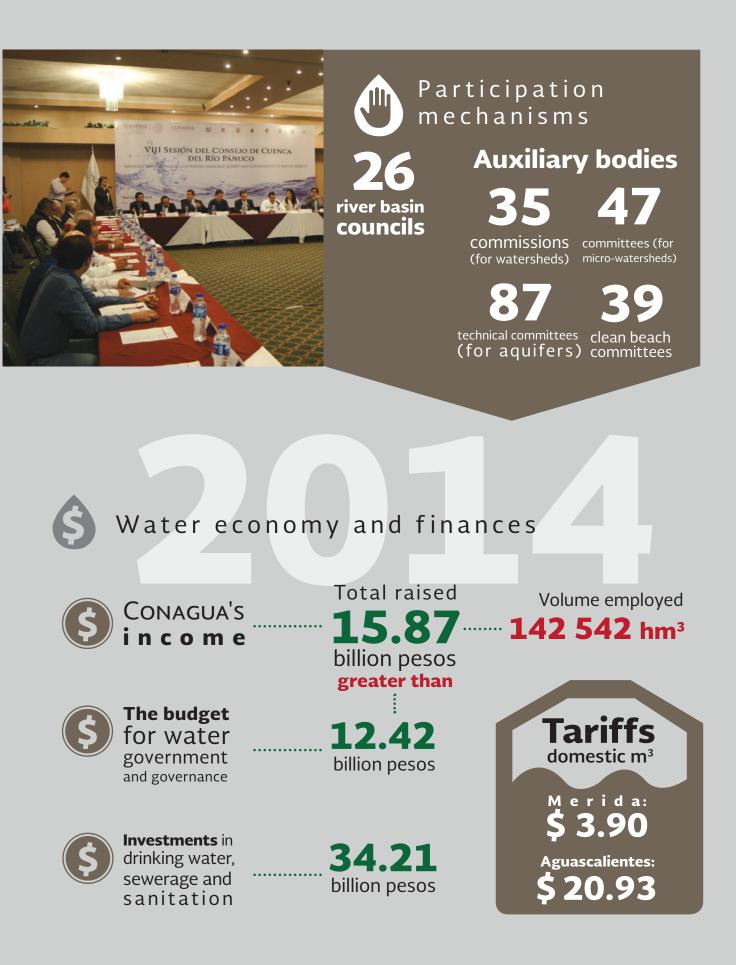
33

Legal instruments

145 groundwater prohibition zones

aquifer regulations and regulated zones

349 surface water prohibition zones


aquifers with suspension of free withdrawal

Deeds in the REPDA

Surface water: **120 822** Groundwater: **271 238** Discharge permits:

16 546 Federal zone and material extraction permits

111 219

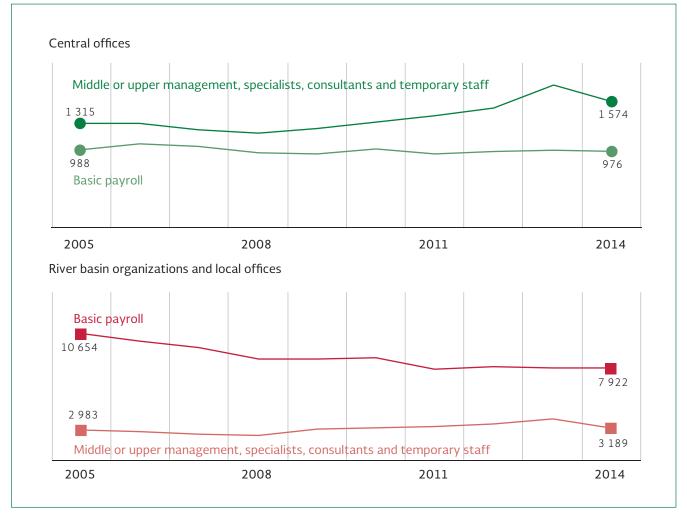
5.1 Water-related institutions in Mexico

The National Water Commission of Mexico (CONA-GUA), an administrative, regulatory, technical, consultative and decentralized agency of the Ministry of the Environment and Natural Resources (SEMARNAT), has the following mission and vision:

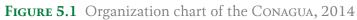
Mission

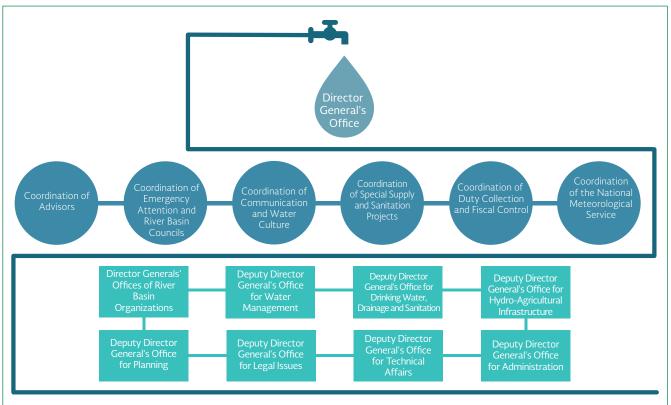
To manage and preserve the nation's water resources and its inherent public goods in order to achieve a sustainable use of these resources, with the co-responsibility of the tiers of government and society-at-large.

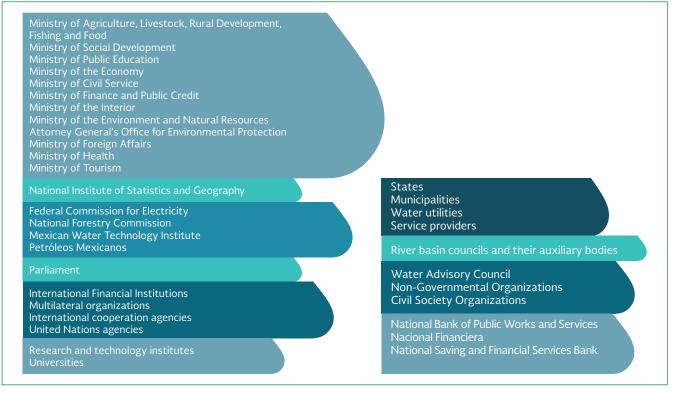
Vision


To be an institution of excellence in the preservation and management of the nation's water resources and water security for the population.

In 1989, the year in which the CONAGUA was created, it had 38 188 employees, a number which in recent years has been reduced. Thus in December 2014, the CONAGUA had 13 661 employees, of which 2 550 were assigned to its central offices and the remainder to the river basin organizations (RBOs) and local offices (LOS). This trend can be observed in graph 5.1.


In order to carry out the functions assigned to it, the CONAGUA works in conjunction with various federal, state and municipal bodies, water user associations and companies; institutions from the private sector and civil society as well as international organizations. Figure 5.1 shows the organization chart of the CONAGUA, whereas in figure 5.2 it is possible to observe the main institutions with which the CONAGUA coordinates for the attainment of the goals of national water planning.


According to article 115 of the Mexican Constitution, municipalities are responsible for providing drinking water, sewerage and sanitation services, subject to the compliance with both federal and state laws. The latest census that offered a complete registry nationwide found that the number of employees involved in the provision of drinking water, sewerage and sanitation services was 110 038 (INEGI 2009). For the provision of drinking water services (2009) there were **110038** employees


Source: Conagua (20150).

Source: Produced based on IFAI (2015), National Water Law

FIGURE 5.2 Main institutions, entities and agencies with which the CONAGUA coordinates, 2014

Source: Produced based on CONAGUA (2005).

5.2 Legal framework for the use of water in Mexico

The National Water Law (NWL) establishes that the use of the nation's water resources will be carried out through the assigning of concession or allocation deeds by the Federal Executive Branch, through the CONAGUA, by means of the RBOs, or directly by the former when within its responsibilities, according to the rules and conditions laid down within the NWL and its By-Laws. Similarly, for wastewater discharges, it is necessary to have a discharge permit issued by the same institution.

Deeds registered in the Public Registry of Water Duties (REPDA)

[Reporteador: Usos (Títulos inscritos), Usos del agua]

Since the NWL was passed (1992), concession or allocation deeds and discharge permits have been registered in the REPDA.

Up to December 2014, there were 481 031 concession deeds for the use of the nation's water resources registered in the REPDA, which corresponded to a volume of 84.93 billion cubic meters allocated for offstream uses and 178 622 hm³ for instream uses. It should be mentioned that from this year there is a a new classification for offstream uses: that of ecological conservation.

The distribution of deeds by use is shown in table 5.1, and in table 5.2 they are grouped by hydrological-administrative region (HAR), considering the discharge permits, federal zone permits and material extraction. By number, regions VI Rio Bravo, VIII Lerma-Santiago-Pacific and X Central Gulf concentrate 40% of the total number of concession and/or allocation deeds.

It should be noted that one concession deed may cover one or more uses or permits. The term "grouped use" is employed (see chapter 3), wherein the grouped use for agriculture includes the agricultural, livestock, aquaculture, multiple and "others" headings of the REPDA classification; public supply includes public urban and domestic, self-supplying industry considers industrial, agro-industrial, services and trade. There may be slight variations in the figures owing to the dates in which the REPDA was consulted.

TABLE 5.1 Concession or allocation deeds registered in the REPDA, 2014

Crownedwood	Deeds register	ed in the Repda
Grouped uses	Number	Percentage
Agriculture	307 374	63.90
Public supply	28 998	6.03
Self-supplying industry	144 461	30.03
Electricity excluding hydropower	55	0.01
Subtotal offstream uses	480 888	99.97
Ecological conservation (instream use)	1	<0.01
Hydropower (instream use)	142	0.03
Total	481 031	100.00

Source: Conagua (2015c).

TABLE 5.2 Deeds by hydrological-administrative region in the REPDA, 2014	
---	--

Number		Conce	ssions and/or allocati	ons	
of HAR	Surface water	Groundwater	Discharge permits	Federal zone permits	Material extraction
Ι	2 318	9 256	600	1 608	421
II	4 107	18 246	645	2 907	118
III	12 164	13 097	650	7 245	455
IV	14 829	13 422	1 528	8 033	401
V	10 128	17 415	586	10 268	202
VI	6 033	37 222	702	5 977	61
VII	3 693	27 356	933	3 555	100
VIII	18 994	58 734	3 007	21 874	737
IX	9 269	14 483	856	13 261	172
Х	12 902	19 175	1 747	18 722	670
XI	24 939	8 902	944	12 061	403
XII	257	31 545	3 498	86	3
XIII	1 189	2 385	850	1 879	0
Total	120 822	271 238	16 546	107 476	3 743

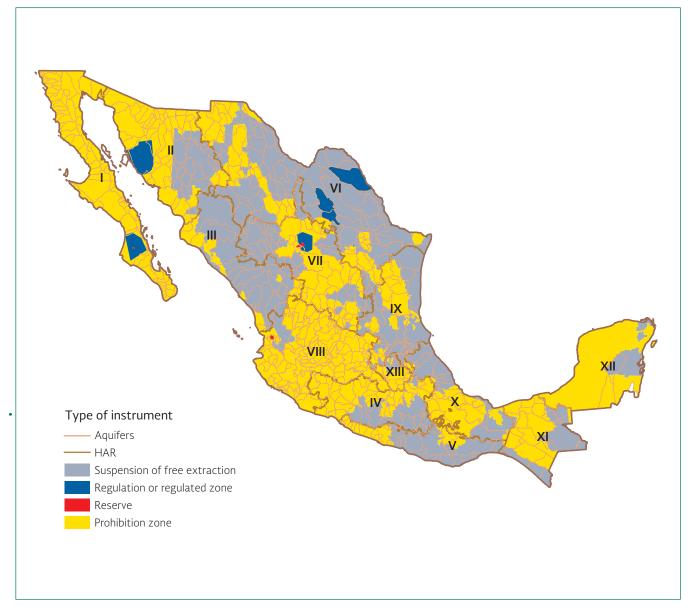
Source: Conagua (2015c).

Legal instruments

[Reporteador: Ordenamientos]

Mexico's Political Constitution authorizes the Federal Executive Branch to establish regulatory means, if it is in public interest and utility, in order to maintain control over the extraction of the nation's groundwater resources through the issuing of prohibitions, regulations and reserves.

The different current legal control instruments have been issued since 1948. The NWL establishes that **prohibition zones** are necessary in those aquifers in which there is no mean annual availability of groundwater, as a result of which it is not possible to authorize concessions or allocations of water in addition to those legally authorized, due to the deterioration of water in quantity or quality, which affects hydrological sustainability.


Regulations are for those aquifers in which there is still mean annual availability of groundwater, which may be granted as a concession or allocation, for any use, within the limits of the available volume. When this type of legal instrument is applied to a portion of an aquifer, it is termed a **regulated zone**.

Reserve zones are specific areas of aquifers in which limits are established on the use of a part or all of the available water, with the aim of providing a service or setting up a restoration or conservation program. The Federal Executive Branch may declare the total or partial reserve of water resources for the following purposes: domestic and public-urban use, power generation for public service, and guaranteeing minimal flows for ecological protection, including the conservation of vital ecosystems.

In 2014 there were **145** groundwater prohibitions

Source: Produced based on CONAGUA (2015a).

Up to December 31, 2014, 145 groundwater prohibition decrees, four aquifer regulations, three decrees of regulated zones and three declarations of reserve zones for public urban use had been declared, which together cover approximately 55% of the national territory (see map 5.1). In them it is established that to use groundwater within the territories outlined within them, it is necessary to request the corresponding concession or allocation. The CONAGUA, considering the results of the studies it carries out, may authorize or reject the concession or allocation.

For the remaining 45% of the country, in 2013 general agreements were published for a total of 333 aquifers, previously not subject to legal restrictions, and in which the digging or the construction of infrastructure to extract water from the subsoil is no longer permitted, nor the increase in the previously authorized volume (62 aquifers) or a concession or allocation is required to extract water from the subsoil as well as authorization from the CONAGUA to increase the volume (271 aquifers).

Surface prohibition zones are those specific areas of regions of watersheds in which additional uses of water to those that are legally established are not authorized, and the latter are controlled through specific regulations, by virtue of the deterioration in the quantity or quality of water, due to the impact on hydrological sustainability or the damage to surface water bodies. The CONAGUA consults with users and civil society organizations, within the scope of the river basin councils, and resolves the limitations resulting from the existence, declaration and implementation of prohibition zones. The surface prohibition zones are shown in map 5.2.

In 2014 there are **349** surface water prohibitions

MAP 5.2 Areas with surface water prohibition, 2014

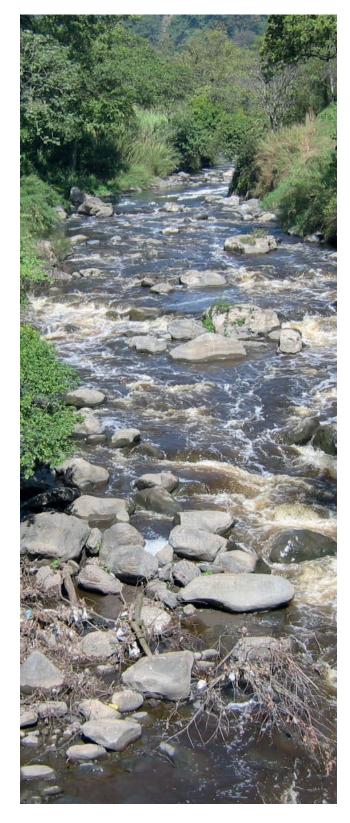
Source: Produced based on CONAGUA (2015a).

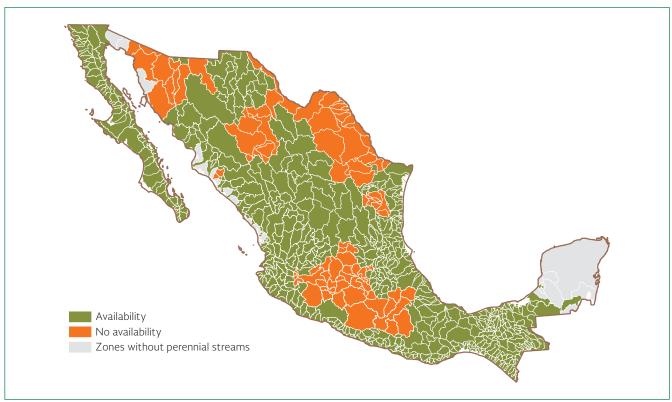
Publication of mean annual water availabilities

[Reporteador: Cuencas-disponibilidad]

The NWL establishes that in order to grant concession or allocation deeds, the mean annual availability of water in the watershed or aquifer in which the use is to be made should be taken into account. When it is determined that an additional volume to those already allocated may be extracted from an aquifer or watershed without compromising the ecosystem, this condition is termed "availability". The CONAGUA is bound to publish these availabilities, for which the standard NOM-011-CONAGUA-2000 was created, "Conservation of Water Resources which establishes the specifications and the method to determine the mean annual availability of the nation's water resources".

Up to December 31, 2014, the availabilities of the 653 hydrogeological units or aquifers into which the country has been divided had been published in the DOF, as well as that of the 731 watersheds into which Mexico is subdivided.

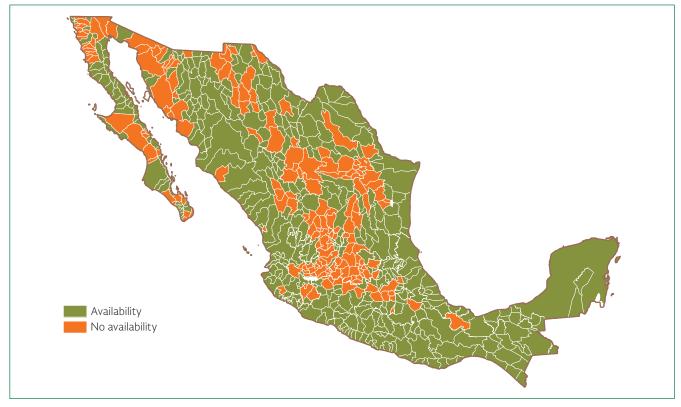

Maps 5.3 and 5.4 show the location of Mexico's watersheds and aquifers, the availability of which had been published in the DOF up to December 31, 2014.


Classification declarations for Mexico's water bodies

[Reporteador: Acuíferos]

The NWL establishes that in order to grant wastewater discharge permits, the classification declarations of the national water bodies should be consulted. The CONAGUA has the responsibility of drawing up and publishing these declarations in the DOF.

According to article 87 of the NWL, **classification declarations** contain the limits of the water bodies studied in which the pollution assimilation and dilution capacity is determined, referring to their capacity to self-purify; as well as the quality parameters that wastewater should comply with and the maximum discharge limits of these parameters in the classified areas. Furthermore, they include quality targets in the receiving water bodies as regards the pollutants, as well as the timelines to achieve those targets.



MAP 5.3 Watersheds with availability published in the DOF, 2014

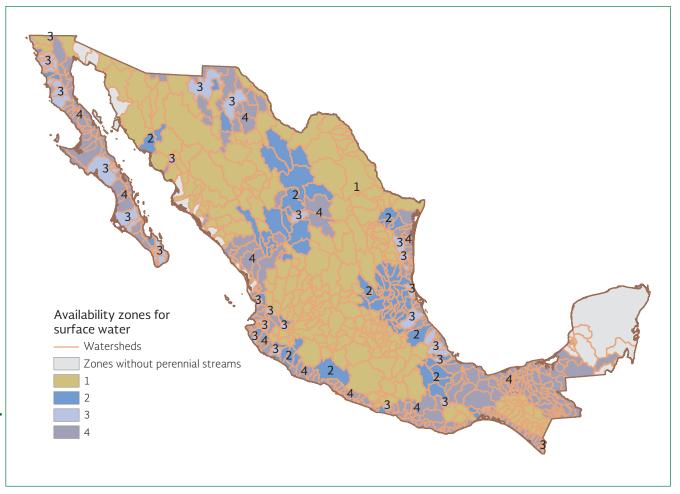
Source: Produced based on CONAGUA (2015a).

MAP 5.4 Aquifers with availability published in the DOF, 2014

Source: Produced based on CONAGUA (2015a).

5.3 Water economy and finances

Duties for the use of the nation's water resources


Both companies and individuals that use Mexico's water resources are bound to pay the corresponding duties, with or without the benefit of concession or allocation deeds, authorizations or permits assigned by the Federal Government. The same also applies to those who discharge wastewater into rivers, catchments, reservoirs, seawater or water currents, be it permanently, intermittently or on a one-off basis, as well as into the soil or into grounds which are public property or which could pollute the subsoil or aquifers. In the same case are those who use public goods which belong to the federation in ports, terminals and port installations, the federal sea zone, dikes, channels, reservoirs, areas with currents and tanks, which are the property of the nation.

Up to 2013, the Mexican Republic was divided into 9 availability zones for the charging of duties for the use of water. Each municipality was assigned to an availability zone.

In Mexico, since 2014 there have been 4 availability zones for the purpose of charging

Source: Produced based on CONAGUA (2015g).

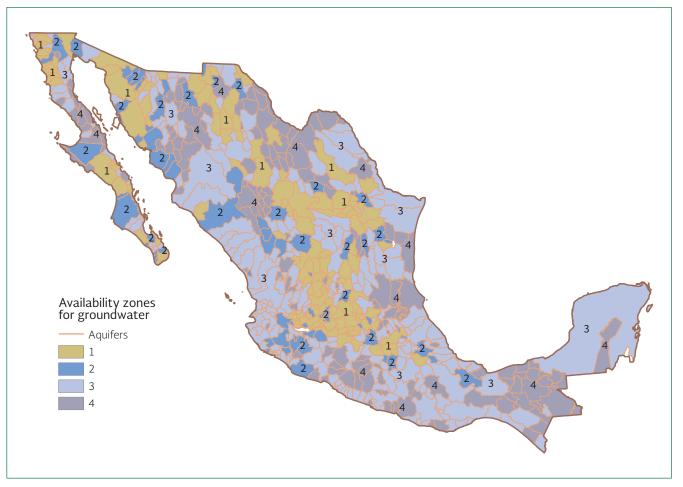
TABLE 5.3 Duties for the use of the nation's surface water resources according to availability zone,2014 (cents of Mexican pesos per cubic meter)

Use		Zoi	ne	
Use	1	2	3	4
General regime	1 381.62	636.06	208.55	159.48
Drinking water, consumption of more than 300 l/inhabi- tant/day (on the excess)	82 124.00	39 388.00	19 670.00	9 792.00
Drinking water, consumption equal to or less than 300 l/inhabitant/day	41 062.00	19 694.00	9 835.00	4 896.00
Agriculture and livestock, without exceeding the concession	0.00	0.00	0.00	0.00
Agriculture and livestock, for every m^3 that exceeds the concession	15.04	15.04	15.04	15.04
Spas and recreation centers	1 017.43	567.82	264.85	109.24
Hydropower generation	474.69	474.69	474.69	474.69
Aquaculture	341.35	170.31	78.21	36.27

Source: Conagua (2015g).

In the decree that reformed the Federal Duties Law (FDL) on December 11, 2013, article 231 was modified, in which an algorithm was specified for the calculation of the availability zone in terms of surface and groundwater. In this way, since 2014, four availability zones have been specified for each scope, watersheds (surface water) and aquifers (groundwater). Since 2014 the CoNA-GUA has published no later than the third month of every financial year the availability zone that corresponds to each of the country's watersheds and aquifers.

In general the cost per cubic meter is higher in the zones of lesser availability, as can be observed in table 5.3 for surface water and table 5.4 for groundwater. In both tables, "general regime" refers to any use other than those mentioned. The values are taken from the publication in the DOF (11/12/2013) of the reforms to the Federal Duties Law, with quantities updated in Annex 19 of the tax law for 2014 and its annex 19, on December 30, 2013. It should be mentioned that no payment is made for the extraction of seawater, nor for brackish water with concentrations of more than 2 500 mg/l of total dissolved solids (certified by the CONAGUA).


The availability zones are shown in maps 5.5 for surface water and 5.6 for groundwater.

For the purpose of charging duties for wastewater discharges, receiving bodies (rivers, lakes and lagoons, among others) are classified into three types: A, B or C, according to the effects caused by the pollution. The C-type receiving bodies are those in which the pollution has the strongest effects. The list of the receiving bodies that belong to each category can be found in the FDL.

The rates for wastewater discharges are related to the volume of the discharge and the load of the pollutants. To make this calculation the discharge that is characteristic of the activity that generated the discharge and the type of receiving body are taken into account. The methodology may be consulted in Article 278-B of the FDL.

Source: Produced based on CONAGUA (2015g).

TABLE 5.4 Duties for the use of the nation's groundwater resources according to availability zone, 2014(cents of Mexican pesos per cubic meter)

Use		Zo	ne	
Use	1	2	3	4
General regime	1 861.69	720.62	250.91	182.39
Drinking water, consumption of more than 300 l/inhabitant/day (on excess)	85 726.00	39 528.00	22 284.00	10 388.00
Drinking water, consumption equal to or less than 300 l/inhabitant/day	42 863.00	19 764.00	11 142.00	5 194.00
Agriculture and livestock, without exceeding the concession	0.00	0.00	0.00	0.00
Agriculture and livestock, for every m ³ that exceeds the concession	15.04	15.04	15.04	15.04
Spas and recreation centers	1 205.25	593.77	291.24	130.05
Hydropower generation	474.69	474.69	474.69	474.69
Aquaculture	374.82	173.63	86.24	39.54

Source: CONAGUA (2015g).

The Conagua's income collection

[Reporteador: Recaudación de la Conagua, Volúmenes declarados]

As a fiscal authority, the CONAGUA intervenes in the charging of duties for the use of Mexico's water resources and its inherent public goods. In tables 5.5 and 5.6, its collection through the charging of duties may be visualized, which includes the concepts of the use of the nation's water resources; the use of receiving bodies; material extraction; bulk water supply to urban and industrial centers; irrigation services; use of federal zones; and various, such as transaction services, VAT and fines, among others. It should be mentioned that in 2013, the concept of "Programa Ponte al Corriente" (Get Up-to-date Program) was in force. Based on the implementation of the reforms to the Federal Duties Law, from January 1, 2014, a new concept of payment was included, referring to the inter-basin transfer of the nation's water.

The conversions to constant 2014 prices employed in the following section were carried out based on the average National Consumer Price Index for each year. During 2014, **15.86** billion pesos were collected

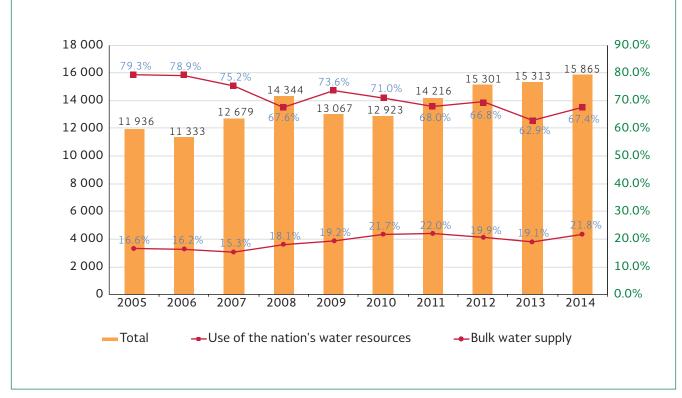


TABLE 5.5 The CONAGUA's collection through the charging of duties and concepts, 2007-2014(millions of pesos at constant 2014 prices)

Concept	2007	2008	2009	2010	2011	2012	2013	2014
Use of the nation's water resources	9 535.2	9 690.9	9 612.0	9 169.9	9 667.0	10 228.2	9 632.0	10 699.0
Bulk water supply to urban and industrial centers	1 939.0	2 601.4	2 512.0	2 810.0	3 125.2	3 043.1	2 922.4	3 450.9
Irrigation services	254.6	248.0	273.2	255.7	308.4	225.3	201.6	220.5
Material extraction	48.6	54.3	55.3	57.1	33.9	40.1	22.6	23.8
Use of receiving bodies	76.7	74.1	217.2	258.1	301.0	323.5	406.0	649.8
Use of federal zones	46.0	40.0	46.2	42.8	44.1	49.9	43.8	52.3
Various (transaction services, VAT and fines, among others)	125.7	422.1	259.0	240.2	244.0	762.7	446.7	550.5
Collection through fiscal credits	653.6	1 213.5	91.7	89.7	492.0	628.5	495.3	208.0
Collection through "Programa Ponte al Corriente"	0.0	0.0	0.0	0.0	0.0	0.0	1 142.9	0.0
Inter-basin transfer of the nation's water	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.1
Total	12 679.4	14 344.3	13 066.6	12 923.3	14 215.5	15 301.4	15 313.3	15 865.0

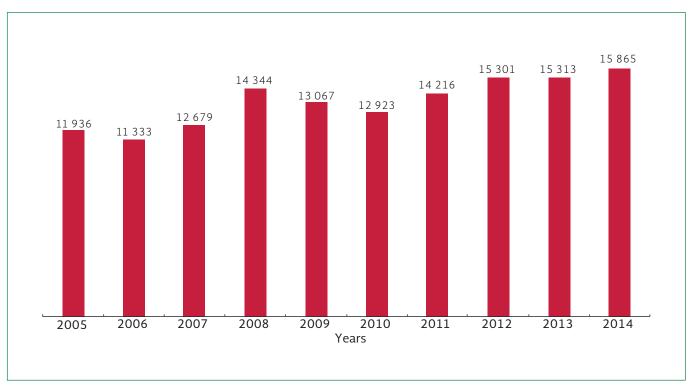
Source: CONAGUA (2015g).

GRAPH 5.2 Evolution in the CONAGUA's collection, showing the two main components by amount, 2005–2014 (millions of pesos at constant 2014 prices)

Source: Produced based on CONAGUA (2015g).

Periodically, the Ministry of Finance and Public Credit (SHCP in Spanish) authorizes the CONAGUA to apply charges for services, for example: bulk water supply from the Cutzamala System to the Metropolitan Area of the Valley of Mexico or to irrigation district (ID) modules.

The CONAGUA's collection followed a growing trend through the 2005-2014 period, at constant 2014 prices. As can be observed in graph 5.2, the composition of this collection changed slightly during that period. In percentage terms, the concept of extraction and use of the nation's water resources decreased, going from 79.3% per year in 2004 to 67.4% in 2014.


Since the creation of the CONAGUA in 1989, the collection through the charging of duties has increased every year. In the period from 2005 to 2014, it increased from 11.9 to 15.9 billion pesos, at constant 2014 prices, as can be appreciated in graph 5.3.

By hydrological-administrative region, the collection for 2014 is presented in table 5.6. Particularly worth highlighting is that the regions VIII Lerma-Santiago-Pacific, XIII Waters of the Valley of Mexico and VI Rio Bravo contribute 66% of the collection. In that table the concept of "Various" refers to transaction services, regularizations and fines, among others.

From **2005** to **2014** the CONAGUA's collection increased by

GRAPH 5.3 Collection for the charging of duties, 2005-2014 (millions of pesos at constant 2014 prices)

Source: Produced based on CONAGUA (2015g).

BLE 5.6 Collection by hydrological-administrative region, 2014 (millions of peso	s)
--	----

					Concept	s				
Number of HAR	Use of the nation's water resources	Bulk water supply to urban and industrial centers	Irrigation services	Material extraction	Wastewater discharges	Use of federal zones	Income from federal credits	Various	Inter-basin transfers of the nation's water resources	Total
Ι	166.84	0.07	58.29	2.49	43.08	7.29	3.79	7.07	0.00	288.92
II	864.33	0.00	19.31	0.55	11.34	0.43	13.01	83.38	0.00	992.35
III	192.88	2.15	54.16	9.47	4.03	3.27	3.60	4.84	0.01	274.41
IV	662.46	11.68	7.12	0.65	49.23	1.87	10.33	44.32	0.01	787.68
V	252.62	0.00	0.71	1.07	1.43	0.54	3.43	1.76	0.00	261.56
VI	1 578.63	0.00	22.69	0.82	19.93	4.81	21.92	22.95	0.00	1 671.75
VII	847.64	0.00	12.72	0.46	13.04	1.96	14.05	181.91	0.00	1 071.78
VIII	2 487.01	93.98	23.38	1.89	148.55	15.79	37.38	42.69	0.02	2 850.68
IX	619.92	0.00	11.81	0.54	22.17	4.85	8.93	12.45	0.00	680.66
Х	622.36	0.00	4.67	1.07	38.29	0.58	10.12	84.49	10.07	771.65
XI	518.07	0.00	0.66	4.84	37.35	1.07	7.57	7.35	0.00	576.90
XII	105.27	0.00	0.39	0.00	21.58	0.03	1.81	9.15	0.00	138.23
XIII	1 780.97	3 343.03	4.62	0.00	239.77	9.86	72.10	48.10	0.00	5 498.45
Total	10 699.01	3 450.91	220.51	23.85	649.77	52.35	208.05	550.46	10.11	15 865.01

Source: CONAGUA (2015g).

Table 5.7 shows the evolution in the 2005-2014 period in collection corresponding to each of the uses indicated in Article 223 of the FDL as regards water. Similarly, table 5.9 shows the values for 2014 by HAR.

The volumes reported by users in their declarations for the payment of duties are shown in table 5.8 for the 2005-2014 period, classified by uses, as well as in table 5.10 by hydrological-administrative region for 2014.

TABLE 5.7 Collection for the use of the nation's water resources, 2005-2014(millions of pesos at constant 2014 prices)

Use	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
General regime	6 497.0	6 177.4	6 632.9	6 634.7	6 517.7	6 124.0	6 496.6	7 139.8	7 110.6	7 900.9
Public urban	2 416.0	2 130.8	2 292.2	2 351.4	2 437.0	2 413.0	2 434.3	2 364.2	2 013.3	1 999.6
Hydropower	520.6	608.0	583.2	669.0	618.9	603.6	712.7	705.6	505.5	796.7
Spas and recreational centers	27.4	27.2	26.2	35.0	37.7	28.6	22.8	18.0	2.1	1.1
Aquaculture	0.7	0.5	0.7	0.9	0.7	0.6	0.7	0.6	0.4	0.7
Total	9 461.7	8 943.9	9 535.2	9 690.9	9 612.0	9 169.9	9 667.0	10 228.2	9 632.0	10 699.0

Source: Conagua (2015g).

TABLE 5.8 Volumes declared for the payment of duties, 2005-2014 (hm³)

Use	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
General regime	1 265	1 306	1 764	1 796	1 939	1 675	1 373	1 1 3 2	1 180	1 082
Public urban	7 083	8 240	7 584	7 639	5 609	5 617	6 967	6 185	10 262	8 010
Hydropower	115 386	140 295	122 832	150 669	136 085	134 783	164 773	155 717	112 816	133 018
Spas and recreational centers	94	115	84	86	64	56	109	78	85	94
Aquaculture	397	159	308	309	344	222	218	256	258	337
Total	124 225	150 115	132 571	160 499	144 041	142 353	173 440	163 368	124 602	142 542

Source: Conagua (2015g).

TABLE 5.9 Collection for the use of the nation's water resources, by hydrological-administrative region,2014 (millions of pesos)

Number of HAR	General regime	Public urban	Hydropower	Spas and recreational centers	Aquaculture	Total
Ι	83.3	83.5	0.0	0.0	0.0	166.8
II	813.3	35.3	15.7	0.0	0.0	864.3
III	86.1	59.0	47.8	0.0	0.0	192.9
IV	399.3	92.7	169.9	0.2	0.3	662.5
V	228.5	24.0	0.1	0.0	0.0	252.6
VI	1 211.5	356.5	10.5	0.0	0.0	1 578.6
VII	777.5	70.2	0.0	0.0	0.0	847.6
VIII	2 015.4	391.0	80.0	0.5	0.2	2 487.0
IX	561.1	50.4	8.3	0.1	0.0	619.9
Х	519.3	30.6	72.4	0.0	0.0	622.4
XI	110.4	15.7	392.0	0.0	0.0	518.1
XII	74.9	30.3	0.0	0.1	0.0	105.3
XIII	1 020.4	760.3	0.0	0.2	0.0	1 781.0
Total	7 900.9	1 999.6	796.7	1.1	0.7	10 699.0

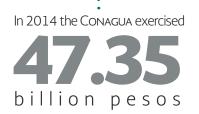
Source: CONAGUA (2015g).

TABLE 5.10 Volumes declared for the payment of duties for the use of the nation's water resources,
by hydrological-administrative region, 2014 (hm³)

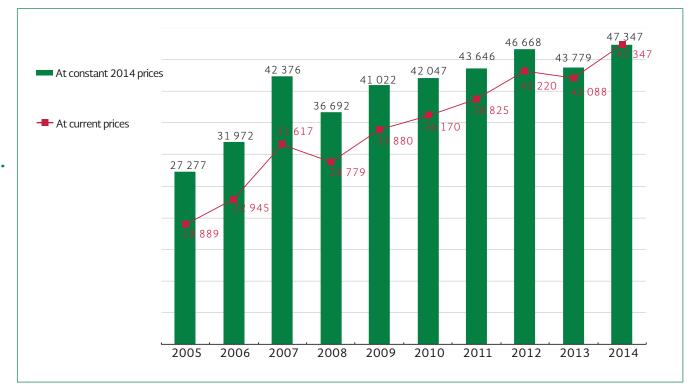
NT1				Use		
Number of HAR	General regime	Public urban	Hydropower	Spas and recreational centers	Aquaculture	Total
Ι	8.8	213.0	0.0	0.4	0.6	222.8
II	68.4	108.9	2 456.3	0.1	5.4	2 639.1
III	12.2	219.0	7 475.4	1.7	66.6	7 775.0
IV	98.7	421.4	29 688.3	21.0	116.4	30 345.9
V	21.6	89.5	26.3	0.0	0.0	137.4
VI	112.1	930.4	2 125.5	0.8	0.2	3 169.0
VII	97.9	147.8	0.0	0.6	0.3	246.6
VIII	151.4	1 544.9	10 693.3	38.0	33.4	12 461.0
IX	89.7	188.5	1 225.7	4.4	32.2	1 540.6
Х	215.8	1 696.7	12 319.4	9.6	55.7	14 297.1
XI	58.5	154.7	67 007.6	0.1	14.5	67 235.5
XII	25.0	110.1	0.0	11.4	0.3	146.7
XIII	122.2	2 185.1	0.5	5.6	11.7	2 325.1
Total	1 082.3	8 010.0	133 018.3	93.7	337.3	142 541.8

Source: Conagua (2015g).

The CONAGUA's budget

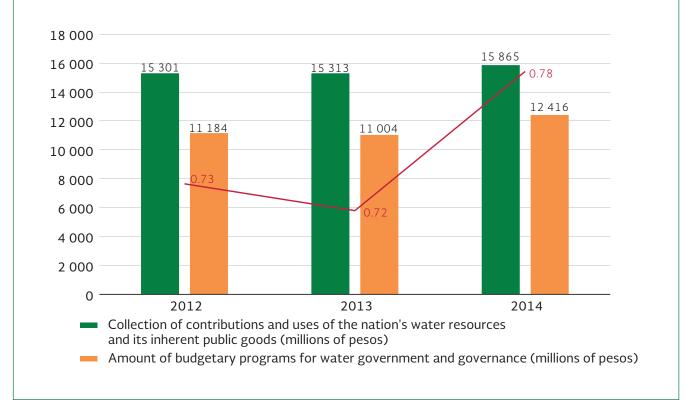

[Reporteador: Presupuesto ejercido]

The budget authorized for the CONAGUA for any given fiscal year is defined at the end of the previous year. Throughout the fiscal year budgetary adjustments take place, as a result of which the end-of-year budget, the evolution of which is shown in graph 5.4, may vary from the originally authorized budget.


Water pays for water

One of the principles that supports national water policy, in accordance with the dispositions in the NWL (Article 14 Bis 5), is the so-called "water pays for water". That principle disposes that "water management should generate the necessary economic and financial resources to carry out its inherent tasks".

In this context, and with the intention of evaluating its compliance, a series of budgetary programs have been defined, linked with water government and governance functions [Adicional: Table 5.A], which are part of the budget assigned by the CONAGUA each year, to be contrasted with the amount of the collection of contributions and use of the nation's water resources and its inherent public goods. In this way the amount of the budgetary programs linked with water government and governance is divided by the collection. When the result of the indicator is lower than the unit, it is considered that the collection provides sufficient resources to finance the water government and governance activities, as shown in graph 5.5.



GRAPH 5.4 Evolution in the CONAGUA's end-of-year budget (millions of pesos)

Source: Conagua (20150).

Source: Produced based on CONAGUA (20150), CONAGUA (2015g).

[Reporteador: Presupuesto invertido]

The evolution in the investment in the drinking water, drainage and sanitation subsector is shown in table 5.11, considering the programs operated through the CONAGUA, SEDESOL, CDI, BANOBRAS, state bodies, the private sector and credits. For table 5.11 the concept of "Others" considers studies, projects and supervision.

It should be mentioned that this investment has diverse origins. As can be observed in table 5.12, 60.0% of the investment was of federal origin, whereas states contributed 16.4%, municipalities 9.5% and other sources, including state commissions, housing developers, credits, contributions of the private sector and others, the remaining 14.1%. For table 5.12, in the "PROME" and "PROSSAPYS" concepts, the state investment includes municipal resources; the Valley of Mexico concept refers to the federal resources from the 1928 Trust Fund, derived from the payment of duties for the concept of bulk water supply; and the "Other projects" concept includes infrastructure projects such as El Zapotillo, El Realito and Bicentenario.

of the investment in the drinking water sub-sector was of federal origin

TABLE 5.11 Investments by area applied to the drinking water, sewerage and sanitation subsector,2002-2014 (millions of pesos at constant 2014 prices)

Year	Drinking water	Sewerage	Sanitation	Improving efficiency	Others	Total
2002	5 863	6 642	2 517	1 967	134	17 124
2003	8 144	7 754	1 901	1 470	276	19 546
2004	8 038	8 172	2 311	1 628	106	20 256
2005	12 118	11 896	4 717	2 300	170	31 202
2006	7 587	8 114	2 538	3 334	343	21 917
2007	12 525	9 946	2 326	3 283	759	28 839
2008	13 383	11 929	2 948	3 889	1 407	33 556
2009	12 061	13 135	2 758	6 572	2 098	36 623
2010	10 647	14 384	3 319	5 654	2 616	36 619
2011	10 167	15 695	8 664	5 157	2 445	42 128
2012	11 749	7 992	17 183	4 079	2 731	43 733
2013	11 051	13 299	7 719	4 792	1 743	38 605
2014	10 356	10 018	5 576	6 335	1 920	34 206

Source: CONAGUA (2015e).

TABLE 5.12 Investments reported by program and agency by the sector of origin of the resources, 2014
(millions of pesos)

Concept	Federal	State	Municipal	Credit/Private/Oth- ers	Total
Conagua investments	16 734.32	5 040.82	2 306.14	1 086.78	25 168.06
Agua Limpia	69.51	53.48	0.00	0.00	122.99
Apazu	5 066.35	2 416.62	857.18	528.41	8 868.56
Prodder	1 310.32	0.00	1 310.32	0.00	2 620.65
Promagua	974.36	806.49	0.00	504.48	2 285.33
Prome	523.11	383.97	0.00	0.00	907.07
Prossapys	3 062.91	725.11	0.00	0.00	3 788.01
Protar	1 169.97	492.08	102.80	53.88	1 818.74
Valley of Mexico	3 709.14	0.00	0.00	0.00	3 709.14
Other projects	848.64	163.09	35.84	0.00	1 047.56
Other bodies	3 778.08	579.51	942.27	3 738.27	9 038.13
Сы	2 627.47	322.94	263.81	0.00	3 214.21
Conavi	0.00	0.00	0.00	3 684.26	3 684.26
Sedesol	1 150.61	256.57	678.46	54.01	2 139.65
Total	20 512.40	5 620.33	3 248.41	4 825.05	34 206.19

Source: Conagua (2015e).

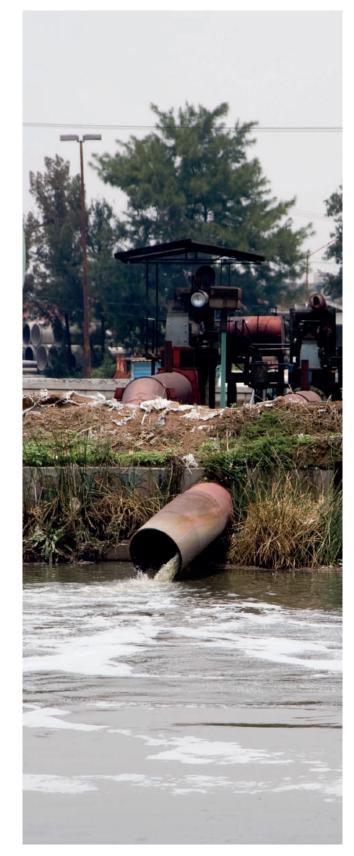
Drinking water and sanitation tariffs

[Reporteador: Tarifas]

Drinking water tariffs are established independently for each municipality, depending on the provisions of the corresponding state's legislation. In some states, the tariffs are approved by the local state congress, whereas in others they are approved by the governing body or Board of Directors of the municipality's or locality's drinking water utility or the state water commission [Adicional: Table 5.B].

In principle, tariffs have the objective of recovering the costs incurred by the service provider. There is a Mexican standard on the evaluation of tariffs (NMX-AA-147-SCFI-2008), published in April 2009, which includes a definition of these costs.

The tariff level, or the payment due, is expressed in a **tariff structure**, more often than not differentiated by the type of users (domestic, commercial and industrial, among others). On occasions the tariff structure contains some mechanism of redistribution of costs through crossed subsidies, in which users in poorer socio-economic conditions are assigned lower tariffs than those considered as being in better conditions.


Tariff structures for **metered services** (when the charge is calculated based on the volume consumed) are generally in increasing blocks, meaning that the price per cubic meter is higher for a greater consumption of water. It should be mentioned that there is a great variety of mechanisms, including the fixed price, meaning when the user pays a certain amount independently of the water that has been used.

Water tariffs generally include:

- Fixed costs, independent from the volume used,
- Variable charges for the water supplied, according to the volume used,
- Variable charges for the concept of sewerage and wastewater treatment, generally applied as a percentage of the costs for water supply.

Graph 5.6 indicates, for some cities in Mexico, the drinking water, sewerage and/or sanitation tariffs for a consumption of 30 m³/month for domestic use, as well as the highest tariff applicable.

Graph 5.7 indicates, for some localities in Mexico, the tariffs for domestic, industrial and commercial use, assuming a consumption of 30 m^3 /month, as well as the highest tariff applicable.

30.0 28.15 Fixed charge (pesos/m³) Charge for drinking water (pesos/m³) Charge for drainage and/or sanitation(pesos/m³) 25.0 23.12 21.88 20.58 20.44 19.98 19.89 19.92 20.0 17.78 Pesos per cubic meter per month 15.79 13.52 13.52 15.0 13.32 13.14 13.07 12.95 12.79 12.41 12.37 9.61 9.64 9.08 8.74 10.0 7.98 7.99 7.53 6.68 6.35 6.35 5.11 5.05 4.65 5.0 0.0 Puebla Morelia Оахаса La Paz Leon de los Aldama Atizapan de Zaragoza⁻ Aguascalientes Merida⁻ Mexicali⁻ Tlaxcala Campeche San Juan del Rio Ciudad Delicias Culiacan Colima Guadalajara⁻ Cancun Ensenada Xalapa Enriquez Tijuana Ciudad de Mexico Naucalpan de Juarez Tula de Allende Gómez Palacio Torreon Hermosillo San Luis Potosi Toluca de Lerdo Acapulco Ciudad Juarez Monterrey **Ciudad Chetumal**

GRAPH 5.6 Domestic drinking water, sewerage and/or sanitation tariffs in selected cities, 2014

Source: Conagua (2015e).

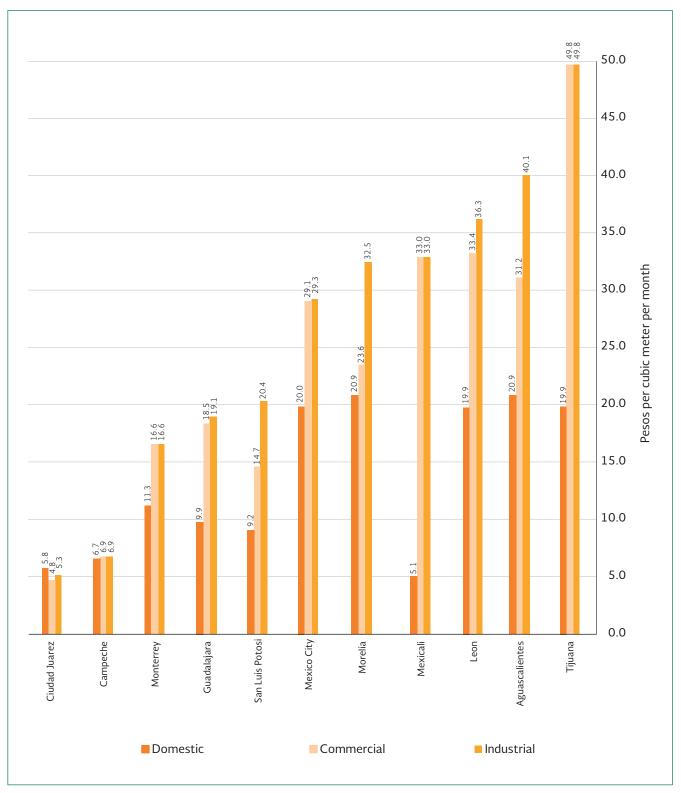
It should be mentioned that with the level of the tariff established, the service provider carries out the **billing** to users as a necessary step to charge for the service. The payment of these bills by users represents the income collected by the service provider. There are payments that are carried out in the same billing period, whereas others are late payments, fines or surcharges.

External funding and international cooperation

The resources destined for the sector include those that come from international financial institutions, which additionally benefit from some innovative aspects of international experience.

In external credit, during 2014 the CONAGUA exercised three projects with a disbursement that year of 69.1 million dollars, on the issues of:

- Improving efficiencies of water utilities (PROME), financed by the IBRD.
- Modernization of the National Meteorological Service (MoMet), financed by the IBRD.
- Rural drinking water and sanitation (PROSSAPYS IV), financed by the IADB.


In 2014 another project with external credit was formalized, on the issue of public policy for drinking water and sanitation with the French Development Agency and the German Development Bank.

Technical cooperations with international financial institutions were on issues of the efficient use of energy, for which two studies were developed; water reserves and the promotion of private sector participation, issues that concluded in 2014. Two cooperations were managed during the year: on integrated watershed management for the Cutzamala System (WB) and technical cooperation and capacity development with the Korean Institute of Industry and Environmental Technology (South Korea).

In 2014 the CONAGUA had bilateral actions with 20 countries and multilaterals with 17 international organizations. There were several training actions within the framework of international cooperation.

In 2014, 69.1 million dollars of external credit were disbursed

GRAPH 5.7 Comparison of tariffs for domestic, industrial and commercial use in selected cities, 2014

Source: CONAGUA (2015e).

5.4 Participation mechanisms

[Reporteador: Instrumentos de gestión]

River basin councils and auxiliary bodies

The NWL establishes that river basin councils are multi-stakeholder collegiate bodies, which are coordination and consensus-reaching bodies providing support, consultation and advice, between the Conagua, including the corresponding river basin organization, the agencies and entities of the federal, state or municipal governments and representatives of water users and civil society organizations, in the respective watershed or hydrological region.

As of December 31, 2014, there were 26 river basin councils [Adicional: Map 5.A].

In the process of consolidating the river basin councils, it was necessary to attend very specific issues in more localized geographic zones, as a result of which auxiliary bodies known as river basin commissions were created to attend sub-catchments; river basin committees for micro-catchments; technical groundwater committees (COTAS) and clean beach committees in the country's coastal zones.

The clean beach committees are worth special mention. They have the purpose of promoting the cleaning up of beaches, watersheds and the aquifers associated with them, as well as preventing and rectifying the pollution of Mexico's beaches, respecting the native ecology and raising the quality and the standard of living of the local population, tourism and the competitiveness of the beaches.

As regards the auxiliary bodies, up to 2014 there was a total of 208 auxiliary bodies of the river basin councils, with 35 commissions, 47 committees, 87 Cotas and 39 clean beach committees [Adicional: Table 5.C].

Blue flag. Since 2013 some beaches under the clean beach committees have obtained the annual Blue Flag certification, which rewards coastal destinations which excel in environmental management, security and hygiene installations, education and environmental information activities and water quality. In 2014 there were 11 beaches in 6 tourist destinations: Los Cabos (Baja California Sur), Bahia de Banderas (Nayarit), Zihuatanejo (Guerrero), Santa Maria Huatulco (Oaxaca), Puerto Vallarta (Jalisco) and Benitez Juarez (Quintana Roo).

Rectification of the Mayo river. Through the promotion of the Mayo river basin council, efforts of federal and state authorities, the private sector and agricultural users were combined to clean the river bed, build and reinforce water retention berms, and eliminate fencing and trash, which allowed the 2014 hurricane season to occur without incidents. Rainwater harvesting to recover the Caborca aquifer. The Alto Noroeste river basin council managed with the Conafor a triennial project (2013-2015) on "Environmental compensation from the loss of soil use in forest grounds" for 208 hectares in the region known as the "Charco de las Calenturas" to recover the forest ecosystem and recharge the aquifer, through soil restoration activities, reforestation and water retention works.

Source: Produced based on CONAGUA (2015a), CONAGUA (2015b).

5.5 Waterrelated standards

Official Mexican Standards

Due to the crosscutting nature of the water sector, there are several standards related to water issues. The following table shows some of the relevant standards. It is worth highlighting that, according to the Federal Law on Metrology and Standardization, the Official Mexican Standards (NOMs in Spanish) are technical regulations to be obligatorily observed, whereas the Mexican Norms (NMX) are voluntarily applied.

Of special interest is NOM-001-SEMARNAT-1996, given that it establishes compliance deadlines for its requirements regarding maximum permissible limits in wastewater discharges into the nation's water and public goods (see table 5.14).

NOM-011-CONAGUA-2000 is another standard to be highlighted, since it is the basis upon which the calculation of availability of water in catchments and aquifers is carried out, and it thus makes it possible to comply with one of the CONAGUA's legal obligations.

On the other hand, the CONAGUA has issued standards that establish the dispositions, specifications and testing methods that guarantee that the products and services associated with the water sector comply efficiently with preserving water in quality and quantity.

Additionally, NOM-127-SSA1-1994 establishes the guidelines to guarantee water supply for human use and consumption with appropriate quality. This standard establishes permissible limits of bacteriological characteristics (fecal coliforms and total coliforms); physical and sensory characteristics (color, sme-II, taste and cloudiness); chemical characteristics (which include 34 parameters, such as aluminum, arsenic, barium, etc.), as well as treatment methods which should be applied according to the pollutants encountered.

TABLE 5.13 Mexican standards related with the water sector, 2014

Nº	Group: SEMARNAT
1	NOM-001-SEMARNAT-1996 - Maximum permissible limits of pollutants in wastewater discharges in the nation's water resources and goods
2	NOM-002-SEMARNAT-1996 - Maximum permissible limits of pollutants in wastewater discharges to urban and municipal sewerage systems
3	NOM-003-SEMARNAT-1997 - Maximum permissible limits of pollutants for treated wastewater that is reused in services to the public.
4	NOM-022-SEMARNAT-2003 - Preservation, conservation, sustainable use and restoration of coastal wetlands in areas of mangrove swamps.
5	NOM-060-SEMARNAT-1994 - Specifications to mitigate the adverse effects caused on soil and water bodies by forest activities.
Nº	Group: CONAGUA
1	NOM-001-CONAGUA-2011 - Drinking water systems, domestic intakes and sanitary sewerage- Airtightness-Specifications and testing methods.
2	NOM-003-CONAGUA-1996 - Requirements for the construction of wells for the prevention of aquifer pollution.
3	NOM-004-CONAGUA-1996 - Requirements for the protection of aquifers during maintenance and rehabilitation of water wells, and the closing of wells in general.
4	NOM-006-CONAGUA-1997 - Specifications and testing methods for pre-manufactured septic tanks.
5	NOM-008-CONAGUA-1998 - Specifications and testing methods for showers.
6	NOM-009-CONAGUA-2001 - Specifications and testing methods for lavatories.
7	NOM-010-CONAGUA-2000 - Specifications and testing methods for valves for lavatories.
8	NOM-011-CONAGUA-2000 - Conservation of water resources. Specifications and the method to determine the mean annual availability of the nation's water resources.
9	NOM-014-CONAGUA-2003 - Requirements for artificial aquifer recharge with treated wastewater.
10	NOM-015-CONAGUA-2007 - Characteristics and specifications of works and of water for its artificial infiltration into aquifers.
Nº	Group: Salud
1	NOM-117-SSA1-1994 - Testing method for the determination of cadmium, arsenic, lead, tin, copper, iron, zinc and mercury in food, drinking water and treated water by atomic absorption spectrometry.
2	NOM-127-SSA1-1994 - Environmental health. Water for human use and consumption. Permissible limits of quality and treatment to which water should be submitted for its purification.
3	NOM-179-SSA1-1998 - Monitoring and evaluation of the control of drinking water quality in networks.
4	NOM-201-SSA1-2002 - Products and services. Water and ice for human consumption, packaging and bulk. Sanitary specifications.
5	NOM-230-SSA1-2002 - Health requirements for water management in drinking water networks.
6	NOM-244-SSA-2008. Equipment and germicidal substances for domestic water treatment. Sanitary requirements.
Nº	Group: Mexican Standards
1	NMX-AA-120-SCFI-2006 - Requirements and specifications for the sustainability of beach quality.
2	NMX-AA-147-SCFI-2008 - Methodology for the evaluation of drinking water, sewerage and sanitation tariffs.
3	NMX-AA-148-SCFI-2008 - Methodology to evaluate the quality of drinking water, sewerage and sanitation services. Guidelines for the evaluation and improvement of services to users
4	NMX-AA-149/1-SCFI-2008 - Methodology to evaluate the efficiency of drinking water, drainage and sanitation service providers. Guidelines for wastewater service provision and evaluation.
5	NMX-AA-149/2-SCFI-2008 - Methodology to evaluate the efficiency of drinking water, drainage and sanitation service providers. Guidelines for drinking water service provision and evaluation.


Source: Produced based on Economía (2015b), SEMARNAT (2015b).

TABLE 5.14 Compliance dates of NOM-001-SEMARNAT-1996

Municipal discharges					
Modified compliance dates from:	Population range (according to 1990 Census)	Number of localities (according to 1990 Census)			
January 1, 2000	More than 50 000 inhabitants	139			
January 1, 2005	From 20 001 to 50 000 inhabitants	181			
January 2, 2010	From 2 501 to 20 000 inhabitants	2 266			
Non-municipal discharges					
Modified compliance dates from:	Biochemical Oxygen Demand (BOD ₅)(t/day)	Total Suspended Solids (t/day)			
January 1, 2000	More than 3.0	More than 3.0			
January 1, 2005	From 1.2 to 3.0	From 1.2 to 3.0			
January 2, 2010	From 1.2 to 3.0	Less than 1.2			

Source: Conagua (2015b).

Chapter 6

Water, health and the environment

Water, health and the environment

Environmental protection

Environmental hydrological services: support of the National Forestry Program is provided for properties in

Overdrafted aquifers

Watersheds with low availability

Natural protected areas under federal jurisdiction **2014**:

Natural protected areas voluntarily allocated:

Water and health

1 9 9 0

78.4%

2 0 1 4 **92.4%**

Mortality rate from diarrheal diseases in children under the age of five (for every 100 000 inhabitants) Drinking water c o v e r a g e

Use of soil and vegetation

Vegetation cover

Protects the soil Intercepts rain

Soil

Its degradation reduces the capacity to provide goods and services

Subject to water and wind erosion

Wetlands

Ecosystems with rich biodiversity and which provide environmental services

National Inventory of **Wetlands** Designation as **RAMSAR** sites

142

8.6 million hectares

1 9 9 0

61.5%

2 0 1 4

91.0%

6 331

10 million hectares

6.1 Health

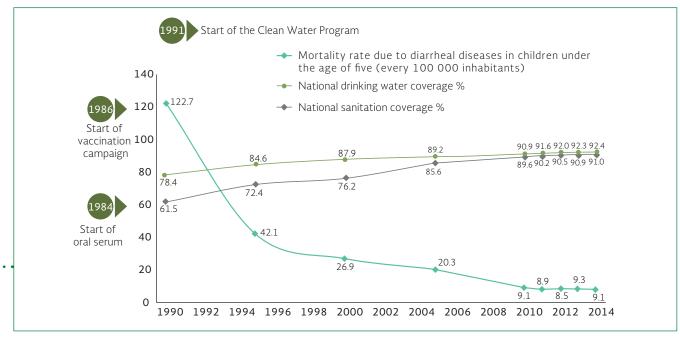
[Reporteador: Agua y salud]

The provision of drinking water and sanitation is a significant factor in public **health**, by avoiding exposure to pathogenic agents. Appropriate access to these services is fundamental for the reduction of mortality and morbidity among the population under the age of five; the decrease in water-borne diseases (viral hepatitis, typhoid fever, cholera, dysentery and other causes of diarrhea), as well as illnesses resulting from exposure to pathogenic chemical components (arsenic, nitrates or fluoride).

In the case of diarrheal diseases, child mortality in Mexico has been reduced as a result of several public health-related actions and interventions [Adicional: Graph 6.A], including the distribution of oral serum from 1984 onwards, vaccination campaigns since 1986, the Clean Water Program in 1991, and the increase in drinking water, sewerage and sanitation coverage (Sepúlveda et al. 2007).

In addition to these factors, those related to hygiene, education, access to health services and improvements in socio-economic and environmental conditions should be mentioned.

It is interesting to compare the increasing trend in drinking water and sanitation coverage against the reduction in the mortality rate through diarrheal diseases in children under the age of five, which can be observed in graph 6.1.


In Mexico, drinking water service providers also carry out the disinfection of water through chlorination (which is necessary in order to destroy pathogenic agents or microscopic parasites). The service provider is generally speaking the municipality, or in exceptional cases the state.

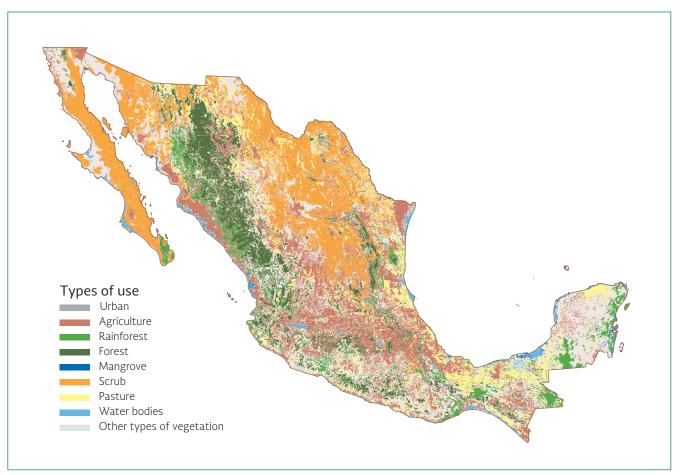
The effectiveness of the water disinfection process in formal supply systems is evaluated through the determination of free chlorine residual, the presence of which in the domestic outlet signals the efficiency of the disinfection process.

1991 start of the Clean Water Program

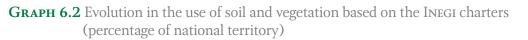
GRAPH 6.1 Coverage of drinking water and sanitation and the mortality rate through diarrheal diseases in children under the age of five, 1990–2014

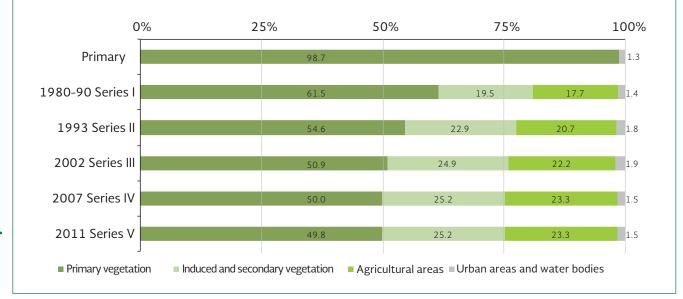
Source: Produced based on CONAGUA (2015e), Salud (2015).

[Reporteador: Uso del suelo y vegetación]


According to data from the "Charter of Soil and Vegetation Use" (INEGI 2014k), Mexico is classified into twelve vegetation groups compatible with the Rzedowski classification system. It should be mentioned that over time INEGI has generated updates to this charter, the result of which is series I (updated in the 1980-90 period), II (1993), III (2002), IV (2007) and V (2011-2012) (map 6.1).

Series V was generated during the 2011–2012 period, based on the information presented in series IV of Soil and Vegetation Use and updated with Landsat satellite images from 2011.


It is possible to compare the evolution from series I to V, as can be observed in graph 6.2. Vegetation is referred to as primary when it develops naturally according to the site's environmental factors, and has not been significantly modified by human activity. Secondary refers to a successional state of vegetation, when there is an indication that the original vegetation has been eliminated or strongly disturbed. Induced vegetation is that which develops when the original vegetation has been eliminated, or in abandoned agricultural areas. As can be observed, the graph reflects the progressive increase in induced and secondary vegetation, linked to the corresponding decrease in primary vegetation. The years correspond to the period in which the information used in each series was captured.


Primary vegetation according to series V covers **49.8%** of the national s u r f a c e :

Source: Produced based on INEGI (2015k).

Source: Produced based on INEGI (2015m).

Soil **degradation** reduces its capacity to provide goods and services for the ecosystem and the latter's beneficiaries. It is physically expressed through the loss of productivity, the availability of water, water logging or landslides. Chemical degradation increases the levels of pollution, salinization, alkalinization as well as eutrophication, which reduce the fertility and the content of organic matter in the soil.

Since vegetation cover acts as a protective layer, when it is lost, the soil is more vulnerable to water-based and wind **erosion**. The effects of erosion and degradation, estimated in 2002 and updated to 2008 (the latest year available), are shown in table 6.1.

The change in soil uses is highlighted by the increase in secondary and induced vegetation in urban and agricultural areas. The process of erosion gradually reduces the capacity of riverbeds and water bodies, leading to flood impacts during intense or sustained rainfall. Another vector of change in vegetation is forest fires. In graph 6.3 the hectares affected by this phenomenon every year in Mexico are shown.

It is estimated that in the 1990-2000 period, almost 354 000 hectares of forests changed to another soil use. For the 2000-2005 period, the rate of change slowed down to 235 000 hectares per year, and for the latest period reported on, from 2005 to 2010, it dropped to 155 000 hectares per year (FAO 2010).

Between 1990 and 2000, it is estimated that **354 000** hectares of forests in Mexico changed to another soil use

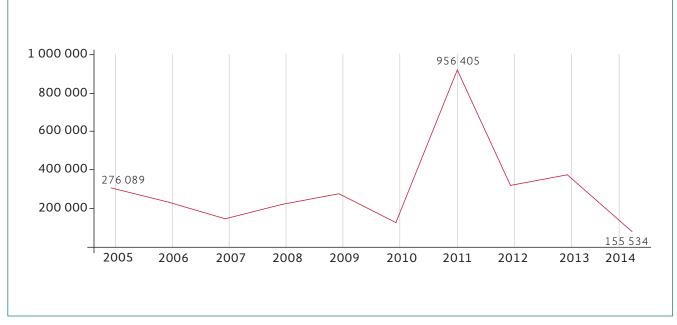


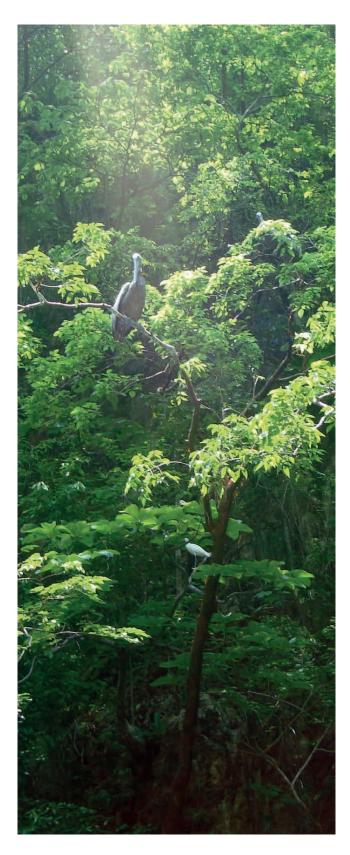
TABLE 6.1 Soil degradation: surface area affected by processes, types and levels of degradation (percentage of the national territory)

Process of degradation	Light	Moderate	Severe	Extreme	Total
Physical degradation	3.43	1.19	0.30	0.61	5.53
Chemical degradation	9.55	7.51	0.28	0.03	17.38
Wind erosion	2.73	6.17	0.35	0.01	9.25
Water-based erosion	6.54	4.61	0.43	0.02	11.60

Source: Semarnat (2014).

Source: Semarnat (2015a)

6.3 Biodiversity


Nature provides water-related environmental services, by affecting soil and vegetation cover in water resources retention, which determines the accumulation of surface flows and aquifer recharge. Consequently, the conservation of soil and vegetation cover helps to maintain the integrity and balance of the natural elements that are part of the water cycle.

In this sense Protected Areas (PAs) are relevant, as terrestrial or aquatic portions that are representative of different ecosystems, which have not suffered anthropogenic alteration, and which produce ecological benefits which are increasingly recognized and valued, hence them being subject to special regimes of protection, conservation, restoration and development (CONANP 2015a). In core areas of PAs it is possible to limit or prohibit activities that alter ecosystems, as well as there being a prohibition on interrupting, filling, drying out or deviating hydrological flows. One of the management categories of PAs, natural resource protection areas, focuses on the preservation and protection of watersheds, as well as protection areas for national water bodies (General Laws on Ecological Balance and Environmental Protection).

In Mexico, the PAs that are under federal jurisdiction are administered by the National Commission for Protected Areas (CONANP), and are described in table 6.2. Additionally, the CONANP supports 369 areas voluntarily allocated for conservation, covering 404 517 hectares.

Environmental hydrological services are the objective of the National Forestry Program (*Operating Rules of the National Forestry Program 2014*). Every year the National Forestry Commission (CONAFOR) determines the eligible zones. Among the criteria taken into account are whether the polygons proposed to receive resources under this program are located within overdrafted aquifers or in watersheds with an average availability of surface water, according to the CONAGUA's classification.

Map 6.2 shows the PAs under federal jurisdiction, as well as the eligible zones determined by the CONA-FOR for 2014.

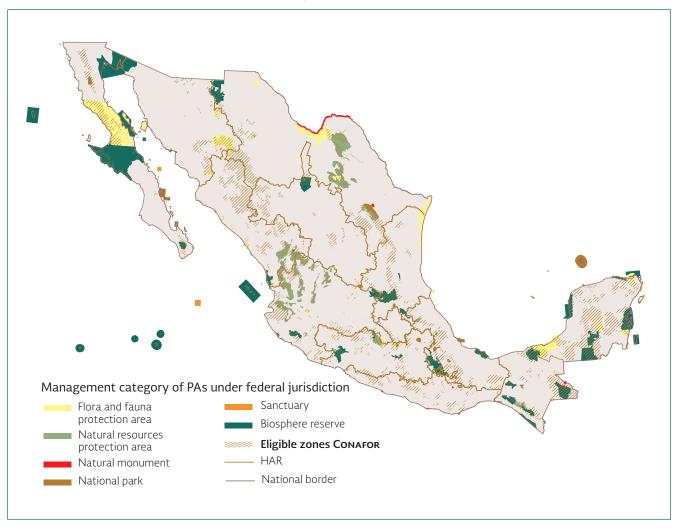


TABLE 6.2 Protected areas under federal jurisdiction, 2014

Category	Description	Quantity	Area (ha)
Biosphere reserves	Non-altered ecosystems or which need to be preserved or restored, with species that are representative of the national biodiversity.	41	12 751 149
National parks	Ecosystems with scenic beauty, scientific, educational, recreational or historic value, related to species or suitable for the development of tourism.	66	1 411 319
Natural monuments	Areas with unique or exceptional natural elements with esthetic, scientific or historic value. Does not require the variety of ecosystems or area of other categories.	5	16 269
Natural resources protection areas	Areas allocated for the preservation and protection of soil, watersheds, water and resources in forest grounds (and which are not included in other categories).	8	4 503 345
Flora and fauna protection areas	Places with habitat on whose balance and preservation the existence, transformation and development of forest species depends	39	6 795 963
Sanctuaries	Areas with considerable wealth of flora and fauna or species, sub-species or habitat with restricted distribution.	18	150 193
Total		177	25 628 239

Source: CONANP (2015a).

MAP 6.2 Conservation of nature and its services, 2014

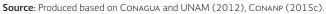
Source: Conanp (2015b), Conafor (2014).

6.4 Wetlands

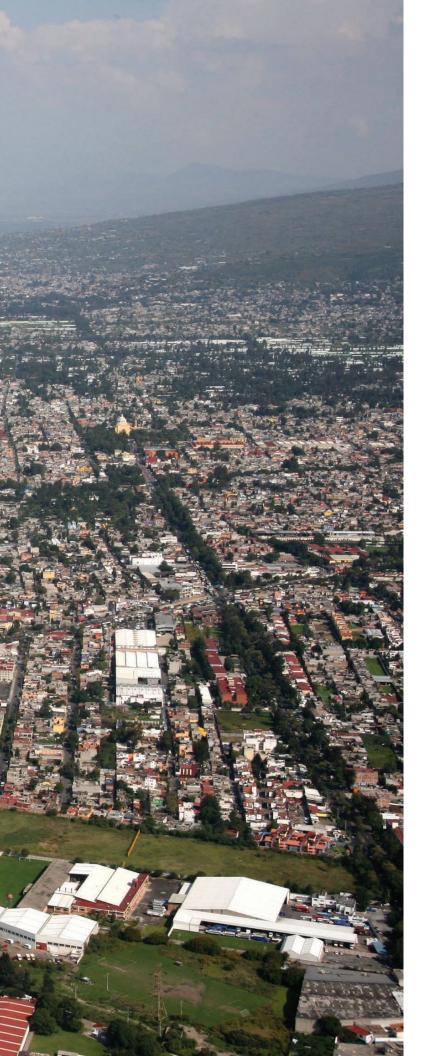
[Reporteador: Sitios Ramsar]

The conservation and sustainable management of wetlands can ensure the rich biodiversity and environmental services that they provide, such as: water storage, the conservation of aquifers, water purification through the retention of nutrients, sediments and pollutants, storm protection and flood mitigation, the stabilization of coasts and erosion control.

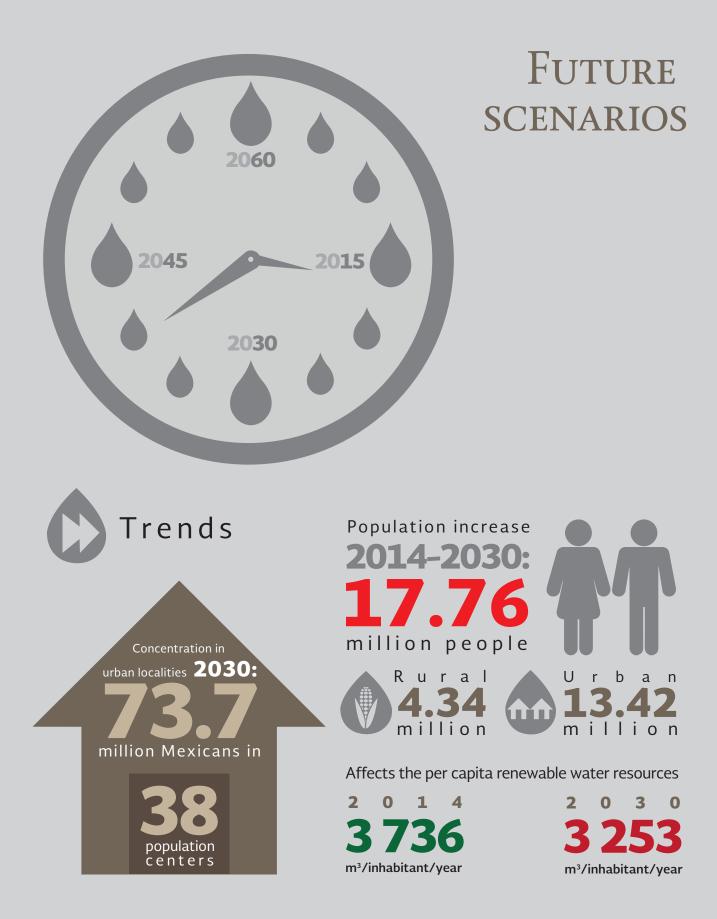
These ecosystems have undergone transformation processes with various purposes. The lack of knowledge on wetlands and their inappropriate management constitute some of the problems that adversely affect their conservation. As stipulated in the National Water Law, it is the CONAGUA's responsibility to carry out and update the National Inventory of Wetlands (NIW), as well as to define their contours, classify them and propose standards for their protection, restoration and use. In 2012, the study "Wetlands of the Mexican Republic" was produced, including the "National Map of Wetlands, scale 1:250 000".

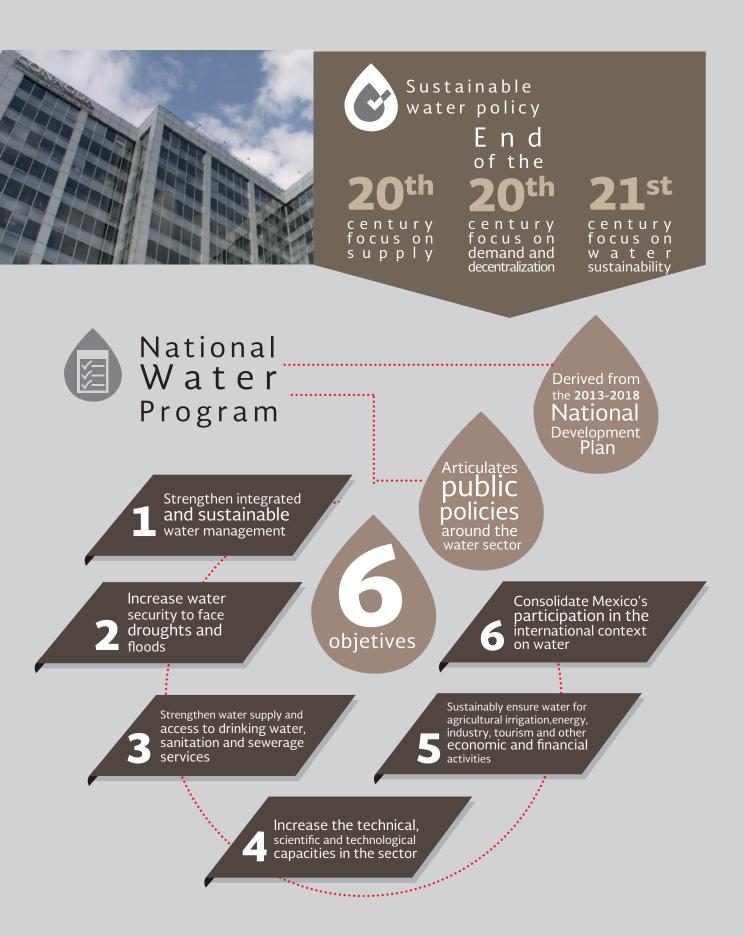

Internationally, an intergovernmental convention was signed in the city of **Ramsar**, Iran (1971), known as the Ramsar Convention. This convention "...provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources" (Ramsar 2015).

At the time of going to press, 142 Mexican wetlands had been registered in the Ramsar Convention, taking the total surface area of the country registered to 8.6 million hectares (CONANP 2015c). Map 6.3 shows the wetlands that have been registered in the Ramsar Convention, as well as the NIW wetlands. Mexico has 142 w e t l a n d s registered in the Ramsar Convention


Box 6.1 The environment in Mexico's economic and ecological accounts

n the national integration of the System of Environmental-Economic Accounting (SEEA), Mexico's economic and ecological accounts include, as well as water-related items (see box 3.1), the following environmental issues: depletion of hydrocarbons, of timber-yielding forest resources and soil degradation, emissions into the atmosphere and solid waste. They also include the estimation of the environmental protection expenditure (EPE) of the public sector. EPE allows the expenditure carried out on activities aiming to prevent, reduce or eliminate pollution to be quantified; as well as any other form of environmental degradation generated by decisions on production, distribution or consumption activities.


Source: INEGI (2014b), INEGI (2015o).



Chapter 7

Future scenarios

7.1 Sustainable water policy

In the history of Mexico's water policy, three clear phases can be discerned:

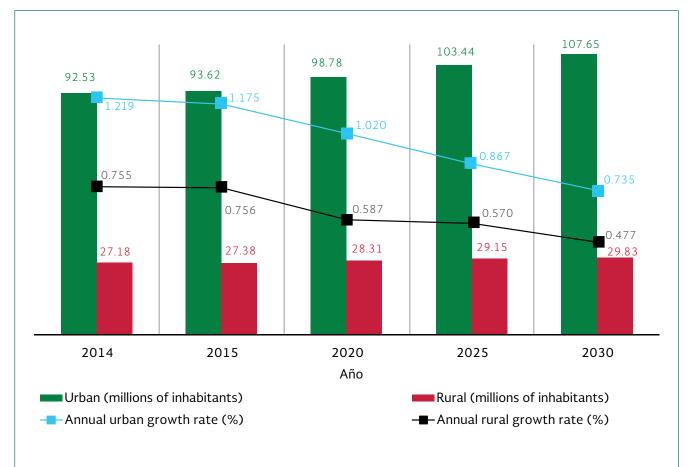
First stage: At the beginning of the 20th century, the focus was placed on the **supply** side, which explains why a large number of storage reservoirs, irrigation districts, aqueducts and water supply systems were built.

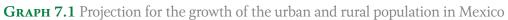
Second stage: From the 1980s-1990s onwards, water policy became more demand-oriented and based on the principle of decentralization. The responsibility for providing drinking water, sewerage and sanitation services was transferred to the municipalities, and the Conagua was created as an institution that concentrated the tasks of managing the nation's water resources. Among the actions which aimed to meet this objective was the creation of the Public Registry of Water Duties (REPDA), as a mechanism to provide order to the use of water resources.

Third stage: At the dawn of the 21st century, a new phase is coming to the fore, that of water sustainability, in which wastewater treatment is being significantly increased, the reuse of water is being promoted and the emphasis is being placed on the management of the nation's water resources through the verification of extractions, regulations around aquifers and watersheds and the updating of the methodology for the payment of duties for the use of the nation's water resources.

7.2 Trends

[Reporteador: Población, Grado de presión, Agua renovable]


One very important aspect to be considered in Mexico's future scenarios is the population growth and its concentration in urban areas.


According to estimates from the CONAPO, between 2014 and 2030, the population of Mexico will increase by 17.8 million people, although the growth rate will tend to decrease. Furthermore, by 2030 approximately 78.3% of the total population will be based in urban localities, as can be observed in graph 7.1. The data in the graph is at the mid-year point. The rural population is considered as that which lives in localities of less than 2 500 inhabitants, whereas the urban population refers to that of 2 500 inhabitants or more.

It is calculated that for the 2014-2030 period, more than half of the population growth will occur in the hydrological-administrative regions (HARs) IV Balsas, VI Río Bravo, VIII Lerma-Santiago-Pacific and XIII Waters of the Valley of Mexico. On the other hand, the four HARs with the lowest growth (II Northwest, III Northern Pacific, V Southern Pacific and VII Central Basins of the North) will represent only 12% of the growth during that period, as shown in table 7.1. Rurally, the proportion of the regional population growth is greater than the national proportion for the HARs V Southern Pacific, XI Southern Border, X Central Gulf, IV Balsas, IX Northern Gulf and VIII Lerma-Santiago-Pacific, whereas in the remaining HARs the proportion of urban growth is above the national rate.

By 2030 approximately **78.3%** of the total population will be based in urban localities

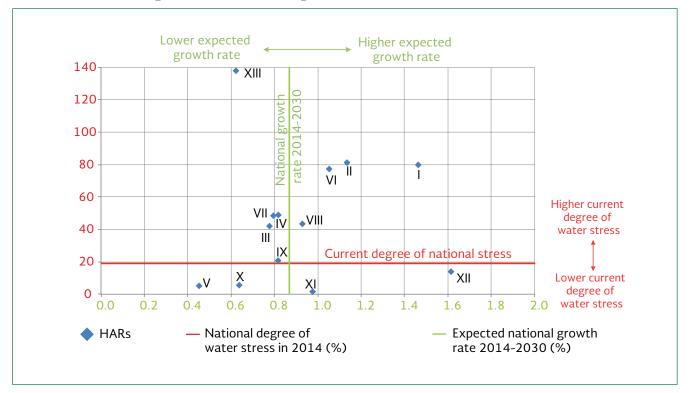
Source: Produced based on CONAPO (2015).

TABLE 7.1 Population in 2014 and 203	30 (thousands of inhabitants)
--------------------------------------	-------------------------------

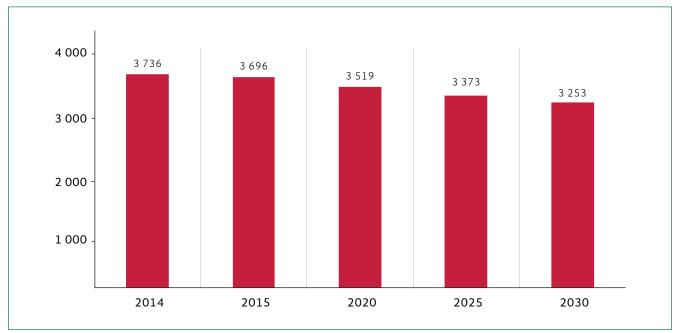
IIAD	HAR Rural population		Urban population			Total population			
number	2014	2030	Increase 2014-2030	2014	2030	Increase 2014-2030	2014	2030	Increase 2014-2030
Ι	380	537	158	3 989	4 975	986	4 369	5 513	1 144
II	452	524	72	2 351	2 833	481	2 803	3 357	554
III	1 380	1 395	16	3 088	3 662	574	4 467	5 0 5 7	590
IV	3 427	3 844	417	8 260	9 471	1 211	11 687	13 315	1 628
V	1 995	2 1 4 3	148	3 029	3 257	228	5 024	5 400	376
VI	838	925	87	11 314	13 443	2 129	12 152	14 368	2 216
VII	1 1 3 3	1 202	69	3 382	3 922	540	4 515	5 1 2 5	610
VIII	5 181	5 839	658	18 708	21 860	3 152	23 888	27 699	3 811
IX	2 406	2 488	81	2 827	3 475	648	5 233	5 963	729
Х	4 4 2 4	4 727	303	6 058	6 880	822	10 482	11 607	1 125
XI	3 633	4 001	368	3 939	4 843	904	7 572	8 844	1 272
XII	723	830	107	3 792	5 004	1 212	4 516	5 834	1 319
XIII	1 206	1 378	172	21 799	24 023	2 224	23 005	25 401	2 396
Total	27 178	29 834	2 656	92 535	107 647	15 112	119 713	137 481	17 768

Source: Produced based on CONAPO (2015).

It should be noted that some of the HARs in which the highest population growth is expected are at the same time those where there is already a degree of water stress that is higher than the national average, as can be appreciated in graph 7.2. By contrast, in some HARs with a lower degree of water stress (V Southern Pacific and X Central Gulf) a lower population growth is expected.


In 2030, it is expected that 53.6% of the population of Mexico, or 73.7 million inhabitants, will be living in 38 population centers (35 metropolitan areas and three non-suburban municipalities) with more than 500 000 inhabitants (map 7.1).

The increasing population will bring about a reduction in the per capita renewable water resources nationwide. The decrease foreseen is shown in graph 7.3, from 3 736 m³/inhabitant/year in 2014 to 3 253 in 2030. It is worth mentioning that in this chapter the value of renewable water resources for 2014 (447 260 hm³) remains constant throughout the 2014-2030 period.


By 2030, it is estimated that in some of the country's HARs, the per capita renewable water resources will reach levels close to or even lower than 1 000 m³/ inhabitant/year, a condition classified as scarcity.

GRAPH 7.2 Current degree of water stress and growth rate, 2014–2030

Source: Produced based on CONAGUA (2015c).

Source: Produced based on CONAGUA (2015a), CONAPO (2015).

Source: Produced based on CONAPO (2015), SEDESOL et al. (2012).

Table 7.2 and figure 7.1 show the evolution in renewable water resources between 2014 and 2030. As can be observed, the HARs I Baja California Peninsula, VI Rio Bravo and XIII Waters of the Valley of Mexico will present low levels of per capita renewable water resources in 2030.

Special attention should be paid to groundwater, the overdrafting of which leads to the reduction of phreatic levels, land subsidence and wells having to to be dug ever deeper. The majority of the rural population, especially in arid areas, depends almost exclusively on groundwater.

With the aim of facing the decrease in the availability of water in the coming years, it will be necessary to carry out actions to reduce the demand, by increasing the efficiency in the use of water for irrigation and in water distribution systems in cities. Furthermore, the volumes of wastewater that are treated and reused should increase significantly, so as to increase the availability and quality of water for the uses for which it is destined.

In addition, in order to continue guaranteeing social development, it will be necessary to significantly increase drinking water, drainage and sanitation coverage in rural settings.

HAR number	Renewable water resources 2014 (hm³/year)	Per capita renewable water resources 2014 (m³/inhabitant/year)	Per capita renewable water resources 2030 (m³/inhabitant/year)
Ι	4 958	1 135	899
II	8 273	2 951	2 465
III	25 596	5 730	5 062
IV	22 156	1 896	1 664
V	30 565	6 084	5 660
VI	12 316	1 014	857
VII	7 849	1 738	1 532
VIII	35 093	1 469	1 267
IX	28 085	5 366	4 710
Х	95 129	9 075	8 196
XI	144 459	19 078	16 334
XII	29 324	6 494	5 026
XIII	3 458	150	136
Total	447 260	3 736	3 253

TABLE 7.2 Per capita renewable water resources, 2014 and 2030

Source: Produced based on CONAGUA (2015a), CONAPO (2015).

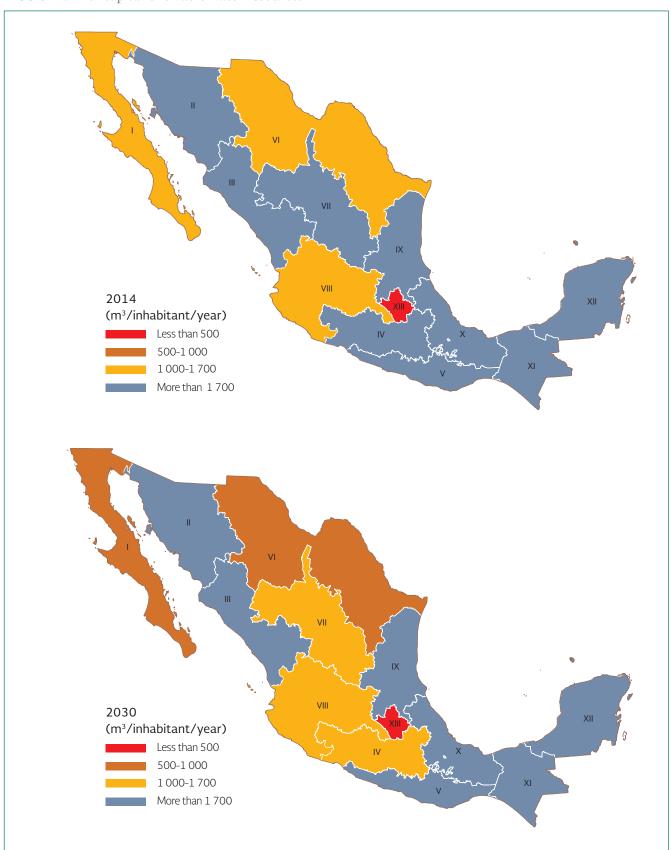
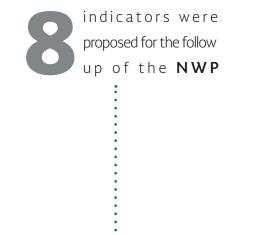


FIGURE 7.1 Per capita renewable water resources

Source: Produced based on Conagua (2015a), Conapo (2015).

7.3 National water planning 2013-2018


The Political Constitution of the United Mexican States establishes the planning of national development as the basis for the articulation of public policies in the government of the republic, as well as the direct source of participatory democracy through consultation with society-at-large. The 2013-2018 National Development Plan (NDP) establishes the national targets and guiding objectives of public policies.

Within the scheme of the National System of Democratic Planning, the 2014-2018 National Water Program (NWP)¹ is derived from and aligned with the NDP. The NWP articulates the government of the republic's public policies around the water sector and is part of the water-related planning formalized in the National Water Law. Water-related planning is mandatory for integrated water resources management, the conservation of natural resources, vital ecosystems and the environment.

The NWP was developed with the collaboration of and contributions from institutions and agencies, experts as well as a public consultation process carried out in regional fora with the participation of users, academics, civil society organizations, communicators, legislators and scholars.

Figure 7.2 shows the alignment of the national targets of the NDP with the NWP by means of the latter's five overarching guidelines, articulated through the reforms and modernizations proposed for the water sector in the NWP's six objectives.

It is worth mentioning the eight indicators proposed for the follow up and evaluation of the NWP's impacts, which are shown in table 7.3.

1 Due to its publication date, it is referred to as 2014-2018.

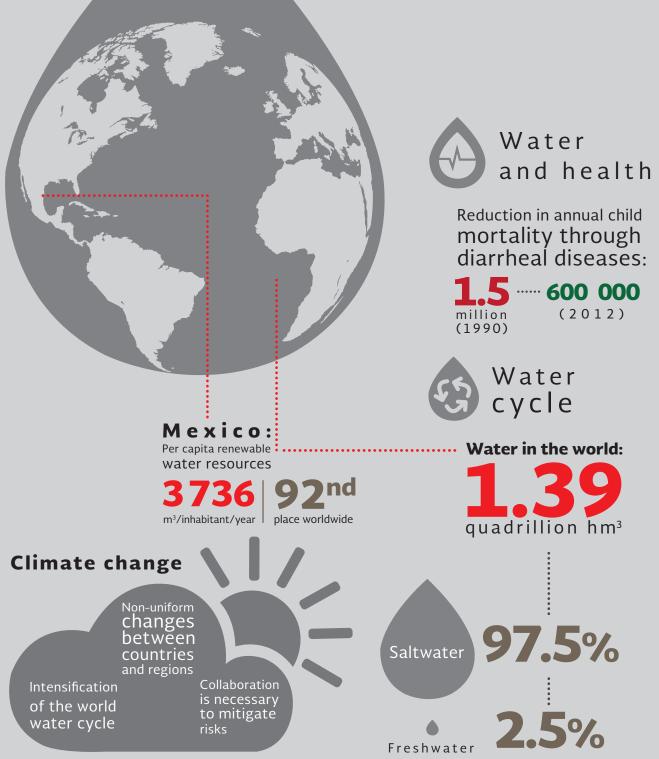
FIGURE 7.2 Alignment of the NDP with the NWP

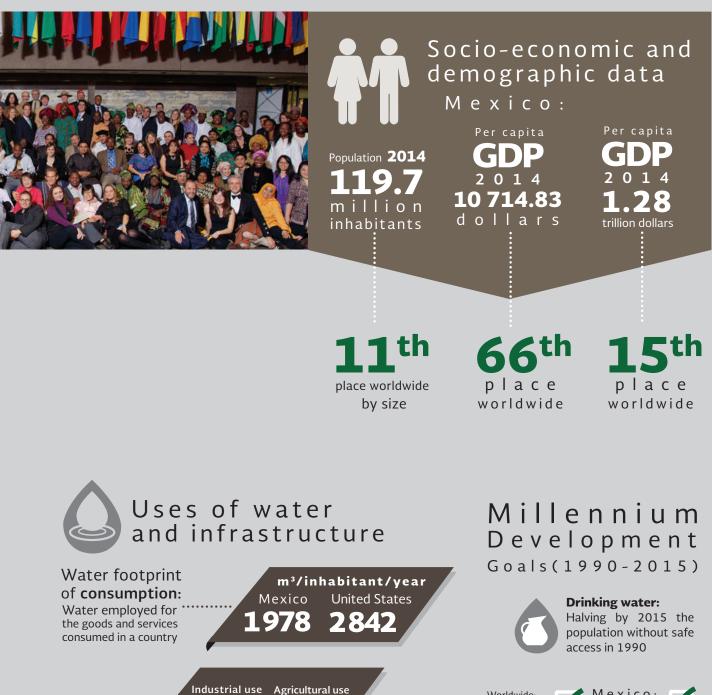
TABLE 7.3 Indicators for the follow up and evaluation of the NWP's impacts

Objectives	Indicator
1. Strengthen integrated and sustainable water management.	1. Global Water Sustainability Index
	2. Water reserve decrees formulated for environmental use.
2. Increase water security to face droughts and floods	3. Population and productive surface area protected against floods.
	4. Drought management programs produced and approved by River Basin Councils.
3. Strengthen water supply and access to drinking wa- ter, sewerage and sanitation services.	5. Global Index of Access to Basic Water Services.
4. Increase the technical, scientific and technological capacities of the sector.	6. Influence of the technological development of the water sector in decision making.
5. Sustainably ensure water for irrigated agriculture, energy, industry, tourism and other economic and financial activities.	7. Productivity of water in irrigation districts (kg/m³)
6. Consolidate Mexico's participation in the interna- tional context on water issues.	8. International cooperation projects duly attended to.

Source: Conagua (2014b), Conagua (2015b).

.

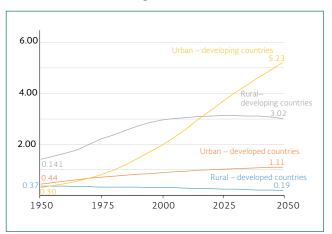




Water in the World

Water in the world

19%70%Liters for 1 kg of:
C or nVirtual water:
Quantity of water
employed in
processing a product



8.1 Socio-economic and demographic aspects

[Reporteador: Indicadores económicos, Población]

The United Nations periodically refines estimations of the world population. In the latest exercise (UN-DESA 2014), it is estimated that in 1950 the world population was 2.53 billion people, whereas for 2015, it will have increased to 7.33 billion. Over the last 60 years, this growth has been mainly concentrated in **developing regions**, a trend that will continue until 2050, as can be observed in graph 8.1 [Adicional: Table 8.A]. It is estimated that for 2050 the world population will be 9.55 billion.

The growing concentration of the population in **urban** areas should be highlighted, as shown in graph 8.1. Conversely, the rural population shows a stable or decreasing trend in both developed and developing countries. The pressure of cities on the environment is significant: as readily-available water resources are exhausted, cities will have to transport water from greater distances or extract it from greater depths, or depend on advanced technologies to desalinize or reuse water (WWAP 2015).

Source: Produced based on UN-DESA (2014).

In table 8.1, the countries with the world's highest population are shown, among which Mexico is in eleventh place worldwide. In each table of this chapter, in addition to the countries in the first places for each concept (for example population and irrigation surface, among others), five countries appear as references (Brazil, United States of America, France, South Africa and Turkey), as well as Mexico, in order to facilitate comparisons. The population for Mexico corresponds to the definition of CONAPO (2015).

In table 8.2 information is presented on the countries with the largest per capita Gross Domestic Product (GDP). Some values are estimated.

Mexico is ranked 66^{th} worldwide in terms of its per capita GDP. In terms of the total GDP, the country is ranked 15^{th} worldwide.

N٥	Country	Population (millions of inhabitants)	Population density (inhabitants/km²)
1	China	1 416.67	147.6
2	India	1 252.14	380.9
3	United States of America	320.05	32.6
4	Indonesia	249.87	130.8
5	Brazil	200.36	23.5
6	Pakistan	182.14	228.8
7	Nigeria	173.62	187.9
8	Bangladesh	156.60	1 054.8
9	Russian Federation	142.83	8.4
10	Japan	127.14	336.4
11	Mexico	119.71	61.1
12	Philippines	98.39	328.0
13	Ethiopia	94.10	85.2
14	Vietnam	91.68	277.0
15	Germany	82.73	231.6
16	Egypt	82.06	81.9
17	Iran (Islamic Republic)	77.45	44.4
18	Turkey	74.93	95.6
19	Democratic Republic of Congo	67.51	28.8
20	Thailand	67.01	130.6
21	France	64.29	117.1
22	United Kingdom	63.38	260.2
23	Italy	60.99	202.4
24	Myanmar	53.26	78.7
25	South Africa	52.78	43.3

TABLE 8.1 Countries with the highest population, 2014

Source: Produced based on FAO (2015), CONAPO (2015), INEGI (2015a).

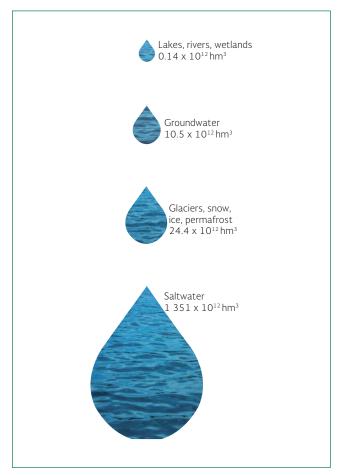
TABLE 8.2 Countries with the highest total and per capita GDP, 2014
--

	Total G	DP	Per capita GDP			
Nº	Country	GDP (billions of US dollars)	N٥	Country	Per capita GDP (US dollars)	
1	United States of America	17 418.93	1	Luxembourg	111 716.27	
2	China	10 380.38	2	Norway	97 013.26	
3	Japan	4 616.34	3	Qatar	93 965.18	
4	Germany	3 859.55	4	Switzerland	87 475.46	
5	United Kingdom	2 945.15	5	Australia	61 219.16	
6	France	2 846.89	6	Denmark	60 563.62	
7	Brazil	2 353.03	7	Sweden	58 491.47	
8	Italy	2 147.95	8	San Marino	56 820.02	
9	India	2 049.50	9	Singapore	56 319.34	
10	Russian Federation	1 857.46	10	United States of America	54 596.65	
11	Canada	1 788.72	11	Ireland	53 461.97	
12	Australia	1 444.19	12	Netherlands	51 372.96	
13	South Korea	1 416.95	13	Austria	51 306.67	
14	Spain	1 406.86	14	Iceland	51 261.88	
15	Mexico	1 282.73	15	Canada	50 397.86	
16	Indonesia	888.65	16	Finland	49 496.72	
17	Netherlands	866.35	17	Belgium	47 721.59	
18	Turkey	806.11	18	Germany	47 589.97	
19	Saudi Arabia	752.46	19	United Kingdom	45 653.41	
20	Switzerland	712.05	20	France	44 538.15	
21	Nigeria	573.65	61	Brazil	11 604.47	
22	Sweden	570.14	66	Mexico	10 714.83	
23	Poland	546.64	68	Turkey	10 482.14	
33	South Africa	350.08	87	South Africa	6 482.75	

Source: IMF (2015).

8.2 Components of the water cycle

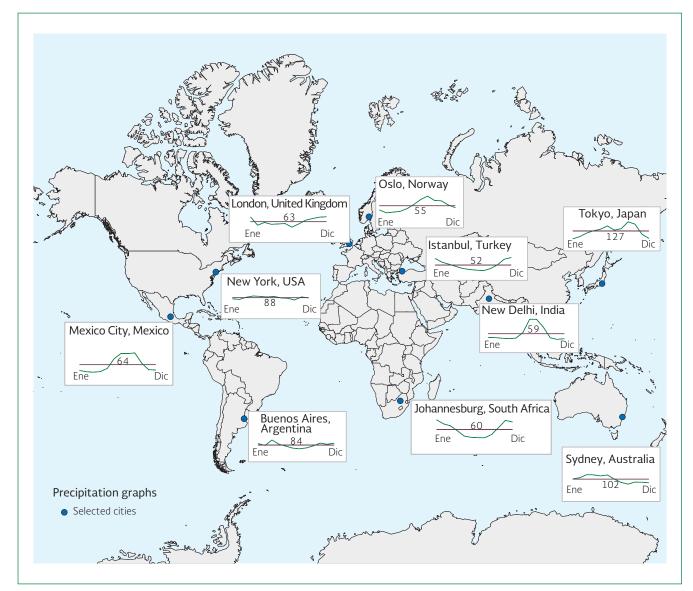
[Reporteador: Distribución global del agua en el mundo]


The mean annual availability of water in the world is approximately 1.39 quadrillion hm³, of which 97.5% is saltwater and only 2.5%, or 35 trillion hm³, is freshwater. Of that amount, almost 70% is unavailable for human consumption since it is locked up in glaciers, snowpack and ice (figure 8.1).

Of the water that is technically available for human consumption, only a small percentage is found in lakes, rivers, soil humidity and relatively shallow groundwater deposits, the replenishment of which is the result of infiltration. Much of this theoretically usable water is far from populated areas, making it difficult or expensive to effectively use. It is estimated that only 0.77% is freshwater accessible to human beings.

Precipitation

Precipitation constitutes an important part of the water cycle, since it produces the planet's **renewable** water resources. However, precipitation varies from region to region and seasonally.


In figure 8.2 the different patterns of annual rainfall (green color) in selected cities around the world can be observed, as well as their monthly averages. In general, cities at higher latitudes are characterized by having a uniform precipitation throughout the world, whereas cities closer to the Equator have an accentuated precipitation in the summer.

Source: Produced based on Clarke and King (2004).

Source: Produced based on World Climate (2011).

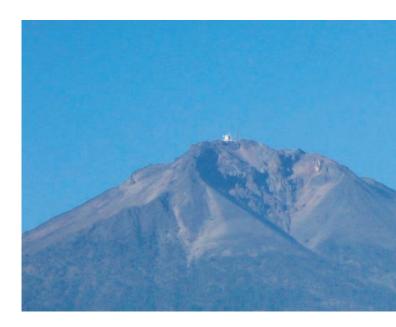
Renewable water resources

[Reporteador: Agua renovable]

A country's per capita renewable water resources may be calculated by dividing its renewable resources by the number of inhabitants. According to this criterion, Mexico is in 92nd place worldwide out of 200 countries on which data is available, as shown in table 8.3. In this table the value for Mexico is from 2014, and from other countries the value is the latest one available.

Climate change

In the Intergovernmental Panel on Climate Change's 5th Report (IPCC 2013), the evidence on climate change is consolidated. Human influence has been detected on both the climate system –evidenced by the growing concentrations of greenhouse gases– and on the warming of the atmosphere and the ocean, as well as on changes in the global water cycle, on the reductions in snow and ice, on the increase in sea level, and on changes in some climate extremes.


It is estimated that changes in the global water cycle, due to climate change, will not be uniform. The contrast in precipitation will increase between dry and humid regions, and between wet and dry seasons, although it is possible that there may be regional exceptions. This will result in risks related to the quantity and quality of water available for society.

It is considered that the impacts of recent extreme hydro-meteorological events, including heatwaves, droughts, floods, cyclones and fires reveal the significant vulnerability and risk exposure of certain ecosystems and many human systems to climate variability.

In terms of freshwater, it is foreseen that during the 21st century the renewable surface and groundwater resources will be reduced in the majority of sub-tropical dry regions, which will increase the competition between users. The effects of climate change **will be accentuated** in areas with rapid processes of urbanization, without disregarding the impacts in rural areas on the availability of water and changes in temperature, which could result in a shift in crop zones and the consequent impact both on rural population and on food security in general.

Of 200 countries, Mexico is in **92nd**

place worldwide in terms of **per capita** renewable water r e s o u r c e s

TABLE 8.3 Countries with the highest per capita renewable water resources

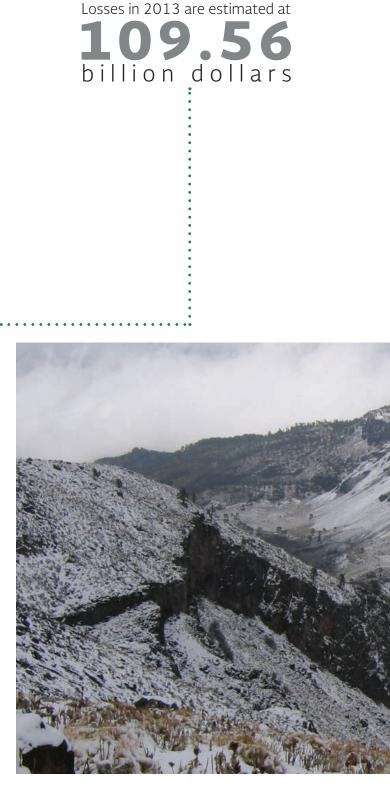
N٥	Country	Population (thousands of inhabitants)	Renewable water resourc- es (billions of m ³)	Per capita renewable water resources (m³/inhabitant/year
1	Iceland	330	170	515 152
2	Guyana	800	271	338 750
3	Congo	4 448	832	187 050
4	Surinam	539	99	183 673
5	Papua New Guinea	7 321	801	109 411
6	Bhutan	754	78	103 448
7	Gabon	1 672	166	99 282
8	Canada	35 182	2 902	82 485
9	Salomon Islands	561	45	79 679
10	Norway	5 043	393	77 930
11	New Zealand	4 506	327	72 570
12	Belize	332	22	65 452
13	Peru	30 376	1 894	62 352
14	Paraguay	6 802	388	57 013
15	Liberia	4 294	232	54 029
16	Plurinational State of Bolivia	10 671	574	53 791
17	Chile	17 620	923	52 389
18	Uruguay	3 407	172	50 543
19	Lao People's Democratic Republic	6 770	334	49 261
20	Colombia	48 321	2 360	48 840
22	Brazil	200 362	8 647	43 157
60	United States of America	320 051	3 069	9 589
92	Mexico	119 713	447	3 736
99	France	64 291	211	3 282
107	Turkey	74 933	212	2 824
152	South Africa	52 776	51	973

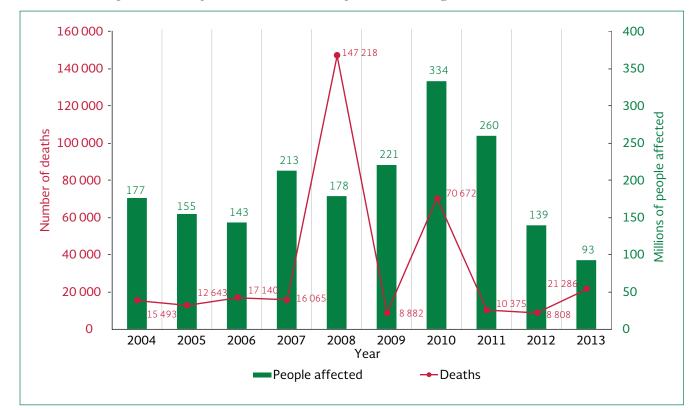
Source: Produced based on FAO (2015), CONAPO (2015), CONAGUA (2015a).

.

:..

Mitigation, understood as an anthropogenic intervention to reduce the sources or improve greenhouse gas sinks, and adaptation, defined as the process of adjusting human or natural systems as a response to projected or real climate stimuli and their effects, will only be possible through joint collaborative efforts, which in turn involve issues of equity, justice and impartiality between stakeholders in a context of decision making through value judgments, ethical considerations and perceptions of risks and opportunities for individuals and organizations.


Extreme hydro-meteorological phenomena


Extreme hydro-meteorological phenomena, such as droughts, floods and hurricanes, are natural events that frequently result in disasters with human and material losses. In the analysis of disasters, it can be seen that the damages estimated as a percentage of GDP are significantly higher in developing countries, which may be further accentuated if the global trend towards the concentration of population in urban localities continues.

Droughts, the lack of food security, extreme temperatures, floods, forest fires, insect infestations, water-related landslides and windstorms are all considered disasters of climate and hydro-meteorological origin (IFRC 2014). This type of events represents a significant proportion of the estimated damage caused by disasters, which in 2013 (the latest year available at the source) represented 109.56 billion dollars [Additional: Graph 8.A], or 92% of the total damage caused by all types of disasters.

The number of people affected by climate and hydro-meteorological disasters in the period between 2004 and 2013 is shown in graph 8.2, which reveals the annual **variability** in the occurrence of major disasters due to hydro-meteorological phenomena.

It should be noted that disasters are expected to increase, both in number and as regards their consequences, as a result of climate change. The risk of disasters will be the result of the coming together of climate and weather events, vulnerability and exposure of social groups, environmental services and resources, infrastructure and economic, social and cultural assets (IPCC 2012).

GRAPH 8.2 People affected by climate-related and hydro-meteorological disasters

Source: Produced based on IFRC (2014).

8.3 Uses of water and infrastructure

[Reporteador: Usos del agua]

While the world population tripled in the 20th century, water extractions multiplied six-fold, thus increasing the degree of water stress. In the future, in the context of population growth and climate change, it is expected that this pressure will increase.

In table 8.4, the countries with the highest water extractions are shown, in which it can be observed that Mexico is ranked in seventh place. The classification of uses in this table considers agriculture, industry – including cooling of power stations– and public supply. The values for each country vary since they are the latest available at the source; for Mexico they are updated to 2014.

The main use of water resources worldwide, according to estimations from the FAO (2011), is agriculture, with 70% of the total extraction.

Industrial use

[Reporteador: Usos del agua]

Industry is one of the main motors of growth and economic development. Around 19% of water extracted worldwide is employed in industry (FAO 2011). Of this volume, more than half is used in thermoelectric stations in cooling processes. Among the greatest consumers of water under this heading are oil stations, and the metal, paper, wood, food processing and manufacturing industries.

It is estimated that the global demand for water for the manufacturing industry will increase by 400% between 2000 and 2050, mainly in emerging economies (WWAP 2015).

Use for agriculture

[Reporteador: Distritos de riego]

Irrigation is fundamental for the world's food requirements. Only 19% of the area on which crops are grown has irrigation infrastructure, but that area produces more than 40% of the world's crops (FAO 2011). In recent years agriculture has used greater quantities of agrochemical products, resulting in pollution of soil and aquifers.

Worldwide, **19%** of extracted water is used in **industry**

TABLE 8.4 Countries with the highest extraction of water and percentage of use in agriculture, industry and public supply

Nº	Country	Total extraction of water (billions of m³/year)	% Use for agriculture	% Use for industry	% Use for public supply
1	India	761.00	90.4	2.2	7.4
2	China	554.10	64.6	23.2	12.2
3	United States of America	478.40	40.2	46.1	13.7
4	Pakistan	183.50	94.0	0.8	5.3
5	Indonesia	113.30	81.9	6.5	11.6
6	Iran (Islamic Republic)	93.30	92.2	1.2	6.6
7	Mexico	84.93	76.7	9.1	14.2
8	Vietnam	82.03	94.8	3.7	1.5
9	Philippines	81.56	82.2	10.1	7.6
10	Japan	81.45	66.8	14.3	18.9
11	Brazil	74.83	60.0	17.0	23.0
12	Egypt	68.30	86.4	5.9	7.8
13	Russian Federation	66.20	19.9	59.8	20.2
14	Iraq	66.00	78.8	14.7	6.5
15	Thailand	57.31	90.4	4.8	4.8
16	Uzbekistan	56.00	90.0	2.7	7.3
17	Italy	53.75	44.1	35.9	16.9
18	Turkey	40.10	73.8	10.7	15.5
19	Canada	38.80	12.2	80.2	14.2
20	Argentina	37.78	73.9	10.6	15.5
21	Bangladesh	35.87	87.8	2.1	10.0
22	Chile	35.43	83.0	13.4	3.6
25	France	33.11	9.5	73.9	16.6
41	South Africa	12.50	62.7	6.0	31.2

Source: FAO (2015), CONAGUA (2015c).

The **perspective** is that by 2050, agriculture will need to increase its production by 60% globally, and 100% in developing countries, which will be difficult to achieve with the current growth trends in use and inefficiency (WWAP 2015).

Mexico is ranked seventh worldwide in terms of the surface area with irrigation infrastructure, the first places being occupied by India, China and the United States of America, as shown in table 8.5. This table shows the latest values available at the source.

Energy generation

[Reporteador: Generación de energía]

Electricity performs a key function in poverty alleviation, the promotion of economic activities and the improvement of the quality of life, health and education opportunities, especially for women and children.

The International Energy Agency (IEA) considers that energy generation practically doubled in the period from 1973 to 2012 (the latest year available at the source), going from 6.12 to 13.37 billion metric tons of oil equivalent (IEA 2014a).

Water has a significant link with energy, since on the one hand energy is used in water supply and treatment, and on the other water is employed in virtually every phase of energy generation (IEA 2014b).

It is estimated that electricity represents between 5 and 30% of the total cost of operation of water and sanitation services, and in some cases like India and Bangladesh, that figure may reach 40% (WWAP 2015).

In fuel production it is used to extract fossil fuel, to grow biofuel and in processing and refining. It is used in the generation of steam and cooling in thermal plants (fossil fuels, bioenergy, geothermal, nuclear and some types of solar stations), which represent more than 90% of the world energy generation. 2.4% of the world's energy is generated through the water contained in dams through hydropower stations. In this sense, energy generation is a use of water that has potential impacts on the quantity and quality of water available (IEA 2012).

Mexico has 25.81. million hectares under cultivation

TABLE 8.5 Countries with the largest irrigation infrastructure

Nº	Country	Area with full control irrigation infrastructure (thousands of has)	Area cultivated (thousands of has)	Irrigation infrastructure compared to the area cultivated (%)
1	India	66 334	169 000	39.3
2	China	62 938	122 527	51.4
3	United States of America	26 644	157 708	16.2
4	Pakistan	19 270	22 040	90.7
5	Iran (Islamic Republic)	8 700	19 654	44.3
6	Indonesia	6 722	45 500	16.0
7	Mexico	6 460	25 808	25.0
8	Thailand	6 415	21 060	33.8
9	Brazil	5 400	79 605	6.8
10	Turkey	5 340	23 790	22.5
11	Bangladesh	5 050	8 525	59.2
12	Vietnam	4 585	10 200	48.7
13	Uzbekistan	4 198	4 690	89.5
14	Italy	3 951	9 560	40.7
15	Iraq	3 525	3 657	63.5
16	Spain	3 470	16 960	20.5
17	Egypt	3 422	3 612	99.9
18	Afghanistan	3 208	7 910	41.4
19	France	2 642	19 293	13.7
20	Peru	2 580	5 529	46.7
21	Australia	2 546	47 493	5.7
22	Japan	2 500	4 549	55.0
23	Russian Federation	2 375	121 350	1.9
30	South Africa	1 670	12 413	13.5

Source: FAO (2015).

•

The composition of the total energy supply in 2012 can be observed in graph 8.3.

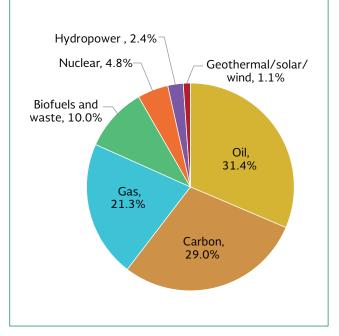
Energy generation should be considered from the perspective of greenhouse gas emissions, which contribute to climate change. Hydropower is considered as a source of renewable energy, together with geothermal, solar and wind energy.

Storage reservoirs in the world

[Reporteador: Principales presas]

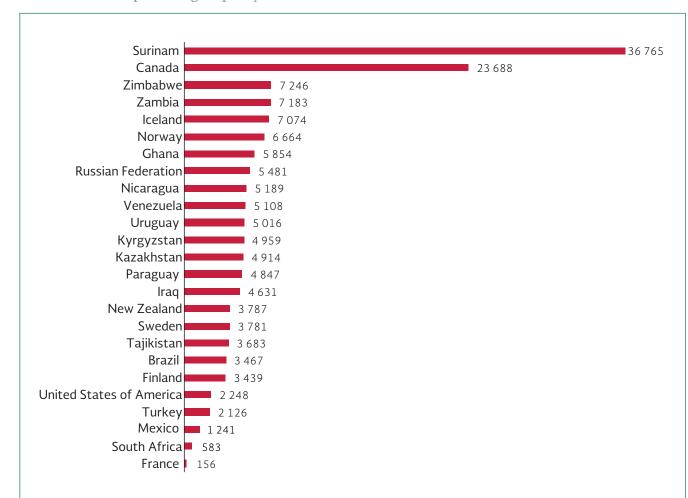
The water storage capacity for various uses and for flood control is directly proportional to the degree of hydraulic development of any given country. An indicator that allows this degree to be appreciated is the per capita storage capacity. It should be mentioned that according to the FAO, Mexico is in 35th place worldwide in terms of the per capita storage capacity, as shown in graph 8.4. This graph shows the latest data available for each country.

Water footprint


[Reporteador: Agua virtual / Huella hídrica]

One means of measuring the impact of human activities on water resources is the so-called water footprint. This concept, created in 2002 by Hoekstra (WFN 2015a), has evolved to become a mechanism that allows an understanding of how the population's consumption habits and production affects the environment. Water footprints can be calculated by person, process, product, business, watershed or country. In this way it is possible to understand the risks related to supply, the dependence on water, and the water used in products and services.

The national water footprint has two perspectives. The water footprint of production is the volume of local water resources employed to produce goods and services in a country. From the perspective of consumption, it is calculated for all goods and services consumed by the population of a country, and generally occurs both inside and outside a country, according to whether the products are local or imported.


The average worldwide water footprint, associated to consumption and estimated for the 1996-2005 period, is 1 385 m³ per person per year [Adicional: Table 8.B]. The annual value for the United States is 2 842 m³, for China it is 1 071 m³ and for Mexico it is 1 978 m³ (Mekonnen and Hoekstra 2011).

GRAPH 8.3 Sources of energy supply, 2012

Source: IEA (2014a).

GRAPH 8.4 Per capita storage capacity (m³/inhabitant)

Source: FAO (2015).

In these calculations, both the water extracted from aquifers, lakes, rivers and streams (referred to as blue water), and the rainwater that feeds rainfed crops (green water) are included. Another concept employed in the calculation of the water footprint is grey water, which is the volume of water required to assimilate the contaminant load, based on existing water quality standards.

Virtual water

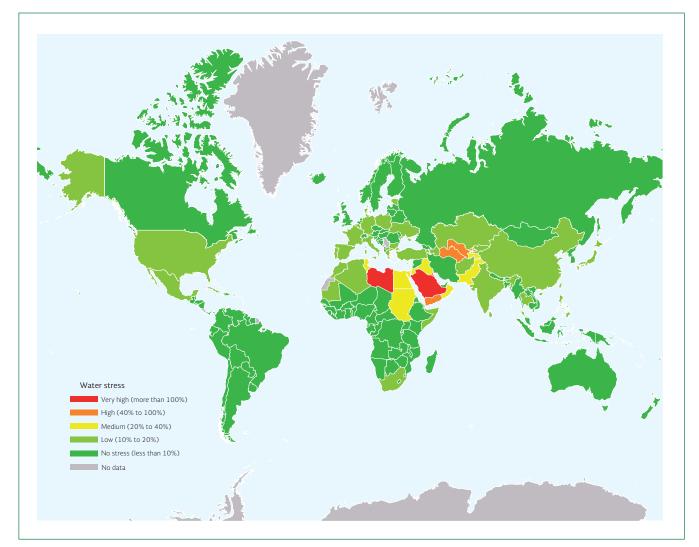
[Reporteador: Agua virtual / Huella hídrica]

A concept that is closely related to the water footprint is that of virtual water content. The virtual water content of a product is the volume of water employed in its productive process.

Commercial trade between countries entails an implicit **flow** of virtual water, corresponding to the water that is employed in the generation of the products or services imported or exported. The total volume of virtual water exchanged between the countries of the world is 2.32 trillion m³ per year, of which approximately 76% corresponds to agricultural products, and the remainder to industrial products and livestock (Mekonnen and Hoekstra 2011).

Growing one kilogram of corn requires on average 1 222 liters of water (1 860 in Mexico), whereas one kilogram of white rice employs 1 673 liters (Mekonnen and Hoekstra 2010a). On the other hand, the production of one kilogram of beef requires 15 415 liters (Mekonnen and Hoekstra 2010b), which includes the water drunk by the animal throughout its lifetime and the water required to grow the grain that served as its food. The values are different in each country, depending on the climate conditions and the efficiency in the use of water [Adicional: table 8.C].

Importing virtual water may be an option to reduce the problems of water scarcity in some countries. Countries that export virtual water should evaluate the impact of this activity on the availability of their water resources and the possible distortions derived from subsidies applied to agricultural production.


Water stress

[Reporteador: Grado de presión]

The degree of water stress is calculated by dividing the extraction by the renewable water resources. Due to their low availability, the Middle East countries suffer from very high water stress, as can be observed in map 8.1 [Adicional: Table 8.D], whereas Mexico is in 48th place according to this indicator. This map represents the latest data available for each country.

Source: Produced based on FAO (2015).

Drinking water, sanitation and wastewater treatment

[Reporteador: Cobertura universal]

In 2000, the United Nations (UN) established the Millennium Development Goals (MDGs), with the aim of reducing extreme poverty by 2015. Goal number seven, "Ensuring environmental sustainability", includes target 7.C, related to drinking water and sanitation, which establishes the aim of reducing by half the proportion of people without sustainable access to safe drinking water¹ and improved sanitation services,² between the reference year (1990) and 2015.

The 2015 report of the Joint Monitoring Programme (WHO-UNICEF 2015) evaluates the achievement of the MDGs. For drinking water, globally, the goal was met in the year 2010. It is considered that in 2015, 91% of the world population used improved drinking water sources, which can be broken down as 96% of the world's urban population and 84% of the rural population. In the 1990-2015 period, 2.6 billion people obtained access to those sources.

Mexico also met the target. Up to 2015, 96% of the population of Mexico (96% urban and 92% rural) had access to improved drinking water sources.

However, some regions of the world did not meet the target: the Caucasus-Central Asia, Northern Africa, Oceania and Sub-Saharan Africa. By 2015, 663 million people still lacked access to improved drinking water sources.

In contrast to the drinking water target, globally the sanitation target was not met, with 700 million people lacking at the time of going to press. 68% of the world population currently uses improved sanitation services, composed of 82% of the urban population and 51% rurally. In the 1990-2015 period, 2.1 billion people obtained access to those services.

Mexico also met the sanitation target. Up to 2015, 85% of the population of Mexico (88% urban and 74% rural) had access to improved sanitation services.

85% of the population of Mexico has access to improved sanitation s e r v i c e s

 $^{{\}bf 1}$. Those that are protected against outside pollution, especially fecal matter

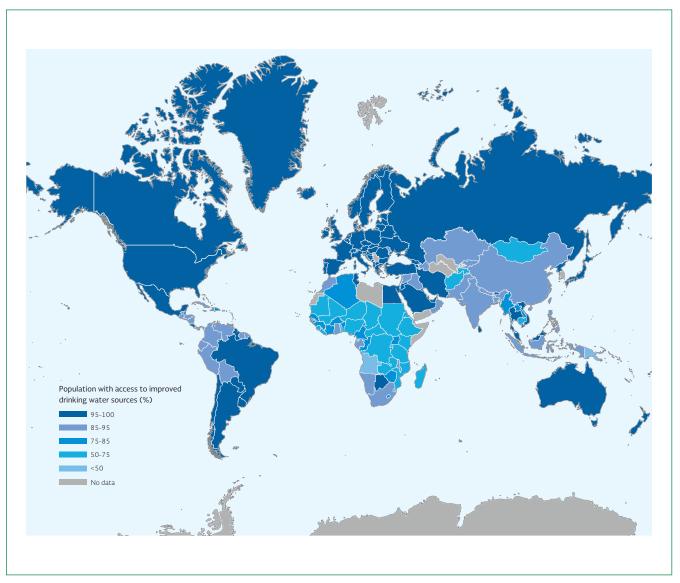

² Those that hygienically ensure that there is no contact between people and fecal matter.

TABLE 8.6 Number of countries and status of achievement of the MDG targets related to drinkingwater and sanitation, 2015

Status	Drinking water	Sanitation
Met	146	84
On track to be met	22	32
Insufficient progress	6	17
Not on track to be met	50	91

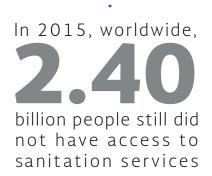
Source: WHO-UNICEF (2015).

Source: Produced based on WHO-UNICEF (2015).

Up to 2015, 2.4 billion people, mainly in Asia, Sub-Saharan Africa, Latin America and the Caribbean, still ... did not have access to improved sanitation services. It is currently estimated that 946 million people defecate in the open air.

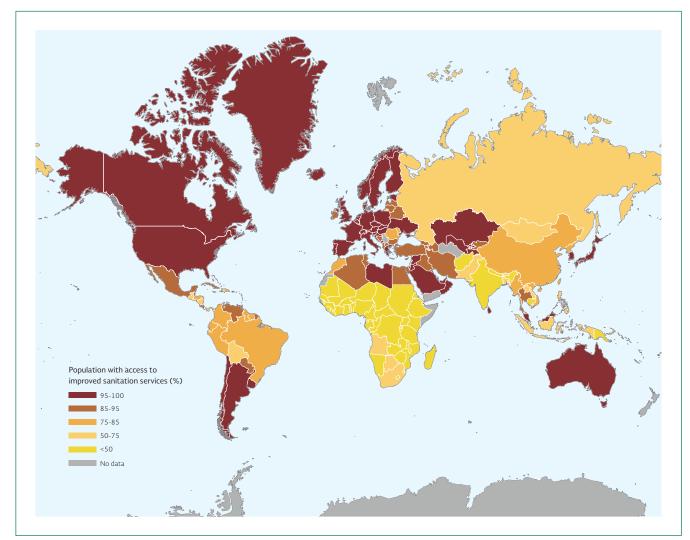
The national summary can be seen in table 8.6.

Since the period designated for the MDGs has now finalized, the international community is currently developing targets and indicators for the following years, termed Sustainable Development Goals (SDGs). It is considered that the SDGs should be built based on the experience of the MDGs and should finish pending items. For the year 2030 the following targets are foreseen:


- reaching universal access to drinking water and hygiene in homes, schools and health facilities,
- reducing by half the proportion of the population without safe access within their homes to drinking water and sanitation
- Eliminating open-air defecation,
- reaching universal access to sanitation and hygiene in homes, schools and health facilities, and
- Progressively eliminating inequalities in access.

The situation worldwide is presented in maps 8.2 and 8.3.

Drinking water and sanitation tariffs


[Reporteador: Tarifas]

It may be considered that drinking water, sewerage and sanitation services are financed through Tariffs, Transfers and Taxes (known collectively as the 3Ts). There is no uniformly applied definition of the costs derived from service provision, entailing that the relationship between tariffs and costs is also variable. In some regions the aim is for the tariffs to recover the total cost of the service. In others the tariffs recover variable percentages of the cost.

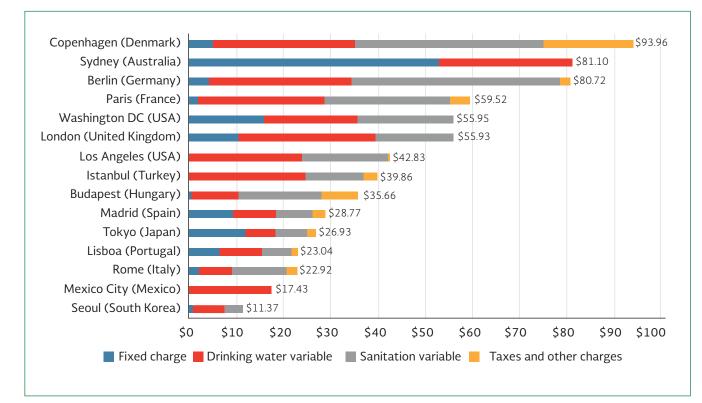
Source: Produced based on WHO-UNICEF (2015).

In graph 8.5 the drinking water and sanitation tariffs, as well as the taxes associated with this service, are indicated for selected world cities, for a domestic consumption of 15 m³ per month. The graph shows the values in pesos, with an exchange rate of 1 dollar = 13.00 pesos, as of July 1, 2014.

Water and health

[Reporteador: Agua y salud]

Drinking water in appropriate quantity and quality, in combination with appropriate sanitation and hygiene, have effects on the population's health and quality of living, on poverty alleviation and hunger, the reduction in child mortality, the improvement of maternal health, the fight against infectious diseases and environmental sustainability.


Estimations from the World Health Organization (WHO) indicate that the incidence of child mortality from diarrheal diseases dropped from 1.5 million deaths per year in 1990 to just over 600 000 in 2012 (WHO, 2014), which can be related to the progress registered as part of the MDGs.

Cholera, typhoid fever and dysentery are among diarrheal diseases; all of them associated with the fecal-oral means of transmission. The majority of deaths resulting from these diseases could be avoided through better access to drinking water, sewerage and sanitation services, since it is estimated that 88% of the cases of diarrhea are caused by polluted water, inadequate sanitation and poor hygiene habits (Corcoran et al. 2010). For 2012 it was estimated that 685 000 deaths were attributable to inadequate water and sanitation, a figure that rises to 842 000 when taking into account the combined effect of inadequate hand washing (Prüss-Üstün et al. 2014).

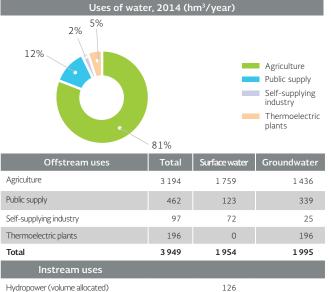
These figures are constantly refined, since the growing availability of data allows the key factors to be identified and analyzed, such as rehydration campaigns, the effects of hand washing, the incomplete coverage of services within the locality and improved sanitation schemes which do not involve treatment, all of which could continue exposing the population to sanitary risks.

It has been estimated that the lack of access to drinking water and adequate sanitation results in a cost of between 1 and 7% of each country's annual GDP (WSP 2012). A study by the WHO calculates that the return on investment for sanitation is around 5.5 for each dollar invested, whereas for drinking water it is 2.0 dollars for every dollar invested (WHO 2012a). Worldwide in 2012 there were just over **600 000** child deaths due to diarrheal diseases

GRAPH 8.5 Domestic tariffs (pesos/m³ for a consumption of 15 m³/month)

Source: Produced based on GWI (2015).

HYDROLOGICAL-ADMINISTRATIVE REGIONS AND STATES

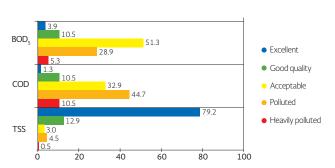


Кеу	Hydrological-administrative region	Кеу	State	Кеу	State
 V V V X X X X	Baja California Peninsula Northwest Northern Pacific Balsas Southern Pacific Rio Bravo Central Basins of the North Lerma-Santiago-Pacifico Northern Gulf Central Gulf Southern Border Yucatan Peninsula Waters of the Valley of Mexico	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	Aguascalientes Baja California Baja California Sur Campeche Coahuila de Zaragoza Colima Chiapas Chihuahua Distrito Federal Durango Guanajuato Guerrero Hidalgo Jalisco Mexico Michoacan de Ocampo	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	Morelos Nayarit Nuevo Leon Oaxaca Puebla Queretaro Quintana Roo San Luis Potosi Sinaloa Sonora Tabasco Tamaulipas Tlaxcala Veracruz de Ignacio de la Llave Yucatan Zacatecas

Annex A. Relevant data by hydrological-administrative region

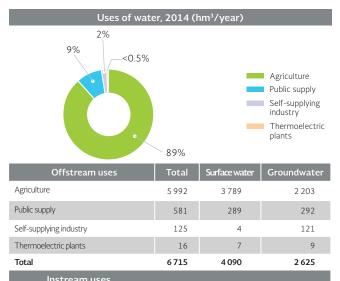
Hydrological-administrative region: I. Baja California Peninsula River basin organization with its headquarters in: Mexicali, Baja California				
Conte	xtual data	Renewable water resources, 2014		
Number of municipalities	11	Normal annual precipitation 1981-2010	168 mm	
Total population, 2014	4 368 750 inhabitants	Mean surface runoff	3 300 hm³/year	
Urban	3 988 797inhabitants	Number of aquifers	88	
Rural	379 954 inhabitants	Mean aquifer recharge	1 658 hm³/year	
Total population, 2030	5 512 727 inhabitants	Per capita renewable water resources, 2014	1 135 m³/inhabitant/year	
Irrigation districts	2	Per capita renewable water resources, 2030	899 m³/inhabitant/year	
Surface area	245 678 hectares	Degree of water stress, 2014	80% (High)	




Hydropower (volume allocated)

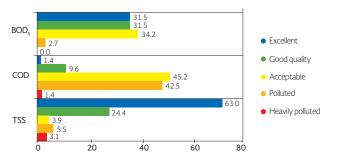
Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	44	66	
Installed capacity (m³/s)	12.37	9.86	
Flow processed (m ³ /s)	7.17	6.87	

Note: The projection considers the population at the mid-point of the indicated year.


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	76		
COD	76		
TSS	202		

Coverage, 2010 (%)			
	Drinking water	Sanitation	
Regional	95.46	93.08	
Urban	97.20	95.43	
Rural	76.59	67.68	

Hydrological-administrative region: II. Northwest River basin organization with its headquarters in: Hermosillo, Sonora				
Conte	extual data	Renewable water resources, 2014		
Number of municipalities	78	Normal annual precipitation 1981-2010	428 mm	
Total population, 2014	2 803 163 inhabitants	Mean surface runoff	5 066 hm³/year	
Urban	2 351 378 inhabitants	Number of aquifers	62	
Rural	451 785 inhabitants	Mean aquifer recharge	3 207 hm³/year	
Total population, 2030	3 356 804 inhabitants	Per capita renewable water resources, 2014	2 951 m³/inhabitant/year	
Irrigation districts	7	Per capita renewable water resources, 2030	2 465 m³/inhabitant/year	
Surface area	466 272 hectares	Degree of water stress, 2014	81% (High)	


Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	24	101	
Installed capacity (m³/s)	5.58	4.94	
Flow processed (m ³ /s)	2.29	3.44	

5 2 1 4

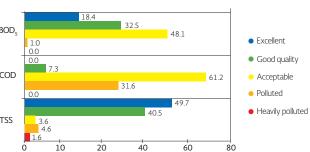
Note: The projection considers the population at the mid-point of the indicated year.

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	73	
COD	73	
TSS	127	

Coverage, 2010 (%)		
	Drinking water	Sanitation
Regional	96.28	88.08
Urban	97.31	94.68
Rural	90.95	53.97

Hydrological-administrative region: III. Northern Pacific River basin organization with its headquarters in: Culiacan, Sinaloa			
Contextual data Renewable water resources, 2014			esources, 2014
Number of municipalities	51	Normal annual precipitation 1981-2010	765 mm
Total population, 2014	4 467 253 inhabitants	Mean surface runoff	22 519 hm³/year
Urban	3 087 605 inhabitants	Number of aquifers	24
Rural	1 379 649 inhabitants	Mean aquifer recharge	3 076 hm³/year
Total population, 2030	5 056 867 inhabitants	Per capita renewable water resources, 2014	5 730 m³/inhabitant/year
Irrigation districts	9	Per capita renewable water resources, 2030	5 062 m³/inhabitant/year
Surface area	806 643 hectares	Degree of water stress, 2014	42% (Medium)

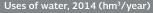
Hydropower (volume allocated)

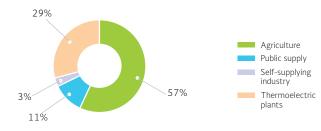

11 010

Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	156	362	
Installed capacity (m³/s)	9.47	10.26	
Flow processed (m ³ /s)	8.44	7.88	

 $\ensuremath{\textbf{Note:}}$ The projection considers the population at the mid-point of the indicated year.




Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	206	
COD	206	
TSS	306	

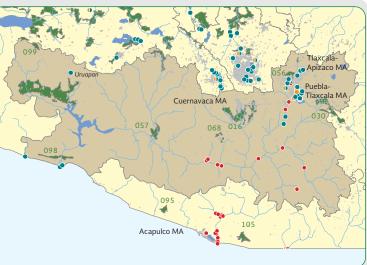


Coverage, 2010 (%)		
	Drinking water	Sanitation
Regional	91.29	87.45
Urban	98.03	96.60
Rural	76.98	68.01

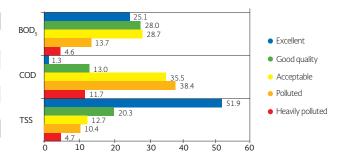
Hydrological-administrative region: IV. Balsas River basin organization with its headquarters in: Cuernavaca, Morelos			
Contextual data Renewable water resources, 2014			esources, 2014
Number of municipalities	420	Normal annual precipitation 1981-2010	962 mm
Total population, 2014	11 686 789 inhabitants	Mean surface runoff	16 805 hm³/year
Urban	8 260 213 inhabitants	Number of aquifers	45
Rural	3 426 576 inhabitants	Mean aquifer recharge	5 351 hm³/year
Total population, 2030	13 315 109 inhabitants	Per capita renewable water resources, 2014	1 896 m³/inhabitant/year
Irrigation districts	9	Per capita renewable water resources, 2030	1 664 m³/inhabitant/year
Surface area	199 396 hectares	Degree of water stress, 2014	49% (High)

Offstream uses	Total	Surface water	Groundwater
Agriculture	6 1 1 3	5 009	1 104
Public supply	1 218	604	614
Self-supplying industry	305	216	89
Thermoelectric plants	3 1 4 8	3 1 2 2	26
Total	10784	8 951	1 833
Instream uses			
Hydropower (volume allocated)		34 352	

 Municipal plants, 2014

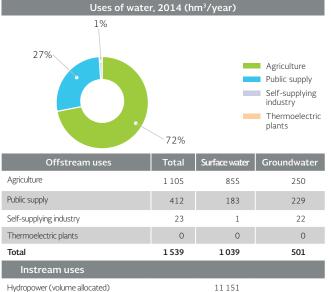

 Drinking water
 Wastewater

 Number in operation
 23
 199


 Installed capacity (m³/s)
 22.89
 9.89

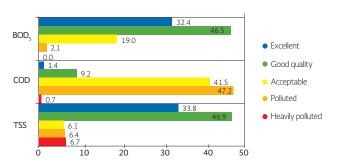
 Flow processed (m³/s)
 17.25
 7.54

Note: The projection considers the population at the mid-point of the indicated year.


Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	307	
COD	307	
TSS	316	

Coverage, 2010 (%)		
	Drinking water	Sanitation
Regional	85.76	86.87
Urban	91.74	94.47
Rural	71.80	69.13

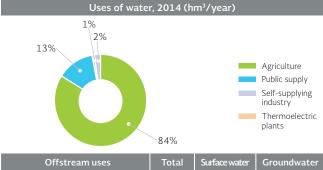
Hydrological-administrative region: V. Southern Pacific River basin organization with its headquarters in: Oaxaca, Oaxaca			
Contextual data Renewable water resources, 2014			esources, 2014
Number of municipalities	378	Normal annual precipitation 1981-2010	855 mm
Total population, 2014	5 024 088 inhabitants	Mean surface runoff	28 629 hm³/year
Urban	3 028 638 inhabitants	Number of aquifers	36
Rural	1 995 450 inhabitants	Mean aquifer recharge	1 936 hm³/year
Total population, 2030	5 399 687 inhabitants	Per capita renewable water resources, 2014	6 084 m³/inhabitant/year
Irrigation districts	5	Per capita renewable water resources, 2030	5 660 m³/inhabitant/year
Surface area	71 927 hectares	Degree of water stress, 2014	5% (No stress)


Hydropower (volume allocated)

Municipal plants, 2014		
	Drinking water	Wastewater
Number in operation	9	94
Installed capacity (m³/s)	3.23	4.92
Flow processed (m ³ /s)	2.61	4.01

Note: The projection considers the population at the mid-point of the indicated year.

095 • Oaxaca MA 105 104 Acapulco MA 歸 110

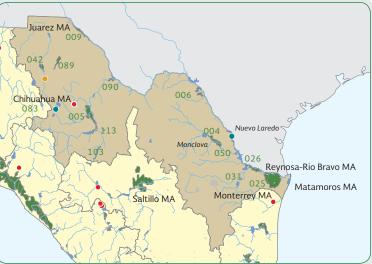

Surface water quality, 2014		
Number of monitoring sites according	g to water quality indicator	
BOD _s	142	
COD	142	
TSS	358	

Coverage, 2010 (%)			
Drinking water Sanitation			
Regional	75.60	72.55	
Urban	83.82	89.49	
Rural	63.66	47.94	

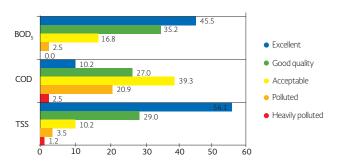
Hydrological-administrative region: VI. Rio Bravo River basin organization with its headquarters in: Monterrey, Nuevo Leon			
Contextual data Renewable water resources, 2014			
Number of municipalities	144	Normal annual precipitation 1981-2010	1 139 mm
Total population, 2014	12 151 555 inhabitants	Mean surface runoff	6 416 hm³/year
Urban	11 313 583 inhabitants	Number of aquifers	102
Rural	837 972 inhabitants	Mean aquifer recharge	5 900 hm³/year
Total population, 2030	14 368 012 inhabitants	Per capita renewable water resources, 2014	1 014 m³/inhabitant/year
Irrigation districts	13	Per capita renewable water resources, 2030	857 m³/inhabitant/year
Surface area	469 451 hectares	Degree of water stress, 2014	77% (High)

Offsulealliuses	IULAI	Juillace waller	Groundwater
Agriculture	7 939	4 323	3 6 1 6
Public supply	1 248	549	699
Self-supplying industry	215	14	202
Thermoelectric plants	111	53	58
Total	9 513	4 938	4 575
Instream uses			
Hydropower (volume allocated)		5 400	

 Municipal plants, 2014


 Drinking water
 Wastewater

 Number in operation
 65
 225


 Installed capacity (m³/s)
 27.17
 34.15

 Flow processed (m³/s)
 14.28
 24.04

Note: The projection considers the population at the mid-point of the indicated year.

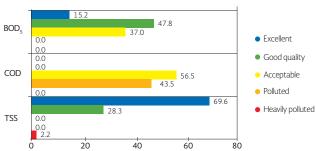
Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅	244		
COD	244		
TSS	255		

Coverage, 2010 (%)			
	Drinking water	Sanitation	
Regional	97.00	95.42	
Urban	98.16	97.23	
Rural	80.94	70.57	

Hydrological-administrative region: VII. Central Basins of the North River basin organization with its headquarters in: Torreon, Coahuila de Zaragoza			
Contextual data Renewable water resources, 2014			
Number of municipalities	78	Normal annual precipitation 1981-2010	372 mm
Total population, 2014	4 515 109 inhabitants	Mean surface runoff	5 529 hm³/year
Urban	3 382 090 inhabitants	Number of aquifers	65
Rural	1 1 3 3 0 1 9 inhabitants	Mean aquifer recharge	2 320 hm³/year
Total population, 2030	5 124 677 inhabitants	Per capita renewable water resources, 2014	1 738 m³/inhabitant/year
Irrigation districts	1	Per capita renewable water resources, 2030	1 532 m³/inhabitant/year
Surface area	71 964 hectares	Degree of water stress, 2014	48% (High)

Uses of water	r, 2014 (h	m³/year)		
3% ^{1%}				
10%				BO
		_	Agriculture	CC
			Public supply	TS
			Self-supplying industry	
		_	Thermoelectric plants	
86	%			
0.66-1	Tatal	C	Construction descentes of	

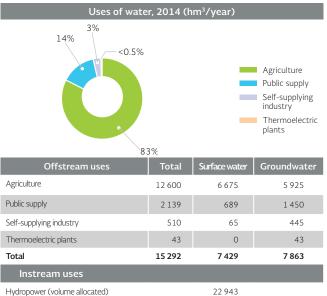
Offstream uses	Total	Surface water	Groundwater
Agriculture	3 292	1 289	2 003
Public supply	381	12	369
Self-supplying industry	99	1	98
Thermoelectric plants	28	0	28
Total	3 801	1 302	2 499
Instream uses			


0

Hydropower (volume allocated)

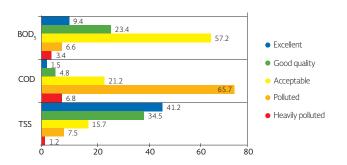
Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	121	151	
Installed capacity (m³/s)	0.71	6.80	
Flow processed (m ³ /s)	0.53	5.36	

Note: The projection considers the population at the mid-point of the indicated year.


Surface water quality, 2014Number of monitoring sites according to water quality indicatorBODs46COD46TSS46

Coverage, 2010 (%)			
	Drinking water	Sanitation	
Regional	95.04	90.72	
Urban	98.84	97.30	
Rural	84.20	71.96	

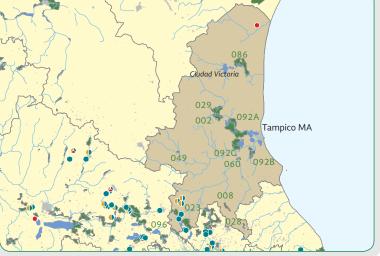
Hydrological-administrative region: VIII. Lerma-Santiago-Pacific River basin organization with its headquarters in: Guadalajara, Jalisco			
Contextual data Renewable water resources, 2014			
Number of municipalities	332	Normal annual precipitation 1981-2010	398 mm
Total population, 2014	23 888 024 inhabitants	Mean surface runoff	25 423 hm³/year
Urban	18 707 502 inhabitants	Number of aquifers	128
Rural	5 180 522 inhabitants	Mean aquifer recharge	9 670 hm³/year
Total population, 2030	27 698 619 inhabitants	Per capita renewable water resources, 2014	1 469 m³/inhabitant/year
Irrigation districts	14	Per capita renewable water resources, 2030	1 267 m³/inhabitant/year
Surface area	501 196 hectares	Degree of water stress, 2014	44% (High)


Hydropower (volume allocated)

Municipal plants, 2014				
Drinking water Wastewater				
Number in operation	164	582		
Installed capacity (m³/s)	20.24	39.84		
Flow processed (m ³ /s)	15.40	30.52		

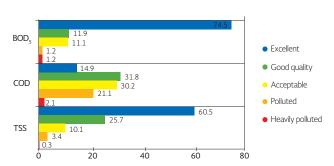
Note: The projection considers the population at the mid-point of the indicated year.

7 043	guascalientes MA
U13 Puerto Vallarta	AA 085 Queretaro MA
093 094 053 053	087 045 033 Morelia MA Toluca MA
	My Color


Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	650	
COD	650	
TSS	746	

Coverage, 2010 (%)			
Drinking water Sanitation			
Regional	94.86	93.05	
Urban	96.92	97.40	
Rural	87.76	78.01	

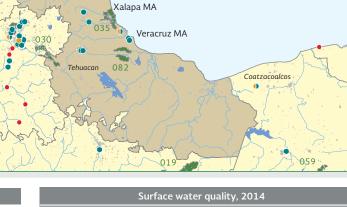
Hydrological-administrative region: IX. Northern Gulf River basin organization with its headquarters in: Ciudad Victoria, Tamaulipas				
Conte	Contextual data Renewable water resources, 2014			
Number of municipalities	148	Normal annual precipitation 1981-2010	808 mm	
Total population, 2014	5 233 402 inhabitants	Mean surface runoff	24 016 hm³/year	
Urban	2 827 164 inhabitants	Number of aquifers	40	
Rural	2 406 238 inhabitants	Mean aquifer recharge	4 069 hm³/year	
Total population, 2030	5 962 759 inhabitants	Per capita renewable water resources, 2014	5 366 m³/inhabitant/year	
Irrigation districts	13	Per capita renewable water resources, 2030	4 710 m³/inhabitant/year	
Surface area	257 993 hectares	Degree of water stress, 2014	21% (Medium)	


Uses of water, 2014 (hm³/year)			
17%	%		Agriculture Public supply Self-supplying industry Thermoelectric plants
Offstream uses	Total	Surface water	Groundwater
Agriculture	4 3 4 4	3 455	889

Agriculture	4 3 4 4	3 455	889
Public supply	1018	858	159
Self-supplying industry	470	430	40
Thermoelectric plants	67	61	6
Total	5 899	4 805	1 094
Instream uses			
Hydropower (volume allocated)		1 959	

Municipal plants, 2014 Number in operation 47 86 8.19 Installed capacity (m³/s) 5.53 Flow processed (m³/s) 7.40 4.16

Note: The projection considers the population at the mid-point of the indicated year.

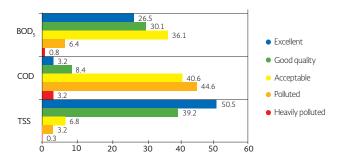

Surface water quality, 2014 BOD 243 COD 242 TSS 296

Coverage, 2010 (%)			
Drinking water Sanitation			
Regional	84.94	72.98	
Urban	96.71	92.13	
Rural	71.83	51.66	

Hydrological-administrative region: X. Central Gulf River basin organization with its headquarters in: Xalapa, Veracruz				
Conte	Contextual data Renewable water resources, 2014			
Number of municipalities	432	Normal annual precipitation 1981-2010	1 626 mm	
Total population, 2014	10 482 417 inhabitants	Mean surface runoff	90 424 hm³/year	
Urban 6 058 319 inhabitants Number of aquifers 22				
Rural	4 424 099 inhabitants	Mean aquifer recharge	4 705 hm³/year	
Total population, 2030 11 606 944 inhabitants Per capita renewable water resources, 2014 9 075 m³/inhabitant/year			9 075 m³/inhabitant/year	
Irrigation districts	2	Per capita renewable water resources, 2030	8 196 m³/inhabitant/year	
Surface area	41 416 hectares	Degree of water stress, 2014	6% (No stress)	

Poza Rica MA

8%	65%		Agriculture Public supply Self-supplying industry Thermoelectric plants
Offstream uses	Total	Surface water	Groundwater
Agriculture	3 5 3 0	2 578	952
Public supply	723	443	280
Self-supplying industry	782	640	141
Thermoelectric plants	414	406	8
Total	5 449	4 068	1 381
Instream uses			
Hydropower (volume allocated)		24 526	


Uses of water, 2014 (hm³/year)

Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	13	137	
Installed capacity (m³/s)	7.09	6.80	
Flow processed (m ³ /s)	4.59	5.30	

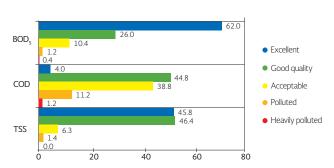
Note: The projection considers the population at the mid-point of the indicated year.

Surface water quality, 2014Number of monitoring sites according to water quality indicatorBODs249COD249TSS309

.,

Coverage, 2010 (%)			
Drinking water Sanitation			
Regional	81.24	81.60	
Urban	91.18	94.69	
Rural	68.18	64.40	

Hydrological-administrative region: XI. Southern Border River basin organization with its headquarters in: Tuxtla Gutierrez, Chiapas				
Cont	Contextual data Renewable water resources, 2014			
Number of municipalities	137	Normal annual precipitation 1981-2010	1 842 mm	
Total population, 2014	7 571 983 inhabitants	Mean surface runoff	121 742 hm³/year	
Urban	3 938 578 inhabitants	Number of aquifers	23	
Rural	3 633 404 inhabitants	Mean aquifer recharge	22 718 hm³/year	
Total population, 2030	8 844 011 inhabitants	Per capita renewable water resources, 2014	19 078 m³/inhabitant/year	
Irrigation districts	4	Per capita renewable water resources, 2030	16 334 m³/inhabitant/year	
Surface area	36 180 hectares	Degree of water stress, 2014	2% (No stress)	

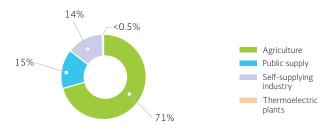

Uses of water, 2014 (hm³/year)	
21%	Agriculture Public supply Self-supplying industry
	Thermoelectric plants
74%	

Offstream uses	Total	Surface water	Groundwater
Agriculture	1740	1 222	518
Public supply	484	354	129
Self-supplying industry	114	53	61
Thermoelectric plants	0	0	0
Total	2 337	1 630	708
Instream uses			
Hydropower (volume allocated)		61 721	

Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	45	114	
Installed capacity (m³/s)	14.62	4.42	
Flow processed (m ³ /s)	11.05	2.52	

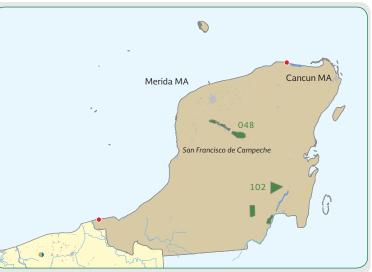
Note: The projection considers the population at the mid-point of the indicated year.

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	250		
COD	250		
TSS	347		

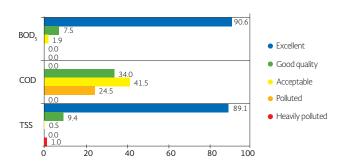


Coverage, 2010 (%)			
	Drinking water	Sanitation	
Regional	78.51	85.61	
Urban	88.72	96.60	
Rural	67.63	73.90	

Hydrological-administrative region: XII. Yucatan Peninsula River basin organization with its headquarters in: Merida, Yucatan				
Contextual data Renewable water resources, 2014			esources, 2014	
Number of municipalities	127	Normal annual precipitation 1981-2010	1 207 mm	
Total population, 2014	4 515 526 inhabitants	Mean surface runoff	4 008 hm³/year	
Urban	3 792 230 inhabitants	Number of aquifers	4	
Rural	723 296 inhabitants	Mean aquifer recharge	25 316 hm³/year	
Total population, 2030	5 834 470 inhabitants	Per capita renewable water resources, 2014	6 494 m³/inhabitant/year	
Irrigation districts	2	Per capita renewable water resources, 2030	5 026 m³/inhabitant/year	
Surface area	18 490 hectares	Degree of water stress, 2014	14% (Low)	

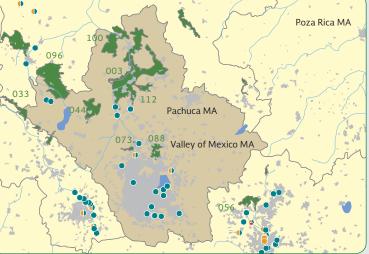


Offstream uses	Total	Surface water	Groundwater
Agriculture	2 925	140	2 785
Public supply	611	<0.5	610
Self-supplying industry	601	0	601
Thermoelectric plants	13	0	13
Total	4 1 4 9	141	4 009
Instream uses			
Hydropower (volume allocated)		0	


Hydropower (volume allocated)

Municipal plants, 2014			
	Drinking water	Wastewater	
Number in operation	2	81	
Installed capacity (m³/s)	0.03	2.95	
Flow processed (m ³ /s)	0.02	2.03	

Note: The projection considers the population at the mid-point of the indicated year.


Surface water quality, 2014			
Number of monitoring sites according	g to water quality indicator		
BOD ₅	53		
COD	53		
TSS	202		

Coverage, 2010 (%)			
	Drinking water	Sanitation	
Regional	94.22	84.48	
Urban	94.89	89.24	
Rural	90.87	60.67	

Hydrological-administrative region: XIII. Waters of the Valley of Mexico River basin organization with its headquarters in: Mexico City, Federal District				
Contextual data Renewable water res			esources, 2014	
Number of municipalities	121	Normal annual precipitation 1981-2010	649 mm	
Total population, 2014	23 005 142 inhabitants	Mean surface runoff	1 112 hm³/year	
Urban	21 798 902 inhabitants	Number of aquifers	14	
Rural	1 206 240 inhabitants	Mean aquifer recharge	2 346 hm³/year	
Total population, 2030	25 400 649 inhabitants	Per capita renewable water resources, 2014	150 m³/inhabitant/year	
Irrigation districts	5	Per capita renewable water resources, 2030	136 m³/inhabitant/year	
Surface area	97 950 hectares	Degree of water stress, 2014	138% (Very high)	

Uses of water	, 2014 (hı	m³/year)		
4% 2%	49%		Agriculture Public supply Self-supplying industry Thermoelectric plants	E
Offstream uses	Total	Surface water	Groundwater	BC
Agriculture	2 352	1 990	362	DC
Public supply	2 1 3 4	351	1 783	
Self-supplying industry	172	31	141	C
Thermoelectric plants	113	46	68	
Total	4771	2 418	2 354	

221

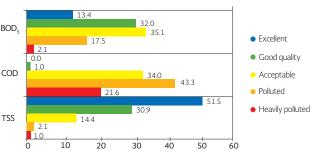
7.58

Instream uses Hydropower (volume allocated)

Flow processed (m³/s)

 Municipal plants, 2014

 Drinking water
 Wastewater

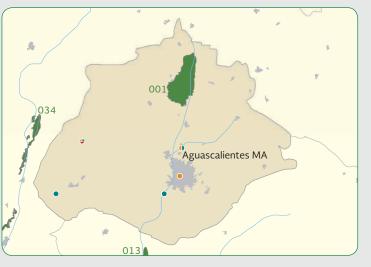

 Number in operation
 66
 139

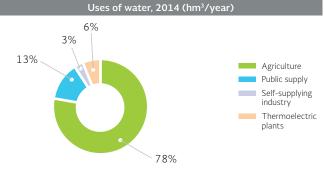
 Installed capacity (m³/s)
 6.47
 11.54

Note: The projection considers the population at the mid-point of the indicated year.

5.25

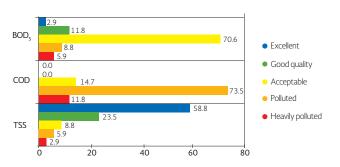
Surface water quality, 2014Number of monitoring sites according to water quality indicatorBODs97COD97TSS97




Coverage, 2010 (%)				
	Drinking water	Sanitation		
Regional	96.79	97.82		
Urban	97.36	98.68		
Rural	86.75	82.68		

Annex B. Relevant data by state

1. Aguascalientes				
Cont	extual data	Wastewater treatment p	plants, 2014	
Number of municipalities	11		Municipal	Industrial
Total population, 2014	1 270 174 inhabitants	Number in operation	134	47
Urban	1 030 342 inhabitants	Installed capacity (m ³ /s)	4.73	0.34
Rural	239 832 inhabitants	Flow processed (m ³ /s)	3.28	0.14
Total population, 2030	1 507 807 inhabitants			
Normal precipitation 1981-2010	515 mm			

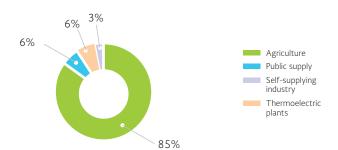


Offstream uses	Total	Surface water	Groundwater
Agriculture	480	176	304
Public supply	127	0	127
Self-supplying industry	15	2	13
Thermoelectrics	0	0	0
Total	622	178	444
Instream uses			
Hydropower (volume allocated)		0	

Coverage, 2010 (%) State-wide 98.84 98.09 Urban 99.68 99.37 95.28 92.65 Rural

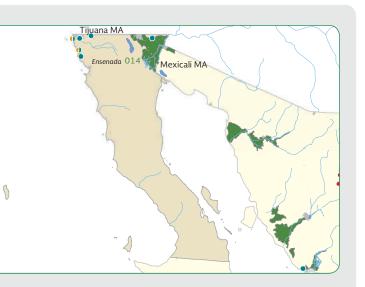
Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	34		
COD	34		
TSS	34		

Distribution of sites by indicator and classification (%)

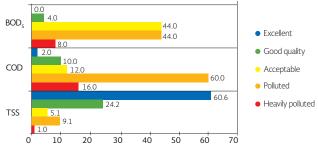


Municipal purification plants, 2014			
Number in operation 3			
Installed capacity (m ³ /s)	0.044		
Flow processed (m ³ /s)	0.026		

2.Baja California				
Conte	extual data	Wastewater trea	atment plants, 2014	
Number of municipalities	5		Municipal	Industrial
Total population, 2014	3 432 944 inhabitants	Number in operation	38	62
Urban	3 160 700 inhabitants	Installed capacity (m³/s)	7.60	0.50
Rural	272 244 inhabitants	Flow processed (m ³ /s)	5.32	0.49
Total population, 2030	4 169 240 inhabitants			
Normal precipitation 1981-2010	173 mm			

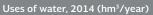


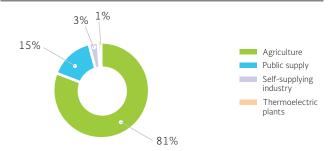
Uses of water, 2014 (hm³/year)



Offstream uses	Total	Surface water	Groundwater
Agriculture	2 586	1 522	1064
Public supply	188	120	68
Self-supplying industry	83	69	13
Thermoelectrics	192	0	192
Total	3 048	1711	1 337
Instream uses			
Hydropower (volume allocated)		126	

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	95.87	93.08		
Urban	97.62	95.34		
Rural	74.50	65.65		

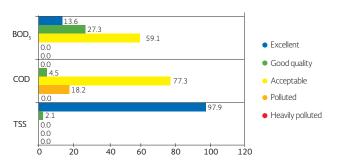

Surface water quality, 2014 BOD₅ 50 COD 50 TSS 99



Municipal purification plants, 2014		
Number in operation	31	
Installed capacity (m ³ /s)	12.156	
Flow processed (m³/s)	6.980	

3. Baja California Sur				
Cont	extual data	Wastewater trea	atment plants, 2014	
Number of municipalities	5		Municipal	Industrial
Total population, 2014	741 037 inhabitants	Number in operation	27	26
Urban	644 768 inhabitants	Installed capacity (m ³ /s)	1.66	4.96
Rural	96 269 inhabitants	Flow processed (m ³ /s)	1.25	4.96
Total population, 2030	1 106 468 inhabitants			
Normal precipitation 1981-2010	222 mm			



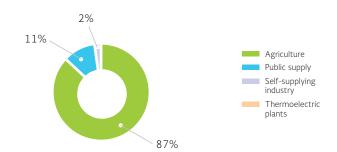


Offstream uses	Total	Surface water	Groundwater
Agriculture	334	29	306
Public supply	63	3	60
Self-supplying industry	14	3	11
Thermoelectrics	4	0	4
Total	415	35	381
Instream uses			
Hydropower (volume allocated)		0	

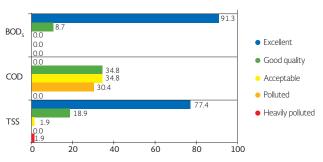
Coverage, 2010 (%) State-wide 92.56 96.68 Urban 94.40 96.56 80.65 75.10 Rural

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	22	
COD	22	
TSS	97	

Municipal purification plants, 2014	
Number in operation	13
Installed capacity (m ³ /s)	0.209
Flow processed (m ³ /s)	0.189


I

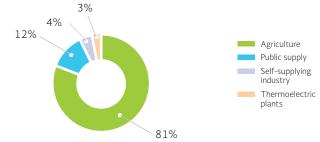
4. Campeche				
Cor	itextual data	Wastewater tre	atment plants, 2014	
Number of municipalities	11		Municipal	Industrial
Total population, 2014	894 136 inhabitants	Number in operation	20	129
Urban	665 594 inhabitants	Installed capacity (m ³ /s)	0.16	1.93
Rural	228 543 inhabitants	Flow processed (m ³ /s)	0.13	1.92
Total population, 2030	1 098 636 inhabitants			
Normal precipitation 1981-2010	1 252 mm			


Uses of water, 2014 (hm³/year)

Offstream uses	Total	Surface water	Groundwater
Agriculture	1 1 1 2	139	972
Public supply	144	0	144
Self-supplying industry	25	0	24
Thermoelectrics	4	0	4
Total	1 284	140	1 144
Instream uses			
Hydropower (volume allocated)		0	

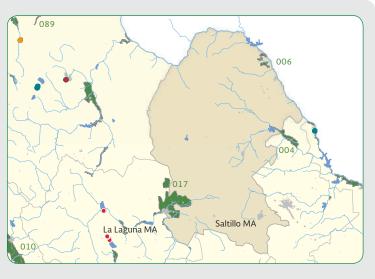
Coverage, 2010 (%)		
	Drinking water	Sanitation
State-wide	89.99	84.92
Urban	92.39	92.34
Rural	82.95	63.17

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	23	
COD	23	
TSS	53	

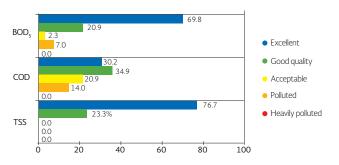


Municipal purification plants, 2014		
Number in operation	2	
Installed capacity (m³/s)	0.025	
Flow processed (m ³ /s)	0.023	

5. Coahuila de Zaragoza				
Cont	extual data	Wastewater trea	Wastewater treatment plants, 2014	
Number of municipalities	38		Municipal	Industrial
Total population, 2014	2 925 594 inhabitants	Number in operation	21	59
Urban	2 639 717 inhabitants	Installed capacity (m ³ /s)	4.98	0.76
Rural	285 876 inhabitants	Flow processed (m ³ /s)	3.88	0.52
Total population, 2030	3 427 879 inhabitants			
Normal precipitation 1981-2010	332 mm			



Offstream uses	Total	Surface water	Groundwater
Agriculture	1648	848	800
Public supply	240	18	222
Self-supplying industry	75	1	74
Thermoelectrics	75	47	27
Total	2 0 3 8	915	1 123
Instream uses			

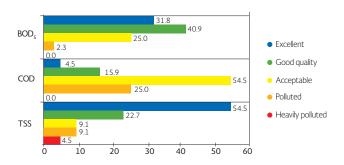

1465

Coverage, 2010 (%)				
Drinking water Sanitation				
State-wide	98.32	95.41		
Urban	99.20	97.54		
Rural	90.44	76.46		


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅ 43			
COD	43		
TSS	43		

Distribution of sites by indicator and classification (%)

Municipal purification plants, 2014				
Number in operation 24				
Installed capacity (m ³ /s)	2.133			
Flow processed (m ³ /s)	1.708			


6. Colima					
Con	textual data	Wastewater trea	Wastewater treatment plants, 2014		
Number of municipalities	10		Municipal	Industrial	
Total population, 2014	710 982 inhabitants	Number in operation	60	7	
Urban	639 229 inhabitants	Installed capacity (m ³ /s)	2.29	0.44	
Rural	71 753 inhabitants	Flow processed (m ³ /s)	1.61	0.31	
Total population, 2030	891 050 inhabitants				
Normal precipitation 1981-2010	896 mm				

O53 Colima

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅ 44			
COD	44		
TSS	66		

Distribution of sites by indicator and classification (%)

Municipal purification plants, 2014			
Number in operation 58			
Installed capacity (m ³ /s)	0.014		
Flow processed (m ³ /s)	0.005		

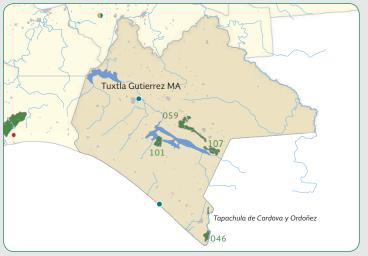
	93%	-	 Thermoelectric plants
Offstream uses	Total	Surface water	Groundwater
Agriculture	1661	1 359	302
Public supply	97	39	58
Self-supplying industry	27	4	23
Thermoelectrics	0	0	0
Total	1785	1 401	383
Instream uses			

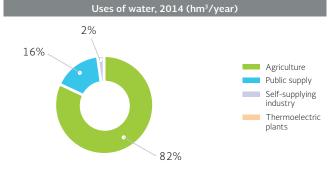
Uses of water, 2014 (hm³/year)

AgriculturePublic supplySelf-supplying industry

2%

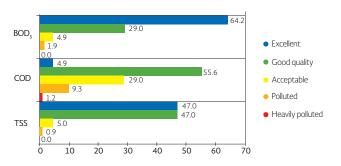
5%


Hydropower (volume allocated)


Coverage, 2010 (%)				
Drinking water Sanitation				
State-wide	98.57	98.69		
Urban	99.48	99.19		
Rural	91.35	94.68		

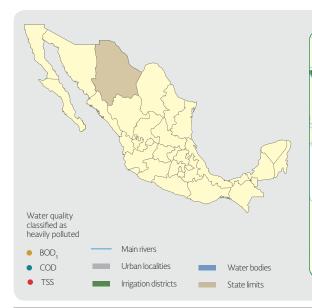
0

7. Chiapas				
Cont	extual data	Wastewater trea	Wastewater treatment plants, 2014	
Number of municipalities	118		Municipal	Industrial
Total population, 2014	5 186 572 inhabitants	Number in operation	33	91
Urban	2 552 810 inhabitants	Installed capacity (m ³ /s)	1.60	8.36
Rural	2 633 762 inhabitants	Flow processed (m ³ /s)	0.75	6.42
Total population, 2030	6 129 218 inhabitants			
Normal precipitation 1981-2010	1 923 mm			

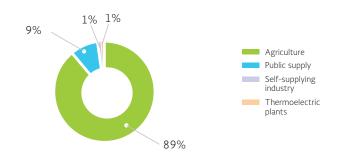


Offstream uses	Total	Surface water	Groundwater
Agriculture	1 506	1114	392
Public supply	300	247	52
Self-supplying industry	38	2	36
Thermoelectrics	0	0	0
Total	1844	1 363	480
Instream uses			

61721


Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	77.29	81.00		
Urban	87.47	95.75		
Rural	67.35	66.84		

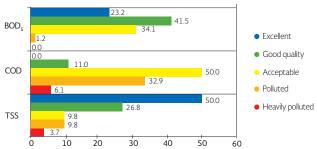
Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	162	
COD	162	
TSS	219	


Municipal purification plants, 2014		
Number in operation	6	
Installed capacity (m ³ /s)	4.662	
Flow processed (m ³ /s)	2.588	

8. Chihuahua				
Contextual data		Wastewater treatment plants, 2014		
Number of municipalities	67		Municipal	Industrial
Total population, 2014	3 673 342 inhabitants	Number in operation	168	15
Urban	3 123 474 inhabitants	Installed capacity (m³/s)	10.17	0.65
Rural	549 868 inhabitants	Flow processed (m ³ /s)	6.97	0.28
Total population, 2030	4 177 815 inhabitants			
Normal precipitation 1981-2010	377 mm			

Juarez MA 009 042 089 Chihuahua MA 083 005 113 103 066 074

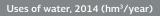
Uses of water, 2014 (hm³/year)


Offstream uses	Total	Surface water	Groundwater
Agriculture	4 578	1 938	2 641
Public supply	490	51	439
Self-supplying industry	54	6	48
Thermoelectrics	28	0	28
Total	5 150	1 995	3 155
Instream uses			
		2 2 1 1	

Hydropower (volume allocated)

2 311

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	94.57	92.09		
Urban	98.29	97.66		
Rural	74.22	61.62		


Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	82	
COD	82	
TSS	82	



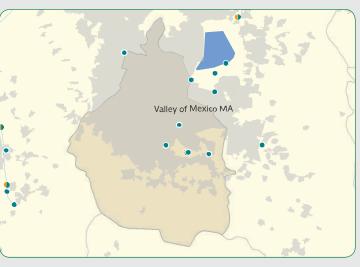
Municipal purification plants, 2014		
Number in operation	4	
Installed capacity (m³/s)	0.650	
Flow processed (m ³ /s)	0.380	

9. Federal District (Mexico City)				
Cont	extual data	Wastewater trea	atment plants, 2014	
Number of municipalities	16		Municipal	Industrial
Total population, 2014	8 874 724 inhabitants	Number in operation	29	7
Urban	8 825 767 inhabitants	Installed capacity (m ³ /s)	5.62	0.01
Rural	48 957 inhabitants	Flow processed (m ³ /s)	3.42	<0.01
Total population, 2030	8 439 786 inhabitants			
Normal precipitation 1981-2010	869 mm			

Offstream uses	Total	Surface water	Groundwater
Agriculture	1	1	1
Public supply	1 090	309	781
Self-supplying industry	32	0	32
Thermoelectrics	0	0	0
Total	1 123	310	813
Instream uses			

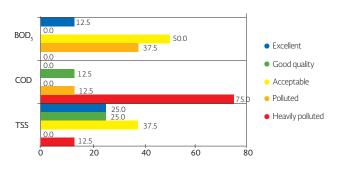
0

Hydropower (volume allocated)


 Coverage, 2010 (%)

 Drinking water
 Sanitation

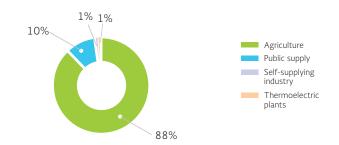
 State-wide
 97.67
 99.07


 Urban
 97.92
 99.10

 Rural
 44.89
 92.69

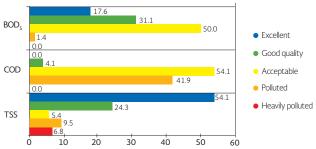
Surface water quality, 2014		
Number of monitoring sites according	g to water quality indicator	
BOD _s	8	
COD	8	
TSS	8	

Distribution of sites by indicator and classification (%)


Municipal purification plants, 2014		
Number in operation	43	
Installed capacity (m ³ /s)	4.791	
Flow processed (m ³ /s)	3.806	

10. Durango				
Con	textual data	Wastewater trea	atment plants, 2014	
Number of municipalities	39		Municipal	Industrial
Total population, 2014	1 746 805 inhabitants	Number in operation	178	43
Urban	1 215 107 inhabitants	Installed capacity (m ³ /s)	4.51	1.08
Rural	531 698 inhabitants	Flow processed (m ³ /s)	3.41	0.62
Total population, 2030	1 983 389 inhabitants			
Normal precipitation 1981-2010	506 mm			

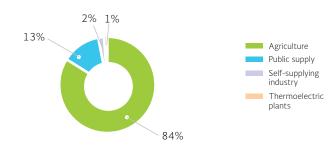
La Laguna MA 052 Victoria de Durango


5	of	water,	2014	(hm³/	year)	

Offstream uses	Total	Surface water	Groundwater
Agriculture	1 363	743	619
Public supply	154	12	141
Self-supplying industry	17	2	16
Thermoelectrics	12	0	12
Total	1 545	757	788
Instream uses			
Hydropower (volume allocated)		29	


Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	93.87	87.61		
Urban	99.31	96.73		
Rural	82.12	67.91		

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	74		
COD	74		
TSS	74		



Municipal purification plants, 2014		
Number in operation 58		
Installed capacity (m ³ /s)	0.130	
Flow processed (m ³ /s)	0.125	

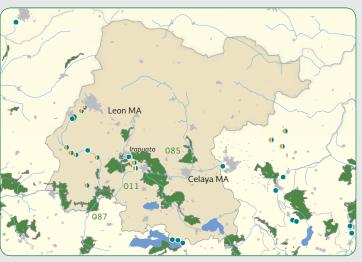
11. Guanajuato				
Cont	extual data	Wastewater tre	atment plants, 2014	
Number of municipalities	46		Municipal	Industrial
Total population, 2014	5 769 524 inhabitants	Number in operation	72	89
Urban	4 054 721 inhabitants	Installed capacity (m³/s)	7.29	0.70
Rural	1 714 804 inhabitants	Flow processed (m ³ /s)	5.24	0.56
Total population, 2030	6 361 401 inhabitants			
Normal precipitation 1981-2010	605 mm			

Offstream uses	Total	Surface water	Groundwater
Agriculture	3 4 4 4	1 337	2 107
Public supply	547	94	453
Self-supplying industry	72	0	72
Thermoelectrics	21	0	21
Total	4 0 8 3	1 431	2 652
Instream uses			

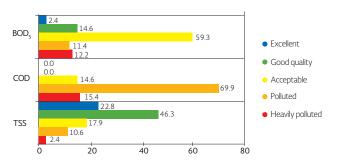
800

I

Hydropower (volume allocated)

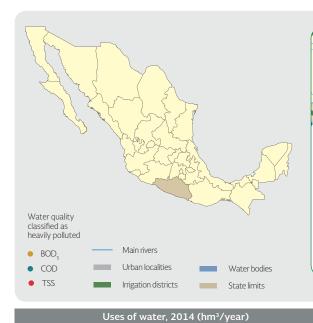

 Coverage, 2010 (%)

 Drinking water
 Sanitation


 State-wide
 94.36
 90.32

 Urban
 96.95
 97.57

 Rural
 88.37
 73.57



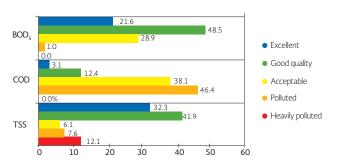
Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	123	
COD	123	
TSS	123	

Municipal purification plants, 2014		
Number in operation	30	
Installed capacity (m ³ /s)	0.680	
Flow processed (m ³ /s)	0.493	

12. Guerrero				
Con	textual data	Wastewater tre	atment plants, 2014	
Number of municipalities	81		Municipal	Industrial
Total population, 2014	3 546 710 inhabitants	Number in operation	60	7
Urban	2 096 023 inhabitants	Installed capacity (m ³ /s)	4.21	0.03
Rural	1 450 686 inhabitants	Flow processed (m ³ /s)	3.51	0.02
Total population, 2030	3 772 110 inhabitants			
Normal precipitation 1981-2010	1 160 mm			

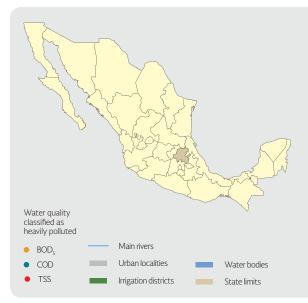
068 095 Acapúlco MA 105 Ą 104

9%	
	Agriculture Public supply
20%-	Self-supplying industry


Thermoelectric plants

71%

Offstream uses	Total	Surface water	Groundwater
Agriculture	893	780	113
Public supply	383	212	170
Self-supplying industry	25	0	24
Thermoelectrics	3 1 2 2	3 1 2 2	0
Total	4 422	4 115	308
Instream uses			
Hydropower (volume allocated)		15 799	

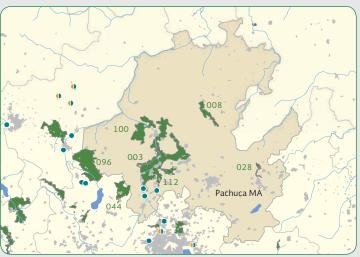

Coverage, 2010 (%) 74.05 State-wide 69.83 Urban 81.14 90.52 Rural 54.19 51.27

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	97	
COD	97	
TSS	198	

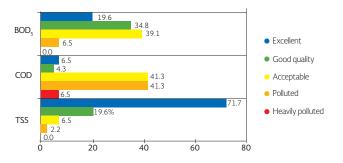


Municipal purification plants, 2014		
Number in operation	13	
Installed capacity (m ³ /s)	3.548	
Flow processed (m ³ /s)	3.186	

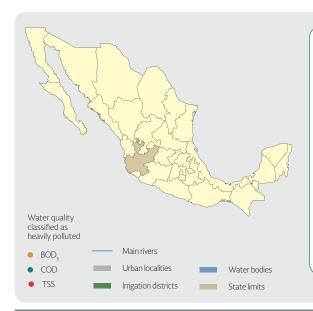
13. Hidalgo				
Contextual data		Wastewater trea	Wastewater treatment plants, 2014	
Number of municipalities	84		Municipal	Industrial
Total population, 2014	2 842 784 inhabitants	Number in operation	24	46
Urban	1 540 265 inhabitants	Installed capacity (m ³ /s)	0.51	1.84
Rural	1 302 518 inhabitants	Flow processed (m ³ /s)	0.30	1.38
Total population, 2030	3 329 765 inhabitants			
Normal precipitation	725 mm			

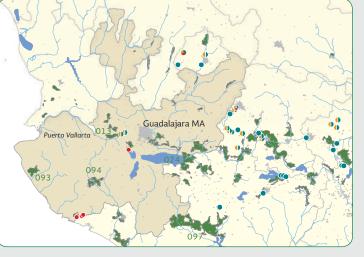


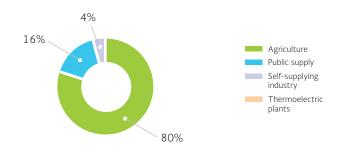
Offstream uses	Total	Surface water	Groundwater
Agriculture	2 099	1 902	197
Public supply	176	47	129
Self-supplying industry	33	14	19
Thermoelectrics	83	22	61
Total	2 391	1 985	406
Instream uses			


1 215

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	90.66	85.01		
Urban	96.89	96.72		
Rural	83.91	72.33		

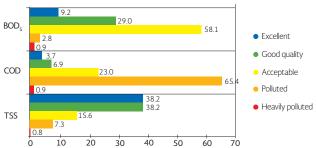

Surface water quality, 2014		
Number of monitoring sites according	g to water quality indicator	
BOD _s	46	
COD	46	
TSS	46	


Distribution of sites by indicator and classification (%)



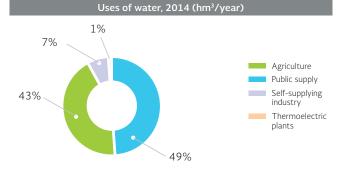
Municipal purification plants, 2014		
Number in operation	23	
Installed capacity (m ³ /s)	0.362	
Flow processed (m ³ /s)	0.356	

14. Jalisco				
Contextual data		Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	125		Municipal	Industrial
Total population, 2014	7 838 010 inhabitants	Number in operation	149	71
Urban	6 822 923 inhabitants	Installed capacity (m ³ /s)	15.39	1.54
Rural	1 015 087 inhabitants	Flow processed (m ³ /s)	12.09	1.54
Total population, 2030	9 102 259 inhabitants			
Normal precipitation 1981-2010	844 mm			



Offstream uses	Total	Surface water	Groundwater
Agriculture	3 711	1730	1981
Public supply	764	403	362
Self-supplying industry	198	8	190
Thermoelectrics	0	0	0
Total	4 673	2 140	2 532
Instream uses			
Hydropower (volume allocated)		8 943	

Coverage, 2010 (%) 95.77 97.38 State-wide Urban 97.40 98.94 Rural 85.33 87.39


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	217		
COD	217		
TSS	262		

Municipal purification plants, 2014		
Number in operation	43	
Installed capacity (m ³ /s)	16.362	
Flow processed (m³/s)	12.362	

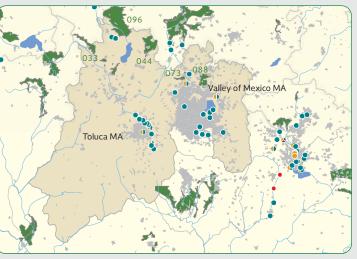
15. Mexico				
Con	textual data	Wastewater treatment plants, 2014		
Number of municipalities	125		Municipal	Industrial
Total population, 2014	16 618 929 inhabitants	Number in operation	148	226
Urban	14 586 367 inhabitants	Installed capacity (m ³ /s)	9.08	2.79
Rural	2 032 562 inhabitants	Flow processed (m ³ /s)	6.87	1.94
Total population, 2030	20 167 433 inhabitants			
Normal precipitation 1981-2010	900 mm			

Offstream uses	Total	Surface water	Groundwater
Agriculture	1157	807	350
Public supply	1 343	318	1 024
Self-supplying industry	179	38	141
Thermoelectrics	31	24	7
Total	2 709	1 186	1 523
Instream uses			

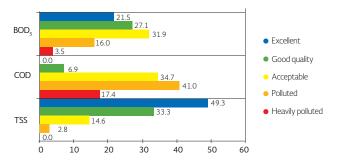
2064

I

Hydropower (volume allocated)


 Coverage, 2010 (%)

 Drinking water
 Sanitation

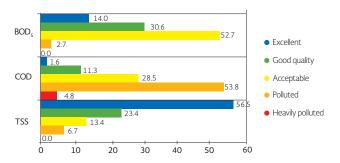

 State-wide
 93.97
 93.61

 Urban
 96.16
 97.21

 Rural
 79.51
 69.77

Surface water quality, 2014				
Number of monitoring sites according to water quality indicator				
BOD _s 144				
COD	144			
TSS	144			

Municipal purification plants, 2014			
Number in operation 11			
Installed capacity (m ³ /s)	22.164		
Flow processed (m ³ /s)	16.739		


16. Michoacan de Ocampo					
Con	textual data	Wastewater tre	Wastewater treatment plants, 2014		
Number of municipalities	113		Municipal	Industrial	
Total population, 2014	4 563 849 inhabitants	Number in operation	38	83	
Urban	3 129 464 inhabitants	Installed capacity (m ³ /s)	4.05	8.33	
Rural	1 434 386 inhabitants	Flow processed (m ³ /s)	3.27	7.15	
Total population, 2030	4 960 773 inhabitants				
Normal precipitation 1981-2010	848 mm				

Surface water quality, 2014				
Number of monitoring sites according to water quality indicator				
BOD _s	186			
COD	186			
TSS	209			

Distribution of sites by indicator and classification (%)

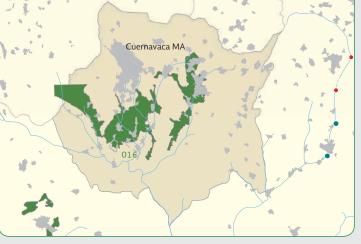
Municipal purification plants, 2014			
Number in operation 5			
Installed capacity (m³/s)	3.025		
Flow processed (m ³ /s)	2.495		

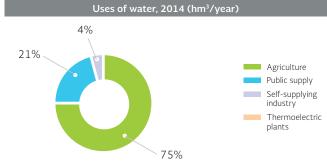
			 Agriculture Public supply Self-supplying industry Thermoelectric plants
	88%		
Offstream uses	Total	Surface water	Groundwater

Instream uses			
Total	5 419	4 110	1 309
Thermoelectrics	48	0	48
Self-supplying industry	223	186	37
Public supply	372	209	163
Agriculture	4 776	3 715	1061

Hydropower (volume allocated)

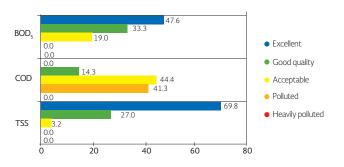
4% 1%


7%



Coverage, 2010 (%)				
Drinking water Sanitation				
State-wide	91.61	87.98		
Urban	95.35	94.18		
Rural	83.48	74.53		

17. Morelos				
Cont	extual data	Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	33		Municipal	Industrial
Total population, 2014	1 897 393 inhabitants	Number in operation	48	97
Urban	1 577 889 inhabitants	Installed capacity (m ³ /s)	2.83	2.13
Rural	319 503 inhabitants	Flow processed (m ³ /s)	1.53	2.09
Total population, 2030	2 222 863 inhabitants			
Normal precipitation 1981-2010	1 000 mm			



Offstream uses	Total	Surface water	Groundwater
Agriculture	986	878	108
Public supply	278	36	242
Self-supplying industry	48	25	23
Thermoelectrics	0	0	0
Total	1 312	938	374
Instream uses			
Hydropower (volume allocated)		0	

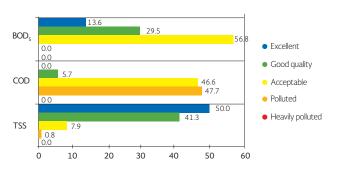
Coverage, 2010 (%) State-wide 91.45 94.98 Urban 95.35 97.00 71.04 84.43 Rural

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	63		
COD	63		
TSS	63		



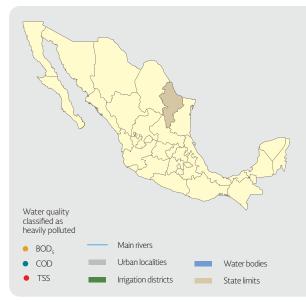
Municipal purification plants, 2014			
Number in operation 3			
Installed capacity (m³/s)	0.006		
Flow processed (m ³ /s)	0.003		

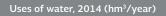
18. Nayarit				
Con	textual data	Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	20		Municipal	Industrial
Total population, 2014	1 201 202 inhabitants	Number in operation	68	6
Urban	838 371 inhabitants	Installed capacity (m ³ /s)	2.79	0.16
Rural	362 830 inhabitants	Flow processed (m ³ /s)	2.25	0.16
Total population, 2030	1 544 709 inhabitants			
Normal precipitation 1981-2010	1 227 mm			

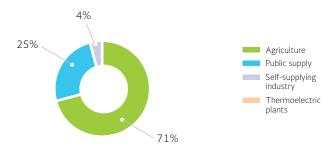

Offstream uses	Total	Surface water	Groundwater
Agriculture	1 094	977	117
Public supply	115	20	94
Self-supplying industry	61	22	39
Thermoelectrics	0	0	0
Total	1 270	1019	251
Instream uses			
Hydropower (volume allocated)		12 2 4 1	

13 341

Coverage, 2010 (%)			
Drinking water Sanitation			
State-wide	92.38	93.07	
Urban	96.67	98.42	
Rural	82.85	81.18	

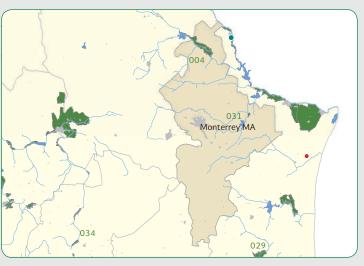


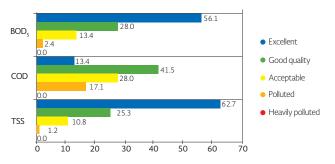

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s 88			
COD	88		
TSS	126		



Municipal purification plants, 2014			
Number in operation 0			
Installed capacity (m³/s)	0		
Flow processed (m ³ /s) 0			

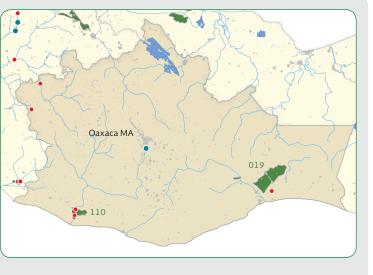
19. Nuevo Leon				
Contextual data Wastewater treatment plants, 2014				
Number of municipalities	51		Municipal	Industrial
Total population, 2014	5 013 589 inhabitants	Number in operation	61	181
Urban	4 742 822 inhabitants	Installed capacity (m ³ /s)	17.62	4.05
Rural	270 767 inhabitants	Flow processed (m ³ /s)	12.48	2.92
Total population, 2030	6 097 769 inhabitants			
Normal precipitation 1981-2010	542 mm			

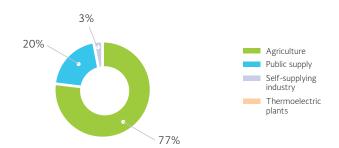




Offstream uses	Total	Surface water	Groundwater
Agriculture	1 474	828	646
Public supply	512	356	156
Self-supplying industry	83	0	83
Thermoelectrics	0	0	0
Total	2 069	1 184	885
Instream uses			
Hydropower (volume allocated)		0	

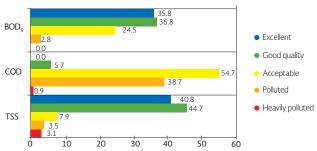
Coverage, 2010 (%) State-wide 96.56 96.04 Urban 97.84 97.77 73.75 63.56 Rural


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	82		
COD	82		
TSS	83		



Municipal purification plants, 2014			
Number in operation 13			
Installed capacity (m ³ /s)	14.748		
Flow processed (m ³ /s)	5.212		

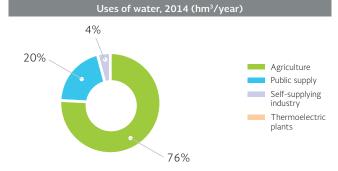
20. Oaxaca					
Con	textual data	Wastewater tre	Wastewater treatment plants, 2014		
Number of municipalities	570		Municipal	Industrial	
Total population, 2014	3 986 206 inhabitants	Number in operation	69	18	
Urban	1 912 696 inhabitants	Installed capacity (m ³ /s)	1.52	2.77	
Rural	2 073 510 inhabitants	Flow processed (m ³ /s)	1.00	2.45	
Total population, 2030	4 293 423 inhabitants				
Normal precipitation 1981-2010	977 mm				


Offstream uses	Total	Surface water	Groundwater
Agriculture	1 005	763	242
Public supply	262	136	126
Self-supplying industry	34	8	26
Thermoelectrics	0	0	0
Total	1 302	907	394
Instream uses			
		14.040	

Hydropower (volume allocated)

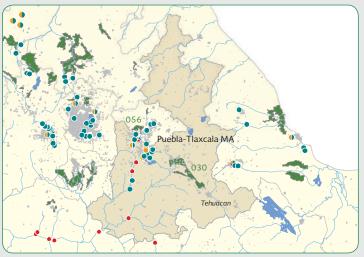
16 869

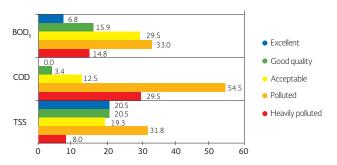
Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	76.07	69.20		
Urban	85.51	88.62		
Rural	67.66	51.89		


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅	106		
COD	106		
TSS	228		

Municipal purification plants, 2014		
Number in operation 6		
Installed capacity (m³/s)	1.291	
Flow processed (m ³ /s) 0.771		

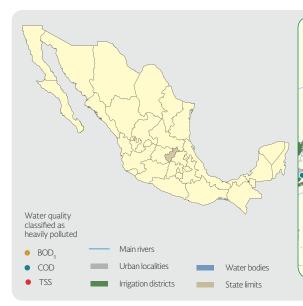
21. Puebla				
Contextual data Wastewater treatment plants, 2014			atment plants, 2014	
Number of municipalities	217		Municipal	Industrial
Total population, 2014	6 131 498 inhabitants	Number in operation	71	206
Urban	4 448 251 inhabitants	Installed capacity (m ³ /s)	3.34	0.82
Rural	1 683 247 inhabitants	Flow processed (m ³ /s)	3.59	0.59
Total population, 2030	6 942 481 inhabitants			
Normal precipitation 1981-2010	947 mm			

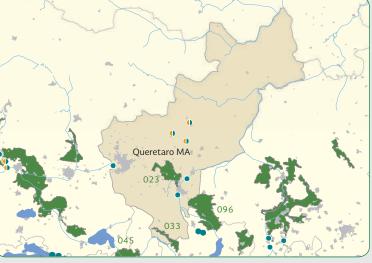


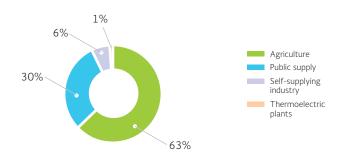

Offstream uses	Total	Surface water	Groundwater
Agriculture	1611	998	613
Public supply	428	178	250
Self-supplying industry	73	31	42
Thermoelectrics	6	0	6
Total	2 118	1 206	912
Instream uses			

4610

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	87.23	86.34		
Urban	90.54	93.70		
Rural	78.90	67.83		

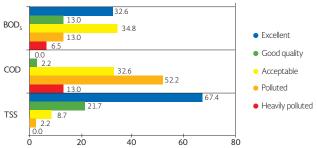



Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	88	
COD	88	
TSS	88	



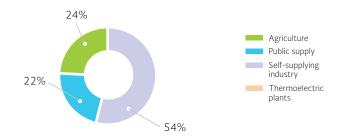
Municipal purification plants, 2014		
Number in operation 5		
Installed capacity (m³/s)	0.815	
Flow processed (m³/s)	0.515	

22. Queretaro				
Contextual data Wastewater treatment plants, 2014				
Number of municipalities	18		Municipal	Industrial
Total population, 2014	1 974 436 inhabitants	Number in operation	46	141
Urban	1 401 364 inhabitants	Installed capacity (m ³ /s)	2.43	1.25
Rural	573 072 inhabitants	Flow processed (m ³ /s)	1.66	0.65
Total population, 2030	2 403 016 inhabitants			
Normal precipitation 1981-2010	609 mm			



Offstream uses	Total	Surface water	Groundwater
Agriculture	637	171	466
Public supply	305	151	153
Self-supplying industry	60	1	59
Thermoelectrics	6	0	6
Total	1007	324	684
Instream uses			
Hydropower (volume allocated)		18	

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	94.72	90.42		
Urban	98.23	97.07		
Rural	86.38	74.64		


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	46		
COD	46		
TSS	46		

Municipal purification plants, 2014			
Number in operation	5		
Installed capacity (m ³ /s)	1.602		
Flow processed (m ³ /s) 1.592			

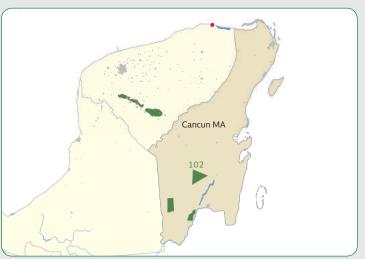
23. Quintana Roo				
Cont	extual data	Wastewater trea	Wastewater treatment plants, 2014	
Number of municipalities	10		Municipal	Industrial
Total population, 2014	1 529 877 inhabitants	Number in operation	35	4
Urban	1 349 311 inhabitants	Installed capacity (m ³ /s)	2.38	0.06
Rural	180 566 inhabitants	Flow processed (m ³ /s)	1.73	0.05
Total population, 2030	2 232 702 inhabitants			
Normal precipitation 1981-2010	1 267 mm			

Offstream uses	Total	Surface water	Groundwater
Agriculture	240	1	239
Public supply	212	0	212
Self-supplying industry	532	0	532
Thermoelectrics	0	0	0
Total	984	1	983
Instream uses			

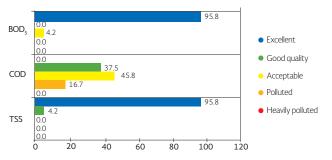
0

I

Hydropower (volume allocated)

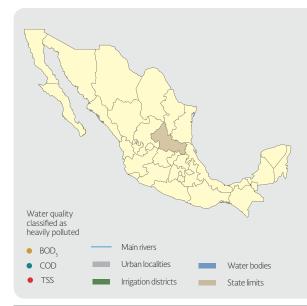

 Coverage, 2010 (%)

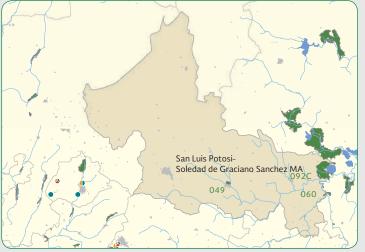
 Drinking water
 Sanitation

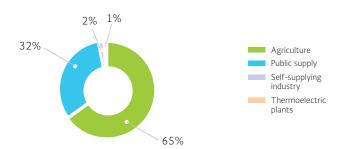

 State-wide
 92.38
 92.72

 Urban
 92.42
 92.12

 Rural
 96.19
 67.19

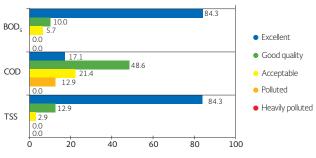



Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	24		
COD	24		
TSS	120		



Municipal purification plants, 2014			
Number in operation 0			
Installed capacity (m ³ /s)	0		
Flow processed (m ³ /s)	0		

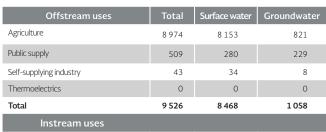
24. San Luis Potosi				
Con	textual data	Wastewater treatment plants, 2014		
Number of municipalities	58		Municipal	Industrial
Total population, 2014	2 728 208 inhabitants	Number in operation	38	57
Urban	1 767 644 inhabitants	Installed capacity (m ³ /s)	2.51	0.79
Rural	960 564 inhabitants	Flow processed (m ³ /s)	2.12	0.53
Total population, 2030	3 055 130 inhabitants			
Normal precipitation 1981-2010	853 mm			



Offstream uses	Total	Surface water	Groundwater
Agriculture	1 320	762	559
Public supply	653	504	149
Self-supplying industry	34	12	22
Thermoelectrics	31	14	17
Total	2 0 3 9	1 292	747
Instream uses			
Hydropower (volume allocated)		390	

Coverage, 2010 (%)				
Drinking water Sanitation				
State-wide	85.52	79.65		
Urban	97.47	95.33		
Rural	64.70	52.33		

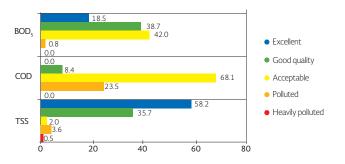
Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s 70			
COD	70		
TSS	70		



Municipal purification plants, 2014		
Number in operation	14	
Installed capacity (m ³ /s)	1.315	
Flow processed (m ³ /s)	0.957	

25. Sinaloa				
Cont	extual data	Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	18		Municipal	Industrial
Total population, 2014	2 958 691 inhabitants	Number in operation	243	109
Urban	2 189 509 inhabitants	Installed capacity (m ³ /s)	6.43	5.88
Rural	769 181 inhabitants	Flow processed (m ³ /s)	5.11	3.37
Total population, 2030	3 302 931 inhabitants			
Normal precipitation 1981-2010	728 mm			

94%


Hydropower (volume allocated)

10 982

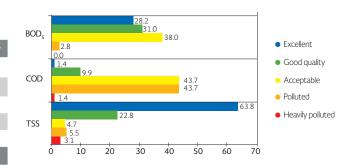
Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	94.73	91.08		
Urban	98.43	96.57		
Rural	84.85	76.41		

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD ₅	119	
COD	119	
TSS	196	

Municipal purification plants, 2014		
Number in operation	143	
Installed capacity (m ³ /s)	9.364	
Flow processed (m ³ /s)	8.332	

26. Sonora				
Con	textual data	Wastewater trea	atment plants, 2014	
Number of municipalities	72		Municipal	Industrial
Total population, 2014	2 892 464 inhabitants	Number in operation	82	235
Urban	2 493 649 inhabitants	Installed capacity (m ³ /s)	5.41	6.46
Rural	398 815 inhabitants	Flow processed (m ³ /s)	3.65	6.25
Total population, 2030	3 476 930 inhabitants			
Normal precipitation 1981-2010	465 mm			

Agriculture Public supply Self-supplying industry


Thermoelectric plants

Heroica Nogales Hermosillo 6084 -Ciudad Obrego 018 038 076

Surface water quality, 2014		
Number of monitoring sites according to water quality indicator		
BOD _s	71	
COD	71	
TSS	127	

Distribution of sites by indicator and classification (%)

Municipal purification plants, 2014		
Number in operation	24	
Installed capacity (m³/s)	5.577	
Flow processed (m ³ /s)	2.293	

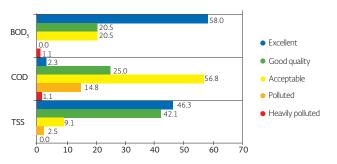
	87%		
Offstream uses	Total	Surface water	Groundwater
Agriculture	6 100	3 957	2 1 4 3
Public supply	770	277	492
Self-supplying industry	124	4	120
Thermoelectrics	16	7	9
Total	7 010	4 2 4 5	2 765
Instream uses			
Hydropower (volume allocated)		5 214	


2%

11%

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	96.62	89.22		
Urban	97.40	94.85		
Rural	91.72	54.17		

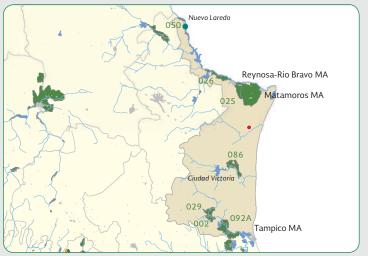
27. Tabasco				
Contextual data		Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	17		Municipal	Industrial
Total population, 2014	2 359 444 inhabitants	Number in operation	80	117
Urban	1 366 950 inhabitants	Installed capacity (m ³ /s)	2.82	0.85
Rural	992 493 inhabitants	Flow processed (m ³ /s)	1.77	0.86
Total population, 2030	2 687 426 inhabitants			
Normal precipitation 1981-2010	2 185 mm			

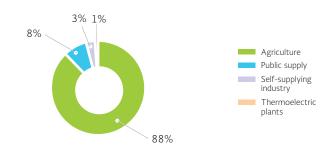


Offstream uses	Total	Surface water	Groundwater
Agriculture	198	81	116
Public supply	183	107	76
Self-supplying industry	76	51	25
Thermoelectrics	0	0	0
Total	456	239	217
Instream uses			
Hydropower (volume allocated)		0	

Coverage, 2010 (%) State-wide 81.18 95.41 Urban 91.24 98.18 67.87 91.74 Rural

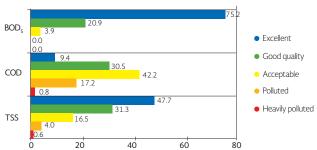
Surface water quality, 2014		
Number of monitoring sites according	to water quality indicator	
BOD _s	88	
COD	88	
TSS	121	



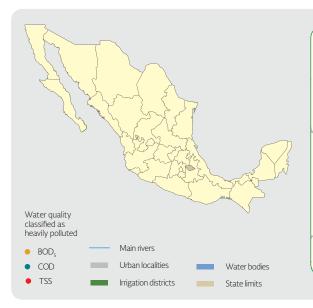

Municipal purification plants, 2014		
Number in operation	39	
Installed capacity (m³/s)	9.960	
Flow processed (m³/s)	8.465	

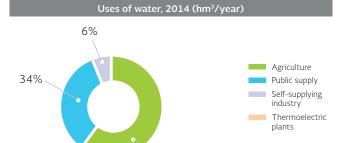
I

28. Tamaulipas				
Contextual data		Wastewater treatment plants, 2014		
Number of municipalities	43		Municipal	Industrial
Total population, 2014	3 502 721 inhabitants	Number in operation	44	115
Urban	3 065 769 inhabitants	Installed capacity (m ³ /s)	7.80	8.36
Rural	436 951 inhabitants	Flow processed (m ³ /s)	5.50	7.72
Total population, 2030	4 069 115 inhabitants			
Normal precipitation 1981-2010	783 mm			



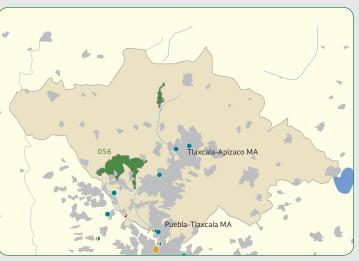
Offstream uses	Total	Surface water	Groundwater
Agriculture	3 671	3 279	391
Public supply	335	292	42
Self-supplying industry	116	104	13
Thermoelectrics	55	52	3
Total	4 177	3 728	449
Instream uses			
Hydropower (volume allocated)		2 181	


Coverage, 2010 (%)				
Drinking water Sanitation				
State-wide	95.92	86.91		
Urban	97.95	93.73		
Rural	81.55	38.61		

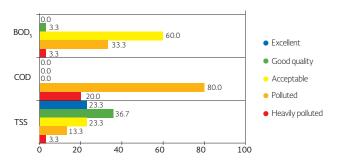

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD _s	129		
COD	128		
TSS	176		

Municipal purification plants, 2014			
Number in operation	53		
Installed capacity (m³/s)	15.088		
Flow processed (m ³ /s)	11.892		

29. Tlaxcala				
Cont	extual data	Wastewater trea	atment plants, 2014	
Number of municipalities	60		Municipal	Industrial
Total population, 2014	1 260 628 inhabitants	Number in operation	56	82
Urban	1 012 640 inhabitants	Installed capacity (m ³ /s)	1.12	0.28
Rural	247 989 inhabitants	Flow processed (m ³ /s)	0.61	0.25
Total population, 2030	1 516 712 inhabitants			
Normal precipitation 1981-2010	704 mm			



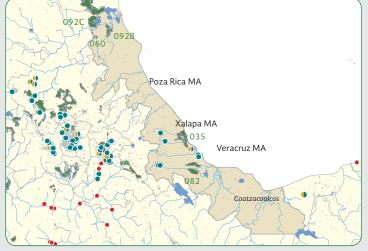
Offstream uses	Total	Surface water	Groundwater
Agriculture	161	59	102
Public supply	90	8	82
Self-supplying industry	17	0	17
Thermoelectrics	0	0	0
Total	268	67	201
Instream uses			
Hydropower (volume allocated)		0	

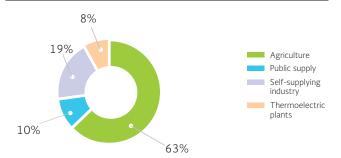

60%

Coverage, 2010 (%) 94.52 State-wide 98.24 Urban 98.57 95.90 96.92 89.07 Rural

Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅	30		
COD	30		
TSS	30		

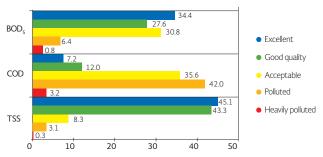
Distribution of sites by indicator and classification (%)




Municipal purification plants, 2014			
Number in operation	0		
Installed capacity (m ³ /s)	0		
Flow processed (m³/s)	0		

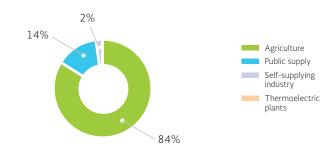
I

30. Veracruz de Ignacio de la Llave				
Con	textual data	Wastewater tre	Wastewater treatment plants, 2014	
Number of municipalities	212		Municipal	Industrial
Total population, 2014	7 985 893 inhabitants	Number in operation	101	159
Urban	4 921 928 inhabitants	Installed capacity (m³/s)	6.72	12.93
Rural	3 963 965 inhabitants	Flow processed (m ³ /s)	5.18	9.05
Total population, 2030	8 781 620 inhabitants			
Normal precipitation 1981-2010	1 544 mm			

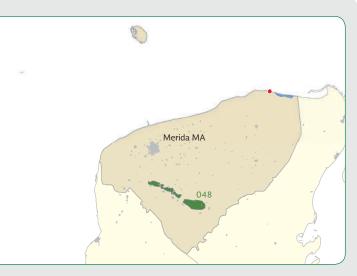


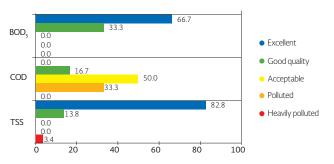
Offstream uses	Total	Surface water	Groundwater
Agriculture	3 382	2615	766
Public supply	546	320	226
Self-supplying industry	1 054	939	114
Thermoelectrics	408	406	1
Total	5 389	4 281	1 108
Instream uses			
Hydropower (volume allocated)		4 185	

Coverage, 2010 (%) State-wide 80.26 82.56 Urban 90.93 95.54 Rural 63.78 62.53


Surface water quality, 2014			
Number of monitoring sites according to water quality indicator			
BOD ₅	250		
COD	250		
TSS	326		

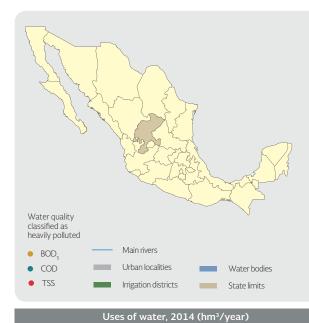
Municipal purification plants, 2014			
Number in operation	15		
Installed capacity (m ³ /s)	7.162		
Flow processed (m³/s)	4.644		


31. Yucatan					
Con	textual data	Wastewater tre	atment plants, 2014		
Number of municipalities	106		Municipal	Industrial	
Total population, 2014	2 091 513 inhabitants	Number in operation	26	88	
Urban	1 777 325 inhabitants	Installed capacity (m ³ /s)	0.42	0.30	
Rural	314 188 inhabitants	Flow processed (m ³ /s)	0.17	0.28	
Total population, 2030	2 503 132 inhabitants				
Normal precipitation 1981-2010	1 056 mm				

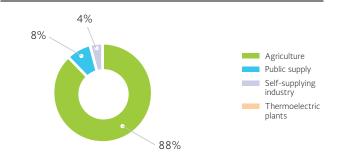

Offstream uses	Total	Surface water	Groundwater
Agriculture	1 574	0	1 574
Public supply	254	0	254
Self-supplying industry	45	0	45
Thermoelectrics	9	0	9
Total	1881	0	1881
Instream uses			
Hydropower (volume allocated)		0	

Coverage, 2010 (%) 97.24 78.77 State-wide Urban 97.57 83.18 95.51 55.75 Rural

Surface water quality, 2014				
Number of monitoring sites according to water quality indicator				
BOD ₅	6			
COD	6			
TSS	29			

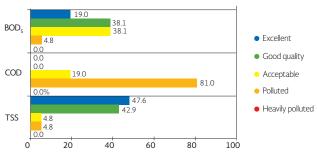

Distribution of sites by indicator and classification (%)

Municipal purification	on plants, 2014
Number in operation	0
Installed capacity (m ³ /s)	0
Flow processed (m³/s)	0


I

32. Zacatecas					
Con	textual data	Wastewater trea	atment plants, 2014		
Number of municipalities	58		Municipal	Industrial	
Total population, 2014	1 563 324 inhabitants	Number in operation	70	16	
Urban	941 609 inhabitants	Installed capacity (m ³ /s)	1.92	0.16	
Rural	621 715 inhabitants	Flow processed (m ³ /s)	1.64	0.05	
Total population, 2030	1 726 347 inhabitants				
Normal precipitation 1981-2010	496 mm				

034 Zacatecas • . 5 z


s of water, 2014 (hm³/yea	s of	water,	2014	(hm³/	/yea
---------------------------	------	--------	------	-------	------

Offstream uses	Total	Surface water	Groundwater
Agriculture	1 381	340	1042
Public supply	124	11	113
Self-supplying industry	65	1	64
Thermoelectrics	0	0	0
Total	1 570	351	1 219
Instream uses			
Hydropower (volume allocated)		0	

Coverage, 2010 (%)				
	Drinking water	Sanitation		
State-wide	94.31	89.07		
Urban	98.38	97.60		
Rural	88.42	76.69		

Surface water quality, 2014				
Number of monitoring sites according to water quality indicator				
BOD ₅	21			
COD	21			
TSS	21			

Municipal purification plants, 2014				
Number in operation	92			
Installed capacity (m³/s)	0.163			
Flow processed (m ³ /s)	0.139			

Annex C. Characteristics of the hydrological regions, 2014

Code	Hydrological region	Mainland extension (km²)	Normal annual precipitation 1981-2010 (mm)	Mean natural internal surface runoff (hm³/year)	Inflows (+) or outflows (-) from/ to other countries (hm³/year)	Total mean natural surface runoff (hm³/year)	Number of watersheds
1	Baja California Northwest	28 492	209	337		337	16
2	Baja California Central-West	44 314	116	251		251	16
3	Baja California Southwest	29 722	200	362		362	15
4	Baja California Northeast	14 418	151	122		122	8
5	Baja California Central-East	13 626	132	101		101	15
6	Baja California South-East	11 558	291	200		200	14
7	Colorado River	6 911	98	78	1 850	1 928	4
8	Sonora North	61 429	297	132		132	5
9	Sonora South	139 370	483	4 934		4 934	16
10	Sinaloa	103 483	747	14 319		14 319	23
11	Presidio-San Pedro	51 717	819	8 201		8 201	23
12	Lerma-Santiago	132 916	717	13 180		13 180	58
13	Huicicila River	5 2 2 5	1 400	1 279		1 279	6
14	Ameca River	12 255	1 063	2 205		2 205	9
15	Jalisco Coast	12 967	1 144	3 606		3 606	11
16	Armeria-Coahuayana	17 628	866	3 537		3 537	10
17	Michoacan Coast	9 205	944	1 617		1 617	6
18	Balsas	118 268	947	16 805		16 805	15
19	Greater Guerrero Coast	12 132	1 215	5 113		5 113	28
20	Lower Guerrero Coast	39 936	1 282	18 170		18 170	32
21	Oaxaca Coast	10 514	951	2 892		2 892	19
22	Tehuantepec	16 363	884	2 453		2 453	15
23	Chiapas Coast	12 293	2 220	12 617	1 586	14 203	25
24	Bravo-Conchos	229 740	399	5 588	- 432	5 156	37
25	San Fernando-Soto la Marina	54 961	703	4 864		4 864	45
26	Panuco	96 989	855	19 673		19 673	77
27	North of Veracruz (Tuxpan-Nautla)	26 592	1 422	14 155		14 155	12
28	Papaloapan	57 355	1 440	48 181		48 181	18
29	Coatzacoalcos	30 217	2 211	34 700		34 700	15
30	Grijalva-Usumacinta	102 465	1 703	59 297	44 080	103 378	83
31	Yucatan West	25 443	1 175	707		707	2
32	Yucatan North	58 135	1 143	0		0	0
33	Yucatan East	38 308	1 210	576	864	1 441	1
34	Closed Catchments of the North	90 829	298	1 261		1 261	22
35	Mapimi	62 639	292	568		568	6
36	Nazas-Aguanaval	93 032	393	2 085		2 085	16
37	El Salado	87 801	393	2 876		2 876	8
	Total	1 959 248	740	307 041	47 949	354 990	731

Source: CONAGUA (2015a).

Annex D. Glossary

Alkalinization. Also known as salinization. It represents an increase of the salt content in the surface soil that causes, among other impacts, a decrease in crop yield. Its possible causes include saltwater intrusion and the use of irrigation systems that use water with a high sodium concentration. Salinization or alkalinization mainly occurs in arid regions, in closed catchments and in coastal areas that have naturally saline soils.*

Allocation. A deed granted by the Federal Executive Branch to municipalities, states or the Federal District in order to use the nation's water resources, destined for public-urban or domestic water services, in which case it is termed in Spanish an "asignación", or for the use of the nation's water resources and public inherent assets to individuals or companies, be they private or public, in which case they are termed a "concesión".^a

Aquifer. A geological formation or group of hydrologically interconnected geological formations, through which subsoil water flows or is stored that may be extracted for different uses, and whose lateral and vertical limits are conventionally defined for the purpose of the evaluation, management and administration of the nation's subsoil water.^a

Artificial recharge. A set of hydrogeological techniques applied to introduce water to an aquifer, through purpose-built infrastructure.⁹

Availability zone. For the purpose of the payment of water duties, the municipalities in the Mexican Republic have been classified into nine availability zones. This classification is contained in the Federal Duties Law.

Blue water. The quantity of water withdrawn from the country's rivers, lakes, streams and aquifers for various uses, both offstream and instream.

Brackish water. Water with a concentration of total dissolved solids equal to or greater than 2 000 and less than 10 000 mg/l.^{aa}

Channel of a current. A natural or artificial channel that has the necessary capacity for the waters of the maximum ordinary flow to run through it without overflowing. When currents are subject to overflowing, the natural channel is considered a riverbed, while no channeling infrastructure is built. At the origins of any current, is it considered a channel strictly speaking, when the runoff is concentrated towards a topographic depression and it forms an erosion gully or channel, as a result of the action of water flowing over the ground.^a

Climate contingency. In terms of declarations related to extreme hydro-meteorological phenomena, this recognizes the risk of impacts on the productive capacity of economic activities.

Climate station. A given area or zone of open-air ground, with the particular climate conditions of the area, meant for measuring climate parameters. Equipped with instruments and sensors exposed to the open air, for the measurement of precipitation, temperature, evaporation and the direction and speed of the wind.

Connate water. Connate or formation water is saltwater that is found inside rock, associated with the presence of hydrocarbons. It contains dissolved salts, such as calcium and sodium chlorides, sodium carbonates, potassium chlorides, calcium or barium sulfates, among others; it may even include some metals. The concentration of these components may lead to negative impacts on the environment when they are not appropriately managed and disposed of.^r

Cyclone. Atmospheric instability associated with an area of low pressure, which causes convergent surface winds which flow anti-clockwise in the northern hemisphere. It originates over tropical or subtropical waters and is classified according to the wind intensity as a tropical depression, tropical storm or a hurricane.^m

Dam. Infrastructure that serves to capture, store and control the water of a natural catchment and which includes a contention wall and an overflow spillway.^c

Degree of water stress. A percentage indicator of the stress placed on water resources, calculated by the quotient between the total volume of water allocated and the natural mean availability of water.

Demand. For the drinking water, sewerage and sanitation subsector, the demand is the total volume of water required in order for a population to meet all types of consumption (domestic, commercial, industrial and public), including losses in the system.^e

Demographic conciliation. Indirect method to establish the volume and structure of the population, in order to carry out new population projections. It is carried out by reconstructing the demographic dynamic of the recent past.^w

Disaster. In terms of extreme hydro-meteorological phenomena, the disaster declaration allows resources from the state and society to be focused on the reconstruction of affected areas.

Discharge permit. A deed granted by the Federal Executive Branch through the CONAGUA or the corresponding river basin organization, in conformity with their respective areas of competence, for discharging wastewater into receiving bodies that are the property of the nation, for individuals or organizations, be they public or private.^a

Discharge. The action of emptying, infiltrating, depositing or injecting wastewater into a receiving body.^a

Drainage. Natural or artificial conducts that are an outlet or vent for water.

Drinking water and sanitation system. A series of infrastructure and actions that allow public drinking water and sanitation services to be provided, including sanitation, which contemplates the piping, treatment, removal and discharge of wastewater.^a

Drinking water coverage. Percentage of the population living in private homes with running water within their house, on the lot, or from a public water tap or hydrant. This information is determined by means of censuses carried out by INEGI and estimates from the CONAGUA for intermediate years.

Drinking water treatment plant. Infrastructure designed to remove elements that are dangerous to human health from water, prior to its distribution for water supply to population centers.

Drinking water. Literally, water that can be drunk. The Mexican standard (NOM-127-SSA1-1994) defines water for human use and consumption as that which does not contain noxious pollutants, be they chemical or infections agents, and which does not have a negative effect on human beings.^d

Drought. Atypical drought, according to the operating rules of the Natural Disaster Fund, refers to a prolonged period (a season, a year or several consecutive years), with a deficit of precipitation as compared to the mean statistical value from various years (generally 30 years or more). Drought is a normal and recurring property of the climate and it will be considered that a drought is atypical when the deficit of precipitation has a probability of occurrence equal to or less than 10% (meaning that the aforementioned deficit occurs in one or less of every ten years) and that furthermore that situation has not occurred five time or more over the last ten years.^m

Duty collection. In terms of the water sector, the amount charged to taxpayers for the use of the nation's water resources, as well as wastewater discharges and for the use of inherent assets associated with water.

Emergency. In terms of declarations related to extreme hydro-meteorological phenomena, this recognizes the risk of impacts on the life and health of the population.

Environmental services. The benefits of social interest that are generated by or derived from watersheds and their components, such as climate regulation, conservation of hydrological cycles, erosion control, flood control, aquifer recharge, maintenance of runoff in quality and quantity, soil formation, carbon capture, purification of water bodies, as well as the conservation and protection of biodiversity; for the application of this concept in the National Water Law, water resources and their link with forest resources are considered first and foremost.^a

Eutrophication. Also known as eutrofization. The excess of soil nutrients which adversely affects the development of vegetation and may be due to the excessive application of chemical fertilizers.*

Evaporite rocks. Evaporite rocks are the main chemical rocks, meaning that they are formed through direct chemical solidification of mineral components. They are often formed from seawater, although there are also continental evaporite rocks, formed in saltwater lakes, or in desert regions which are sporadically flooded. They thus originate as a result of the evaporation of waters containing abundant dissolved salts. When the saturation level of the corresponding salts is reached, as a result of evaporation, the precipitation of the mineral that forms this composite takes place. Successive precipitations often takes place: at an initial stage the least soluble salts fall as rain, and when the evaporation increases, the more soluble salts then fall.⁵

Exploitation. Application of water in activities aiming to extract chemical or organic elements dissolved in it, after which it is returned to its original source without significant consumption.^a

Extraction index. The result of dividing the volume of groundwater extraction by the volume of mean total annual recharge.

Federal zone. Ten-meter strips adjacent to channels, currents or reservoirs which belong to the nation, measured horizontally from the normal pool elevation. The width of the bank or federal zone is five meters in channels with a width of less than five meters.^a

Flood. An atypical flood, according to the operating rules of the Natural Disaster Fund, consists of the overflow of water beyond the normal limits of a channel or a stretch of water, or an accumulation of water as a result of an excess in areas that are not normally submerged.^m

Freshwater. Water which has a concentration of total dissolved solids of under 1 000 mg/l. aa

Green water. The quantity of water that is part of the soil humidity and that is used for rainfed crops and vegetation in general.

Gross Domestic Product (GDP). The total value of goods and services produced in the territory of a country in a given period, free from duplication.^h

Groundwater extraction. The volume of water that is extracted artificially from a hydrogeological unit for different uses.^b

Groundwater. Water that is completely saturated into the pores or interstices of the subsoil.

Grouped use for agriculture. In this document, it includes agriculture, livestock and aquaculture uses, in conformity with the definitions in the National Water Law.

Grouped use for public supply. In this document, it is the volume of water employed for public-urban and domestic uses, in conformity with the definitions in the National Water Law.

Grouped use for self-supplying industry. In this document, it is the volume of water employed in industrial, agro-industry, services and trade uses, in conformity with the definitions in the National Water Law.

Housing. A place surrounded by walls and covered with a roof, with an independent entrance, in which people generally eat, prepare food, sleep and shelter from the environment.^k

Human system. Any system in which human organizations play a predominant role. Often, but not always, the term is a synonym of 'society' or 'social system' (for example, agricultural system, political system, technological system or economic system).

Hurricane. A tropical cyclone in which the maximum sustained wind reaches or surpasses 118 km/h. The corresponding cloudy area covers an extension between 500 and 900 km in diameter producing intense rainfall. The center of the hurricane, known as the "eye", normally reaches a diameter that varies between 20 and 40 km, however it may even reach 100 km. At that stage it is classified according to the Saffir-Simpson scale.^m

Hydrogeological units. A combination of inter-connected geological layers, the lateral and vertical limits of which are conventionally defined for the purpose of the evaluation, management and administration of the nation's groundwater resources.^b

Hydrological region. A territorial area shaped according to its morphological, orographical and hydrological features, in which the watershed is considered as the basic unit for water management, and the finality of which is to group and systematize information, analysis, diagnoses, programs and actions with regard to the occurrence of water in quantity and quality, as well as its use. Normally a hydrological region is made up of one or several watersheds. As a result, the limits of the hydrological region are generally speaking different from those of the political division of states, the Federal District and municipalities. One or several hydrological regions make up a Hydrological-Administrative Region.^a

Hydrological-administrative region (HAR). A territorial area defined according to hydrological criteria, made up of one or several hydrological regions, in which the watershed is considered the basic unit for water resources management. The municipality, as in other legal instruments, represents the minimal unit of administrative management in the country.^a

Hydro-meteorological phenomenon. An unsettling occurrence that is generated as a result of atmospheric agents such as: tropical cyclones, extreme rainfall, rain-related, coastal and lake flooding; snow, hail, dust and electricity storms; frost; droughts; heatwaves and ice fronts; and tornadoes.^{ac}

Hydropower dams. Infrastructure that generates electricity through dynamos or alternators, in which the energy is obtained through turbines propelled by water.

Incidental recharge. A recharge that is the result of some sort of human activity and that does not have specific infrastructure for artificial recharge.⁹

Inflow. Volume of water that is received in a watershed or hydrogeological unit from other watersheds, towards which it does not naturally drain.^b

Inherent public assets. The national assets listed in Article 113 of the Political Constitution of the United Mexican States: the beaches and federal zones, in the part that corresponds to the riverbeds according to the terms of the NWL; the grounds occupied by the reservoirs of lakes, lagoons, estuaries or natural deposits, the waters of which are the property of the nation; riverbeds that are of the nation's water resources; riverbanks or federal zones that are adjacent to riverbeds and the reservoirs or deposits which are the property of the nation, according to the terms of the NWL; the grounds of riverbeds and those of reservoirs of lakes, lagoons or estuaries that are the property of the nation, uncovered by natural causes or by artificial works; the islands that exist or that are formed in the reservoirs of lakes, lagoons, estuaries, dams and deposits or in the riverbeds that are the property of the nation, except those that are formed when a stream dissects grounds that are private or community property, and the water infrastructure works funded by the federal government, such as dams, dykes, reservoirs, canals, drains, water retention berms, trenches, aqueducts, irrigation districts or units and others built for the use of water, flood control and management of the nation's water resources, including the grounds they occupy and the protection areas, in the extension that is defined by the CONAGUA in each case.^a

Irrigation district. A geographical area where irrigation services are provided by means of hydro-agricultural infrastructure works.

Irrigation sheet. The quantity of water, measured in longitudinal units, which is applied to a crop so that it may meet its physiological needs during the entire growth cycle, in addition to soil evaporation (offstream use = evapotranspiration + water in the fabric of the plant).

Irrigation surface. An area with irrigation infrastructure.

Irrigation unit. An agricultural area which has infrastructure and irrigation systems, different from an irrigation district and commonly of a more reduced area; it may be made up of user associations or other figures of organized farmers who are freely associated in order to provide irrigation services with autonomous management systems and operate water infrastructure works in order to capture, divert, conduct, regulate, distribute and remove the nation's water resources that are destined for agricultural irrigation.^a

Irrigation. Application of water to crops through infrastructure, in comparison with crops that only receive precipitation, which are known as rainfed crops.

Lake, lagoon or marsh bed. The natural deposit of the nation's water resources outlined by the elevation of the maximum ordinary surge.^a

 ${\sf Lake}.$ A continental water body of considerable extension, surrounded by freshwater or saltwater.

Large dams. Dams whose height above the bed is greater than 15 m or with a maximum capacity of more than 3 million m^3 at the surcharge pool elevation.^P

Lentic. Water bodies whose liquid content moves basically within the depression they are located in, mainly with convective movements with a more or less limited replacement of water. A concept applied to stagnant water, such as swamps, ponds, lakes and wet-lands, which are shallow water bodies.*

Locality. Any place occupied by one or more houses, which may or may not be inhabited; this place is recognized by either law or custom. According to their characteristics and for statistical purposes, they may be classified into urban and rural.

Lotic. Water bodies which move in a more or less defined direction, and in which the liquid is replaced by nimble flow. A term related to flowing water, such as a stream or river.[×]

Marsh. Swampy lowlands which are often filled with rainwater or from the overflow of a current, a nearby lagoon or the sea.^a

Marshy. Belonging to or related to a lagoon or a swamp.t

Mean annual availability of groundwater. The mean annual volume of groundwater that may be allocated in order to be extracted from a hydrogeological unit or aquifer for different uses, in addition to the already allocated extraction and the natural discharge that has been committed, without jeopardizing the balance of the ecosystems.^a

Mean annual availability of surface water. The value that results from the difference between the mean annual volume of runoff from a watershed to downstream areas, and the current mean annual volume committed downstream.^a

Mean annual precipitation. Precipitation calculated for any period of at least ten years, which starts on January 1 of the first year and ends on December 31 of the final year.

Mean aquifer recharge. The mean annual volume of water that flows into an aquifer.

Mean natural availability. The total volume of renewable surface water and groundwater that occurs naturally in a region.

Mean natural internal surface runoff. In a given territory, this is the volume of precipitation minus the volume of evapotranspiration minus the mean aquifer recharge. It represents the surface runoff in channels and currents without considering volumes of inflows or outflows from the territory to neighboring territories.

Mean natural surface runoff. The part of mean historical precipitation that occurs in the form of flows into a watercourse.

Meteorological station. A given area or zone of open-air ground, used for the measurement of surface meteorological parameters. It is equipped with instruments to measure precipitation, temperature, wind speed and direction, relative humidity, atmospheric pressure and solar radiation.

Mexican Standard (NMX). A standard produced by a national standardization body, or the Ministry of the Economy, which foresees, for a common and repeated use, rules, specifications, attributes, testing methods, guidelines, characteristics or previsions applicable to a product, process, installation, system, activity, service or production or operating method, as well as those related to terminology, symbology, packaging, marking or labelling. Mexican standards are voluntarily applied, except for those cases where private parties state that their products, processes or services comply with the standards, notwithstanding the agencies requiring their observance of an Official Mexican Standard for any given purpose.

Mine tailing dam. One of the systems for the final disposal of solid waste generated, for the benefit of minerals, which should comply with conditions of maximum security, in order to guarantee the protection of the population, economic and social activities, and in general, ecological balance.

Municipality. A basic political entity of territorial division and of the political and administrative organization of the states of the Republic.

Natural recharge. The recharge generated by direct infiltration from precipitation, from surface water runoff into channels or from water stored in water bodies.[¶]

Normal pool elevation (NPE). For reservoirs, this is the equivalent of the elevation of the weir crest in the case of a freely-flowing structure; if it has floodgates, this refers to their highest level.

Normal precipitation. Precipitation measured for a uniform and relatively long period, which should have at least 30 years of data, which is considered a minimum representative climate period, and which starts on January 1 of a year ending in one, and ends on December 31 of a year ending in zero.

Official Mexican Standard (NOM). The obligatorily-observed technical regulation, issued by the competent authorities, which establishes rules, specifications, attributes, guidelines, characteristics

or provisions applicable to a product, process, installation, system, activity, service or method of production or operation, as well as those related to terminology, symbology, packaging, marking or labelling and which refer to its compliance or application.¹

Offstream use. The volume of water of a given quality that is consumed when implementing a specific activity, which is determined as the difference in the volume of a given quality that is extracted, minus the volume of an also given quality that is discharged, and which is indicated in the respective deed.^a

Outflow. Volume of surface water that is transferred from one watershed or hydrogeological unit to another or others.^b

Overdrafted aquifer. One in which the groundwater extraction is greater than the volume of the mean annual recharge, in such a way that the persistence of this condition over prolonged periods of time brings about some of the following environmental impacts: depletion or disappearance of springs, lakes or wetlands; reduction or disappearance of base river flow; indefinite depletion of the groundwater level; formation of cracks; differential ground settlement; saltwater intrusion in coastal aquifers; and migration of poor quality water. These impacts may bring about economic losses for users and society-at-large.

Particular discharge conditions. The series of physical, chemical and biological parameters, and of their maximum permitted levels in wastewater discharges, determined by the CONAGUA or by the corresponding river basin organization, according to their respective areas of competence, for each user, for a specific use or user group of a specific receiver body, with the purpose of conserving and controlling the water quality, in accordance with the 2004 National Water Law and the By-Laws derived from that Law.^a

Perennial crops. Crops whose maturation cycle is more than one year long.

Permits. Granted by the Federal Executive Branch through the CONAGUA or the corresponding river basin organization, for the use of the nation's water resources, as well as for the construction of hydraulic works and other of a diverse nature related with water and national assets, as referred to in Article 113 of the 2004 National Water Law.^a

Phenology. The study of the relationship of biological phenomena with the weather, particularly seasonal changes.^t

Physically irrigated surface. Surface which receives at least some irrigation within a given time period.

Pollution. Incorporation of foreign agents in water, capable of modifying its physical and chemical composition and quality.^c

Population center. A group of one or more municipalities in which the population is concentrated mainly in urban localities. Metropolitan areas are considered population centers.

Precipitation. Water that falls from the atmosphere in liquid or solid form, onto the earth's surface; it includes dew, drizzle, rain, hail, sleet and snow.^c

Private inhabited housing. Of interest for the calculation of coverage based on different types of censuses (called respectively "Censos" and "Conteos" in Spanish), it is an independent house, apartment in a building or a house in a neighborhood which at the time of the census was occupied by people that make up one or more homes.^k

Productivity of water in irrigation districts. The quantity of agricultural produce from all crops in irrigation districts to which irrigation has been applied, divided by the quantity of water applied to them. It is presented in kg/m³.

Prohibition zone. Those specific areas of hydrological regions, watersheds or aquifers, in which no use of water is authorized in addition to those legally established, the latter being controlled through specific regulations, as a result of the deterioration in the quantity or quality of water, due to the impact on the sustainability of water resources, or the damage to surface and groundwater bodies.^a

Protection zone. The strip of ground immediately surrounding dams, hydraulic structures and other infrastructure and related installations, when the aforementioned infrastructure is the property of the nation, of the extension that in each case is established by the CONAGUA or the corresponding river basin organization, in conformity with their respective competencies, for their protection and appropriate operation, conservation and surveillance.^a

Public Registry of Water Rights (REPDA). A Registry that provides information and legal certainty to the users of the nation's water resources and inherent assets through the registration of concession or allocation deeds or discharge permits, as well as the modifications that are made to their characteristics.

Receiving body. The current or natural water deposit, dam, channel, salt-water zone or national asset into which wastewater is discharged, as well as the grounds into which this water is filtered or injected, when it may pollute the soil, subsoil or aquifers.^a

Reclamation. An act issued by the Federal Executive Branch for the purpose of public utility or interest, through the corresponding declaration, to eliminate concessions or allocations for the use of the nation's water resources and their inherent public assets; or concessions to build, equip, operate, conserve, maintain, rehabilitate and extend federal water infrastructure and the provision of the related services.^a

Regulated zone. Those specific areas of aquifers, watersheds, or hydrological regions, which due to their characteristics of deterioration, hydrological imbalance, risks or damage to water bodies or the environment, fragility of vital ecosystems, overdrafting, as well as for their reorganization and restoration, require a specific water management in order to guarantee hydrological sustainability.^a

Renewable water resources. The total amount of water that can feasibly be used every year. Renewable water resources are calculated as the annual unaltered surface runoff, plus the mean annual aquifer recharge, plus inflows from other regions or countries, minus the outflows to other regions or countries.

Reserve zone. Those specific areas of aquifers, watersheds or hydrological regions, in which limits are established in the use of a proportion or all of the available water, with the aim of providing a public service, implementing a restoration, conservation or preservation program, or when the State resolves to use those water resources for public utility.^a

Reuse. The use of wastewater with or without prior treatment.^a

River basin commission. A collegiate body of mixed membership, not subordinate to the CONAGUA or the river basin organizations. An auxiliary body of the river basin council at the sub-basin level.^a

River basin council. Collegiate bodies of mixed membership, which carry out coordination and consultation, support and advice, between the CONAGUA, including the corresponding river basin organization, the agencies and bodies at the federal, state and municipal levels, and the representatives of water users and civil society organizations, from the respective watershed or hydrological region. They have the vocation of formulating and implementing programs and actions to improve water management, the development of water infrastructure and the respective services and the preservation of the watershed's resources.^a

River basin organization. A specialized technical, administrative and legal unit, autonomous in nature, which directly reports to the Head of the CONAGUA, the attributions of which are established in the National Water Law and its By-Laws, and whose specific resources and budget are determined by the CONAGUA. Prior to the 2004 reform, they were known as regional offices.^a

River. A natural current of water, either permanent or intermittent, which flows into other currents, into a natural or artificial reservoir, or the sea.^a

Rural locality. A locality with a population of less than 2 500 inhabitants, and which is not a municipal seat.

Saltwater intrusion. A phenomenon in which saltwater enters through the subsoil towards the inner land mass, causing ground-water salinization; this occurs when the extraction of water causes a drop in the groundwater level below sea level, altering the natural dynamic balance between seawater and freshwater.

Saltwater. Water with a concentration of total dissolved solids greater than 10 000 mg/l.^{aa}

Sanitation coverage. Percentage of the population that lives in private housing, whose housing has an outlet connected to the public sewerage network, a septic tank, a river, lake or sea, or a ravine or crevice. Determined by means of the different types of census carried out by INEGI and estimations from the CONAGUA for intermediate years.

Sanitation. Collection and transportation of wastewater and the treatment of both wastewater and the sub-products generated in the course of these activities, in such a way that its disposal produces the smallest possible impact on the environment.ⁱ

 $\ensuremath{\textbf{Sewerage}}$. System of pipes that conduct was tewater to the site of its final disposal. $\ensuremath{^e}$

 ${\bf Sink.}$ Any process, activity or mechanism which withdraws a greenhouse gas, an aerosol, or a precursor of greenhouse gas from the atmosphere.

Slightly brackish water. Water with a concentration of total dissolved solids equal to or greater than 1 000 and less than 2 000 mg/l. $^{\rm aa}$

Source. Site from which water is taken for its supply.

 $\mbox{State.}$ The 31 states and the Federal District, which together make up the Federation. \mbox{f}

Storage. Volume or quantity of water that can be captured, in millions of cubic meters.^c

Stream gage. A place in which volumes of water are measures and recorded by means of different instruments and/or apparatuses.^c

 $\ensuremath{\mathsf{Stream}}$. Channel of a current of water with a limited flow occupied over periods of time. ${}^{\ensuremath{\mathsf{c}}}$

Supply. Water supply.

Surcharge pool elevation (SPE). The highest level that water should reach in a reservoir under any condition.

Surface water extraction. Volume of water that is artificially extracted from surface water channels and reservoirs for different uses.^b

Surface water. Water which flows over or is stored on the surface of the earth's crust in the form of rivers, lakes or artificial reservoirs such as dams, berms or canals.^c

Sustainable development. As regards water resources, this is the process that is measurable through criteria and indicators related to water, the economy, social and environmental aspects, which aims

to improve the quality of life and the productivity of people, supported by the necessary measures for the preservation of hydrological balance and the use and protection of water resources, in such a way that the needs for future generations are not compromised.

Tariff. The unit price established by the competent authorities for the provision of public drinking water, sewerage and sanitation services.¹

Technical groundwater committee (COTAS). Collegiate bodies of mixed membership and which are not subordinate to the CONAGUA or the river basin organizations. They carry out their activities on a given aquifer or group of aquifers.^a

Technified rainfed district. Geographical area intended for agricultural activities without but which lacks irrigation infrastructure, and in which, through the use of certain techniques and infrastructure, the damage to production caused by periods of strong and prolonged rainfall is reduced –in which case they are also referred to as drainage districts– or in conditions of drought, when rain or agricultural soil humidity is used with greater efficiency; the technified rainfed district is made up of rainfed units.^a

The nation's water. Water resources that are the property of the Nation, according to the terms of paragraph 5 of article 27 of the Political Constitution of the United Mexican States.^a

Thermoelectric plant. Infrastructure that generates electricity through dynamos or alternators, in which the power is obtained from steam-propelled turbines.

Ton of oil equivalent. Accounting unit employed to measure the use of energy. The IEA defines it as the net calorific value of 10 Gcal (Giga calories).^z

Total capacity of a reservoir. The volume of water that a reservoir can store at the Normal Pool Elevation (NPE).

Total mean natural surface runoff. The mean natural internal surface runoff of a territory, plus the volumes of inflows from neighboring territories, minus the volumes of outflows to neighboring territories. It represents the total surface runoff in channels and currents.

Total recharge. The volume of water that enters a hydrogeological unit, in a given time period.⁹

Torrential rain. Rainfall with an intensity of more than 60 mm/h.^{ab}

Urban locality. A locality with a population equal to or more than 2 500 inhabitants, or which is a municipal seat, regardless of the number of inhabitants it had at the time of the most recent census.

 $\mbox{Use.}$ Application of water in activities that do not imply its total or partial consumption. a

Virtual water. The sum of the quantity of water employed in the productive process of a product.

Vulnerability. The degree of exposure or propensity of a component of the social or natural structure to suffer damage as a result of a threat or danger, of natural or anthropogenic origin, or the lack of resilience to recover subsequently. It corresponds to the physical, economic, political or social predisposition or susceptibility of a community to be affected or to suffer adverse effects as a result of the occurrence of a dangerous phenomenon. Vulnerabilities may be institutional, legal, political or territorial in nature.^{ad}

Wastewater treatment plant. Infrastructure designed to receive wastewater and remove materials that might degrade water quality or place public health at risk when discharged into receiving bodies or channels.^g

Wastewater. Water of varied composition coming from discharges from public urban, domestic, industrial, commercial, service, agricul-

tural, livestock, from treatment plants and in general from any other use, as well as any combination of them.^a

Water footprint. The sum of the quantity of water used by each person for his or her different activities and which is necessary to produce the goods and services that he or she consumes. It includes both blue and green water.

Water infrastructure. A combination of structures built with the objective of water management, whatever its origin may be, with the purpose of exploitation, removal, treatment or defense, such as dams, dykes, reservoirs, canals, drains, water retention berms, trenches, aqueducts, irrigation districts and units and others built for the use of water, flood control and the management of the nation's water resources.^{aa}

Water utility. A body in charge of supplying drinking water and sanitation services in a given locality."

Watershed. A territorial unit, differentiated from other units, normally outlined by a divide between waters through the polygonal line formed by the points of highest elevation of that unit, in which water appears in different forms, and is stored or flows to an exit point, which may be the sea or another inland receiving body, through a hydrographic network of channels which converge into one main one, or the territory in which waters form an autonomous unit or one that is differentiated from others, without flowing out into the sea. In that space that is outlined by a topographic diversity, water resources, soils, flora, fauna, other natural resources related with the latter and the environment co-exist. The watershed together with aquifers constitutes the management unit of water resources.^a

Wetlands. Transition zones between aquatic and terrestrial systems that constitute temporary or permanent flood zones, subject or not to the influence of tides, such as swamps, marshes and mud-flats, the limits of which are made up by the type of moisture-absorbing vegetation, either permanent or seasonal; areas in which the soil is predominantly water-based; and lake areas or areas of permanently humid soils due to natural aquifer discharge.^a

Note: The glossary is a compilation from different sources, with the aim of illustrating the diverse concepts employed in this document. They thus do not constitute legally binding definitions.

Source:

- a National Water Law (Ley de Aguas Nacionales).
- NOM-011-CONAGUA-2000.
- INEGI (2000).
- ^d NOM-127-SSA1-1994.
- CONAGUA (2003).
- f Political Constitution of the United Mexican States (Constitución Política de los Estados Unidos Mexicanos).
- ^g USGS (2015c).
- CEFP (2012).
- Trillo (1995).
- i NMX-AA-147-SCFI-2008.
- INEGI (2011).
- ¹ Federal Law on Metrology and Standardization (Ley Federal sobre Metrología y Normalización).
- Specific operating guidelines of the FONDEN (Lineamientos de operación específicos del FONDEN).
- ⁿ NOM-002-CNA-1995.
- Arreguín et al. (2009).
- NOM-014-CONAGUA-2003.
- r NOM-143-SEMARNAT-2003.
- Higueras and Oyarzún (2013).
- t RAE (2015).

- Conagua (2012).
- Semarnat (2008).
- ♥ CONAPO (2015).
- Sánchez et al (2010).
 IPCC (2007)
- PCC (2007).
- z WB(1996).
- **aa** CONAGUA (2015a).
- **ab** AEMET (2015).
- ac General Law of Civil Defense (Ley General de Protección Civil).
- ad 014-2018 Program for national security (Programa para la seguridad nacional 2014-2018).

Annex E. Abbreviations and acronyms

AFD French Development Agency GBS Comparison of System ABLXEIN Development Agency for International Cooperation GIZ Cooperation ANEAS National Association of Water and Sanitation GWT Global Water Intelligence ANEAS National Association of Water and Sanitation GWT Global Water Intelligence ANEAS National Association of Water and Sanitation HAR Hydrological-administrative regions ANEAS National Bank of Words and Services IAH International Association of Hydrogeologists BASKITO Bank of Mexical Services IAH International Commission ICD BOD Fire-dry Biochemical Oxygen Demand IBWC International Commission on Targe Dans CD1 Indigenous Peoples ID Irrigation District Irrigation District CBASKITO National Daster Prevention Center INBO International Center of Bain Organizations CFE Federal Entry Commission IEA International Center of Statistics, Cooperation CFE Federal Statistics Constatistical Oxygen Demand INFCC National Instinture Ostatistics, Cooperation <th>AECID</th> <th>Spanish International Cooperation Agency</th> <th>GEF</th> <th>Global Environmental Facility</th>	AECID	Spanish International Cooperation Agency	GEF	Global Environmental Facility	
Autxen Development Ger German Federal Enterprise for International Cooperation ANEAS ANEAS Mitional Association of Water and Sanitation Utilities GRI Cooperation German Federal Enterprise for International Cooperation ANEAS ANEAS Mational Bank of Works and Services IAB Bansomas Harks Hydrological-administrative regions BANKIN Bansomas National Sarving and Financial Services IAB Bank of Mational Sorving and Financial Services IBRD International Association of Hydrogeologists BANKIN Bansomas Bank of Materio IBRD International Association of Hydrogeologists CHA National Commission for the Development of Indigenous Peoples International Commission of Lange Dams Infigation District CHA National Commission Center INBCC National Instruct Commission CHA International Center for Tropical Agriculture National Instruct of Statistics Geography and Informatics) CDF Federal Electricity Commission INECC National Instruct of Statistics Geography and Informatics) CONSONE National Pousition for Knowledge and Use of Biodiversity International Mater Association CONSONE National Pousition for Knowledge and Use of Biodiversity International Materia Commission				*	
ANEASNational Association of Water and SanitationGWIGlobal Water IntelligenceANZODrinking water and sanitation in urban zonesIADBInter-American Development BankBANGMAANational Bank of Works and ServicesIAHInternational Association of HydrogeologistsBANSERTBank of National Saving and Financial ServicesIAHInternational Association of HydrogeologistsBANSERTBank of MexicoIBRDInternational Bank of Reconstruction and DevelopmentBODsFive-day Biochemical Oxygen DemandIBWCInternational Boundary and Water CommissionCHANational Commission for the Development of Indigenous PeoplesIDInternational CommissionCEASState Water and Sanitation CommissionIEAInternational Company and Mater CommissionCEAMNational Dissert Peovention ContorIBNDInternational Network of Basin OrganizationsCICTInternational Center for Tropical AgricultreNational Institute of Statistics, and Geography (Gromert Pt National Institute of Statistics, Geography and Informatics)CODChemical Vygen DemandINFCCNational Institute of Statistics, Geography and Informatics)CODChemical Vygen DemandINFCCNational Institute of Statistics, Geography and Informatics)CODFederal Electricity Commission for Frotection against Health RisksIPPrivate Initiative Of Masines, Geography and Informatics)CONADANational Auter CommissionIFWInternational Water AssociationCONADANational Auter CommissionIFWInte		Mexican Agency for International Cooperation		German Federal Enterprise for International	
ANLSUtilitiesHARsHydrological-administrative regionsAPAZUDrinking water and sanitation in urban zonesIADBInter-American Development BankBASOBRASNational Bank of Works and ServicesIAHInternational Association of HydrogeologistsBASSERICBank of National Saving and Financial ServicesIBRDInternational Bank for Reconstruction and DevelopmentBODD,Freeday Biochemical Oxygen DemandIBWCInternational Bondary and Water CommissionCDNational Commission for the Development of Indigenous PeoplesIDOInternational Commission on Large DamsCEASState Water and Sanitation CommissionIEAInternational Benergy AgencyCEASNational Center for Tropical AgricultureNational Institute of Statistics and Georgraphy and Informatics)CODChemical Oxygen DemandINECNational Institute of Statistics, Geography and Informatics)CONABIDNational Commission for Protection against Health BisksIPPrivate InitiativeCONABIDNational Commission for Protection against Health BisksIPPrivate InitiativeCONABIDNational Council for the Evaluation of the Social Development PolicyINGAAutonnous Technical Institute of Matic	ANEAS		GWI	*	
AACCDrinking water and sanitation in urban zonesIADBInter-American Development BankBANSDERABank of National Bank of National Saving and Financial ServicesIAHInternational Bank for Reconstruction andBANSTICBank of MexicoIBRCInternational Bank for Reconstruction andBANSTICBank of MexicoIBRCInternational Bank for Reconstruction andBOD,Five-day Biochemical Oxygen DemandIBCCInternational Boundary and Water CommissionCDAState Water and Sanitation CommissionIEAInternational Commission on Large DamsCEASM SENational Disster Preventino CenterIBCCNational Institute of Ecology and Climate ChangeCIATInternational Center for Tropical AgricultureNational Institute of Statistics and GeographyCOCDChemical Oxygen DemandINFECNational Institute of Statistics, and GeographyCOARDPederal Commission for Protection against Health BiodisersityIPCNational Institute of Statistics, and Geography and Informatics)COARDNational Mater CommissionIPCIntergrational Bank for International CooperationCOARDNational Mater CommissionIPCIntergrational Mater AssociationCOARDNational Mater CommissionIPCIntergrational Mater AssociationCOARDNational Housing CommissionIPCIntergrational Mater AssociationCOARDNational Mater CommissionIPCIntergrational Mater AssociationCOARDNational Mater CommissionIPCIntergrational Mater AssociationCOARD	ANEAS	Utilities	HARs	-	
BASKIGNNational Bank of Works and ServicesIAHInternational Association of HydrogeologistsBASKIC0Bank of Mexicon Saving and Financial ServicesIBRDInternational Bank for Reconstruction and DevelopmenBODsFive-day Biochemical Oxygen DemandIBWCInternational Boundary and Water CommissionGCnNational Commission for the Development of Indigenous PrepolesIODInternational CommissionCEASState Water and Sanitation CommissionIEAInternational CharmisticaCEAMPREDFederal Electricity CommissionIEAInternational Interwork of Basin OrganizationsCEAFederal Electricity CommissionIEANational Distater Prevention CenterNational Institute of Statistics and Geography (Formerly the National Institute of Statistics, Geography and Informatics)COMChemical Oxygen DemandINECNational Institute of Statistics, (Geography and Informatics)COMANDNational Commission for Protection against Health RisksIPPrivate InitiativeCOMANDNational Commission for Knowledge and Use of BiodiversityIntergation unitsCOMANDNational Housing CommissionIUSIntergation unitsCOMANDNational Council for the Fieldmaint of the Social Development PolicyIMCIntergational Council of Mater AssociationCONANDNational Council for the Fieldmaint of the Social Development PolicyMASCMater AssociationCONANDNational Council for the Fieldmaint of the Social Development PolicyMASCMater AssociationCONANDCenter Res	Apazu	Drinking water and sanitation in urban zones	IADB		
Barxico Bark of Mexico IBRD International methods and and Development BOD, Five-day Biochemical Oxygen Demand IBWC International Boundary and Water Commission CD1 National Commission for the Development of Indigenous Peoples IO International Commission on Large Dams CEAS State Water and Sanitation Commission IEA International Commission on Carge Dams CEANPRED National Disstret Prevention Center INBO International Network of Basin Organizations CFE Federal Electricity Commission IEA International Institute of Ecology and Climate Change CAN National Institute of Statistics and Geography (Iormerly the National Institute of Statistics, Geography and Informatics) COPERENT National Commission for Protection against Health IPCC Intergovernmental Panel on Climate Change GONAGUA National Population Council IVA Autononous Technical Institute of Maxico CONAGUA National Population Council IVA International Maxer Association Consarue National Population Council IVA International Maxer Association Consarue National Population Council IVA	BANOBRAS	National Bank of Works and Services	IAH	-	
MARKICO Bank of Mexico Developmen Developmen BOD, Five-day Biochemical Oxygen Demand IRU International Boundary and Water Commission Cn National Commission for the Development of Indigenous Peoples ID International Commission on Large Dams CEAS State Water and Sanitation Commission IEA International Energy Agency CENATRED National Disaster Prevention Center INBO International Network of Basin Organizations CAT International Center for Tropical Agriculture National Institute of Ecology and Climate Change COD Chemical Oxygen Demand INEC National Institute of Statistics, Geography and Informatics) COT Rederal Commission for Protection against Health INF Private Initiative Risks IP Private Initiative Constate Constate National Aver Commission IUS Irrigation units Constate National Housing Commission JEIC Japan Bank for International Vater Association Constate National Aver Commission JEIC Japan Bank for International Cooperation Constate Technical Goundwater Commission	Bansefi	Bank of National Saving and Financial Services			
ColNational Commission for the Development of Indigenous PeoplesICOLDInternational Commission on Large DamsCEASState Wate and Sanitation CommissionIEAInternational Energy AgencyCENAPREDNational Disaster Prevention CenterINBOInternational Network of Basin OrganizationsCFEFederal Electricity CommissionINECCNational Institute of Statistics and GeographyCODChemical Oxygen DemandINEGCNational Institute of Statistics, and GeographyCODChemical Oxygen DemandIPPrivate Initiative of Statistics, and GeographyCODChemical Oxygen DemandIPCInternational ChangeRostonalNational Commission for Protection against Health RisksIPCInternational Parel on Climate ChangeCONARDNational Commission for Knowledge and Use of BiodiversityITAMAutonomous Technical Institute of MaxicoCONARDNational Water CommissionIUSIrrigation unitsCONARDNational Housing CommissionIUSIrrigation unitsCONARDNational Housing CommissionIUSInternational Water CompresionCONARDNational Council for the Evaluation of the Social 	Banxico	Bank of Mexico	IBKD	Developmen	
CLIAIndigenous PeoplesIDIrrigation DistrictCEASState Water and Sanitation CommissionIEAInternational Energy AgencyCENARPEDNational Dissater Prevention CenterINBOInternational Institute of Statistics and CengrepCHATInternational Center for Tropical AgricultureNational Institute of Statistics and CengrephyCODChemical Oxygen DemandINBC0International Institute of Statistics and CengrephyCODChemical Oxygen DemandINBC0International Institute of Statistics, Ceography and Informatics)CONARIONational Commission for Protection against Health RisksIPPrivate InitiativeCONARIONational Commission for Knowledge and Use of BiodiversityIFCCInternational Parle ParleCONARIONational CommissionIUSIrrigation unitsCONARIONational CouncilIWAInternational Water AssociationCONARIONational Population CouncilIWAInternational Water AssociationCONARIONational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCONARIOCelan Beach CommitisenMASLMeters above sea levelCPLClean Beach Commits and Social AlfairsNatomal Meetr ableDFFederal District Mexico City)NADMNorth American Development BankDFExternal Energy Producers (also known as IPPs: NDFNADMNorth American Development BankDFExternal Energy Producers (also known as IPPs: NDFNADMNorth American Development	BOD ₅	Five-day Biochemical Oxygen Demand	IBWC	International Boundary and Water Commission	
CEASState Water and Sanitation CommissionIDInfractional Energy AgencyCENARREDNational Disaster Prevention CenterINBOInternational Energy AgencyCENARREDInternational Disaster Prevention CenterINBOInternational Institute of Ecology and Climate ChangeCIATInternational Center for Tropical AgricultureNational Institute of Statistics and GeographyCODChemical Oxygen DemandINECCNational Institute of Statistics and GeographyCODChemical Oxygen DemandINEGU(Gorrerfy) the National Institute of Statistics, and GeographyConardonRisksIPPrivate InitiativeCONARIONational Commission for Protection against Health RisksIPPrivate InitiativeConardonNational Commission for Knowledge and Use of BiodiversityIrrigation unitsConardonNational Mater CommissionIUSIrrigation unitsConardonNational Housing CommissionJBICJapan Bank for International CooperationConardonNational Housing CommissionJBICJapan Bank for International CooperationConardonMational Concil for the Evaluation of the SocialKFWGerman Development BankCortasTechnical Groundwater CommissionMAMetropolitan areaCortasTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteMDGsMillennium Development BankCPLClean Beach CommitteMDGsNillenium Development GaolsCRAERegional Emergency Attentio Center <t< td=""><td>Cdi</td><td></td><td>Icold</td><td>International Commission on Large Dams</td></t<>	Cdi		Icold	International Commission on Large Dams	
CENAPREDNational Disaster Prevention CenterIRAInternational Network of Basin OrganizationsCFEFederal Electricity CommissionINECCNational Institute of Ecology and Climate ChangeCLATInternational Center for Tropical AgricultureNational Institute of Statistics and GeographyCODChemical Oxygen DemandINEG(formerly the National Institute of Statistics, Geography and Informatics)COFEPRESFederal Commission for Protection against Health RisksIPPrivate InitiativeCONARDONational Commission for Knowledge and Use of BiodiversityITAMAutononous Technical Institute of MexicoCONARDONational Population CouncilIVAInternational Water AssociationCONARDNational Population CouncilIWAInternational Water AssociationConARDNational Population CouncilIWAInternational CooperationConARDNational Council for the Evaluation of the SocialKFWGerman Development BankCortasTechnical Groundwater CommissionIBICJapan Bank for International CooperationCortasTechnical Groundwater CommissionMASLMeters above sea levelCPLCleane Bach CommitteeMASLMeters above sea levelCPLCleane Bach Commit and Social AffairsNADEANKNorth American Development BankDFFederal District (Mexico City)NADENADEANKNorth American Industry Classification SystemDFLDevelopment Policy LoanNADENADENADEANKNorth American Industry Classification SystemDFL	OTAC		ID	Irrigation District	
CFEFederal Electricity CommissionINFOInternational Institute of Statistics and GeographyCIATInternational Center for Tropical AgricultureNational Institute of Statistics and GeographyCODChemical Oxygen DemandIAEGGoorgraphy and Informatics)RisksFederal Commission for Protection against Health BiodiversityIPPrivate InitiativeCONABIONational Commission for Knowledge and Use of BiodiversityIPCIntergovernmental Panel on Climate ChangeCONADIONational Adver CommissionIUsIrrigation unitsCONADIONational Mater CommissionIUSIrrigation unitsCONADIONational Housing CommissionJBICJapan Bank for International CooperationCONADINational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCOTASTechnical Groundwater CommissionJBICJapan Bank for International CooperationCOTASTechnical Groundwater CommissionMASLMetropolitan areaCOTASTechnical Groundwater CommissionMASLMetropolitan areaCRAERegional Emergency Attention CenterMASSLMater ableDFAFederal District (Mexico City)NaDAMNNorth American Development BankDFFederal District (Mexico City)NADAMNNorth American Drought MonitorDFPederal District (Mexico City)NADAMNNorth American Drought MonitorDFPederal District (Mexico City)NADAMNNorth American Drought MonitorDFPederal Distr			IEA	International Energy Agency	
CIAT International Center for Tropical Agriculture National Institute of Statistics and Geography COD Chemical Oxygen Demand INEG National Institute of Statistics and Geography COD Chemical Oxygen Demand INEG Geography and Informatics) COFEPRIS Federal Commission for Protection against Health Risks IP Private Initiative CONABIO National Commission for Knowledge and Use of Biodiversity IPCC Intergovernmental Panel on Climate Change CONAGUA National Population Council IVA Autonomous Technical Institute of Acco CONAVU National Housing Commission JBIC Japan Bank for International Cooperation CONEVAL National Council for the Evaluation of the Social Development Policy KFW German Development Bank COTAS Technical Groundwater Commission MAS Meters above sea level MAININ CPL Clean Beach Committee MDGS MILIN Most likely number DF Federal District (Mexico City) NASA North American Development Bank DF Federal District (Mexico City) NADBANK North American Drought Monitor DF Federal District (Mexico City) NADA			INBO	International Network of Basin Organizations	
CODChemical Oxygen DemandINFOInflution of Statistics and OcopyingCOFERENSFederal Commission for Protection against Health RisksIPPrivate InitiativeCONABIONational Commission for Knowledge and Use of BiodiversityIPCCIntergovernmental Panel on Climate ChangeCONAGUANational Commission for Knowledge and Use of BiodiversityIPCCIntergovernmental Panel on Climate ChangeCONAGUANational Water CommissionIUSIrrigation unitsCONAGUANational Population CouncilIWAInternational Water AssociationCONAGUANational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCOTASTechnical Groundwater CommissionMAKMetropolitan areaCPLClean Beach CommitteeMDGSMillennium Development BankCPLClean Beach CommitteeMDGSMillennium Development BankCRAERegional Emergency Attention CenterMLNMost Haley numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDFFederal District (Mexico City)NADMNorth American Industry Classification SystemDFFederal District (Mexico City)NADMNorth American Industry Classification SystemDFFederal District (Mexico City)NASANational Aeronautics and Space AdministrationDFFederal District (Mexico City)NASANational Aeronautics and Space Administr		*	INECC	National Institute of Ecology and Climate Change	
COFEPRING RisksFederal Commission for Protection against HealthGeography and Informatics)COFEPRINGNational Commission for Knowledge and Use of BiodiversityIPCCInteragovernmental Panel on Climate Change BiodiversityCONABIONational Commission for Knowledge and Use of BiodiversityITAMAutonomous Technical Institute of MexicoCONADONational Water CommissionIUSIrrigation unitsCONADONational Population CouncilIWAInternational Water AssociationCONADONational Council for the Evaluation of the Social Development PolicyMAMetropolitan areaCOTASTechnical Groundwater CommissionMASMetropolitan areaCOTASTechnical Groundwater CommissionMASMetropolitan areaCPLClean Beach CommitteeMDGsMillennium Development BankCREDCentre for Research on the Epidemiology of Disasters DFMLNMost likely numberDFFederal District (Mexico City)NADBANKNorth American Drought MonitorDFFederal District (Mexico City)NADANNorth American Industry Classification SystemDFEvelopment Policy LoanNADSNADIONAL American Industry Classification SystemDFEvelopment Policy LoanNADKANational Aeronautics and Space AdministrationDFEvelopment Policy LoanNADKNADIADFEvelopment RazetteeNDMNational Aeronautics and Space AdministrationDFEvelopment Policy LoanNADKNAtional Aeronautics and Space Administration<		1 0	T .	0 1 1	
COFEPRIS RisksIP Private InitiativePrivate InitiativeCONABIO BiodiversityRisksIP Private InitiativePrivate InitiativeCONAGUANational Commission for Knowledge and Use of BiodiversityITAMAutonomous Technical Institute of MexicoCONAGUANational Water CommissionIUSIrrigation unitsCONAOVNational Population CouncilIWAInternational Water AssociationCONAVINational Population CouncilIWAInternational Water AssociationCONAVINational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCOTASTechnical Groundwater CommissionMAMetropolitan areaCOTASTechnical Groundwater CommissionMASLMeters above sea levelCPLClean Beach CommitteeMDGsMillennium Development GoalsCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDFEdedia District (Mexico City)NADMNorth American Drought MonitorDFDevelopment Policy LoanNASANational Aronautics and Space AdministrationDFExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Aronautics and Space AdministrationENOIENOIEt Nitio Outhern OscillationNMXMexican standardENOIEt Nitio Outhern OscillationNMKMexican standardENOIEt Nitio Outhern Oscillation<	COD		INEGI		
CONABIOBiodiversityTTAMAutonomous Technical Institute of MexicoCONAGUANational Vater CommissionIUsIrrigation unitsCONAFONational Dopulation CouncilIWAInternational Water AssociationCONAFONational Council for the Evaluation of the SocialJBCJapan Bank for International CooperationCONEVALNational Council for the Evaluation of the SocialKFWGerman Development BankDevelopment PolicyMAMetropolitan areaCorasTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMDGsMillennium Development GoalsCRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDFFederal District (Mexico City)NADMNorth American Drought MonitorDFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAISNational Aeronautics and Space AdministrationEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Development PlanENOCNational Employement SurveyNIWNational Inventory of WetlandsENOCEnvironmental Protection CostsNPENortal AeronauticsFAOFood and Agriculture OrganizationNWLNational Water LawFAOFood and Agriculture OrganizationNWLNational Water LawFAOFood and Agriculture Organiza	Cofepris	0	IP		
IndexITAMAutonomous Technical Institute of MexicoCONAGUANational Water CommissionIUsIrrigation unitsCONAPONational Population CouncilIUSInternational Water AssociationCONAPONational Housing CommissionJBICJapan Bank for International CooperationCONEVALNational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCONEVALClean Beach CommitteeMAMettropolitan areaCPLClean Beach CommitteeMDGsMillennium Development GoalsCRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDFExternal Energy Producers (also known as IPPs: Independent Power Producers)NASANational Aeronautics and Space AdministrationEPSAExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Levelopment PlanENOENational Employement SurveyNIWNational Inventory of WetlandsENOEExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Inventory of WetlandsENOENational Employement SurveyNIWNational Inventory of WetlandsEmployementENOEExternal Energy Producers (also known as IPPs: Independent Power Producers)NDM<	0	National Commission for Knowledge and Use of	IPCC	Intergovernmental Panel on Climate Change	
CONARONational Population CouncilIOSInternational Water AssociationCONARONational Population CouncilIWAInternational Water AssociationCONAVINational Council for the Evaluation of the SocialJBICJapan Bank for International CooperationCONEVALDevelopment PolicyMAMetropolitan areaCorasTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMDGsMillennium Development GoalsCRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDOFOfficial Government GazetteNADMNorth American Industry Classification SystemDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Inventory of WetlandsENOENational Employement SurveyNIWNational Inventory of WetlandsENSOEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardFACSpanish Water and Sanitation Cooperation FundNWPNational Water LawFACASSpanish Water and Sanitation Cooperation FundNWPNational Water Program <td>CONABIO</td> <td>Biodiversity</td> <td>ITAM</td> <td>Autonomous Technical Institute of Mexico</td>	CONABIO	Biodiversity	ITAM	Autonomous Technical Institute of Mexico	
CONAVINational Housing CommissionJWKInternational Water AssociationCONEVALNational Council for the Evaluation of the Social Development PolicyJBICJapan Bank for International CooperationCONEVALNational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCOTASTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMDGSMillennium Development GoalsCRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsNADMNorth American Development BankDFFederal District (Mexico City)NADMNorth American Drought MonitorDOFOfficial Government GazetteNADMNorth American Industry Classification SystemDPLDevelopment Policy LoanNASANational Aeronautics and Space AdministrationEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Inventory of WetlandsENOENational Employement SurveyNIWNational Inventory of WetlandsENSOEl Niño Southern OscillationNMKMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardENOEFord and Agriculture OrganizationNWLNational Water ProgramFAOFood and Agriculture OrganizationNWPNational Water ProgramFAOFood an	Conagua	National Water Commission	IUs	Irrigation units	
CONEVALNational Council for the Evaluation of the Social Development PolicyJackJackJackCOTASTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMASLMeters above sea levelCRAERegional Emergency Attention CenterMDGsMillennium Development GoalsCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemDPLDevelopment Policy LoanNASANational Aeronautics and Space AdministrationEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NIWNational Inventory of WetlandsENOENational Employement SurveyNIWNational Inventory of WetlandsENOEEl Niño Southern OscillationNMXMexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water CompanyFDLFederal Duties LawProtection for Infrastructure and Emergency AttentionFDNENNational Infrastructure FundPIAEProtection for Infrastructure	Conapo	National Population Council	IWA	International Water Association	
CONEVALNational Council for the Evaluation of the Social Development PolicyKFWGerman Development BankCONEVALTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMASLMeters above sea levelCRAERegional Emergency Attention CenterMDGsMillennium Development GoalsCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADMNorth American Development BankDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemIndependent Power Producers (also known as IPPs: Independent Power Producers)NDPNational Aeronautics and Space AdministrationENOEExternal Energy Producers (also known as IPPs: Independent Power Producers)NMXMexican standardENOEExtornal Energy Producers (also known as IPPs: Independent Power Producers)NMPNational Development PlanENOEExtornal Energy Producers (also known as IPPs: Independent Power Producers)NMXMexican standardENOEExtornal Energy Producers (also known as IPPs: Independent Power Producers)NMXMational Inventory of WetlandsENOEExtornal Energy Producers (also known as IPPs: Independent Power Producers)NMXMexican standardENOEExtornal Energy ProducersNMXMexican standard </td <td>Conavi</td> <td>National Housing Commission</td> <td>JBIC</td> <td colspan="2"></td>	Conavi	National Housing Commission	JBIC		
CorasTechnical Groundwater CommissionMAMetropolitan areaCPLClean Beach CommitteeMASLMeters above sea levelCRAERegional Emergency Attention CenterMDGsMillennium Development GoalsCREDCentre for Research on the Epidemiology of DisastersMLNMost likely numberDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADBANKNorth American Development BankDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Aeronautics and Space AdministrationENOENational Employement SurveyNIWNational Inventory of WetlandsETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAASpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDNENNational Infrastructure FundPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductProgram for Centical Assistance for the <b< td=""><td>Coneval</td><td></td><td>KFW</td><td></td></b<>	Coneval		KFW		
CPLClean Beach CommitteeMDGsMillennium Development GoalsCRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADMNorth American Drought MonitorDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Development PlanENOENational Employement SurveyNIWNational Inventory of WetlandsENOEEl Niño Southern OscillationNMXMexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWPNational Mater LawFCASSpanish Water and Sanitation Cooperation FundPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONENNational Infrastructure FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPIAEProject to Strengthen Integrated Water Resources	Сотая		MA	Metropolitan area	
CRAERegional Emergency Attention CenterMLNMost likely numberCREDCentre for Research on the Epidemiology of DisastersMTMaster tableDESADepartment of Economic and Social AffairsNADBANKNorth American Development BankDFFederal District (Mexico City)NADBANKNorth American Drought MonitorDOFOfficial Government GazetteNADMNorth American Industry Classification SystemDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NIWNational Development PlanENOENational Employement SurveyNIWNational Inventory of WetlandsETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water ProgramFOLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Infrastructure FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPIAEProject to Strengthen Integrated Water Resources	CPL	Clean Beach Committee	MASL	Meters above sea level	
CREDCentre for Research on the Epidemiology of DisastersMLNMost likely numberDESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADBANKNorth American Development BankDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemDFExternal Energy Producers (also known as IPPs: Independent Power Producers)NADANational Aeronautics and Space AdministrationENOENational Employement SurveyNIWNational Inventory of WetlandsENOEEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPATMEProject to Strengthen Integrated Water Resources	CRAE	Regional Emergency Attention Center	MDGs	Millennium Development Goals	
DESADepartment of Economic and Social AffairsMTMaster tableDFFederal District (Mexico City)NADBANKNorth American Development BankDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemDFsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Aeronautics and Space AdministrationENOENational Employement SurveyNIWNational Inventory of WetlandsENOEEl Niño Southern OscillationNMXMexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductProseProject to Strengthen Integrated Water Resources	CRED		MLN	Most likely number	
DFFederal District (Mexico City)NADBANKNorth American Development BankDOFOfficial Government GazetteNADMNorth American Drought MonitorDPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemDFExternal Energy Producers (also known as IPPs: Independent Power Producers)NASANational Aeronautics and Space AdministrationENOENational Employement SurveyNIWNational Inventory of WetlandsENOEEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMAProject to Strengthen Integrated Water Resources	DESA		MT	Master table	
DOFOfficial Government GazetteNAICSNorth American Industry Classification SystemDPLDevelopment Policy LoanNASANational Aeronautics and Space AdministrationEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NADPNational Development PlanENOENational Employement SurveyNIWNational Inventory of WetlandsENSOEl Niño Southern OscillationNMXMexican standardEPCEnhanced Thematic MapperNOMOfficial Mexican standardFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency Attention Project to Strengthen Integrated Water Resources	DF	-	Nadbank	North American Development Bank	
DPLDevelopment Policy LoanNAICSNorth American Industry Classification SystemEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NASANational Aeronautics and Space AdministrationENOENational Employement SurveyNIWNational Development PlanENSOEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawParmeProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductProject to Strengthen Integrated Water Resources	DOF	Official Government Gazette	NADM	North American Drought Monitor	
EEPsNASANational Aeronautics and Space AdministrationEEPsExternal Energy Producers (also known as IPPs: Independent Power Producers)NDPNational Development PlanENOENational Employement SurveyNIWNational Inventory of WetlandsENSOEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMUAProject to Strengthen Integrated Water Resources			NAICS		
Independent Power Producers)NONNational Development Producers)ENOENational Employement SurveyNIWNational Inventory of WetlandsENSOEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawParmeProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency Attention Project to Strengthen Integrated Water Resources	LLD ²	External Energy Producers (also known as IPPs:		National Aeronautics and Space Administration	
ENOLNational Employment SurveyENSOEl Niño Southern OscillationNMXMexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency Attention Project to Strengthen Integrated Water Resources	EEPS		NDP	National Development Plan	
ETMEnhanced Thematic MapperNOMOfficial Mexican standardETMEnhanced Thematic MapperNOMOfficial Mexican standardEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawParmeProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency Attention Project to Strengthen Integrated Water Resources	Enoe	National Employement Survey	NIW	National Inventory of Wetlands	
FTMEnhanced Findhate MapperEPCEnvironmental Protection CostsNPENormal Pool ElevationFAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawParmeProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONADINNational Infrastructure FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	ENSO	El Niño Southern Oscillation	NMX	Mexican standard	
FAOFood and Agriculture OrganizationNWLNational Water LawFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	ETM	Enhanced Thematic Mapper			
FIGFood and Agriculture OrganizationFCASSpanish Water and Sanitation Cooperation FundNWPNational Water ProgramFDLFederal Duties LawProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONADINNational Infrastructure FundPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	EPC	Environmental Protection Costs	NPE	Normal Pool Elevation	
FOLFederal Duties LawProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONADINNational Infrastructure FundPATMEProgram for Technical Assistance for the Improvement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	FAO	Food and Agriculture Organization	NWL	National Water Law	
FONNational Infrastructure FundPATMEImprovement of Efficiency in the Drinking Water and Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	FCAS	Spanish Water and Sanitation Cooperation Fund	NWP	National Water Program	
FONADINNational Infrastructure Fundand Sanitation SectorFONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductPREMIAProject to Strengthen Integrated Water Resources	FDL	Federal Duties Law	Democra		
FONDENNational Natural Disaster FundPIAEProtection for Infrastructure and Emergency AttentionGDPGross Domestic ProductProject to Strengthen Integrated Water Resources	Fonadin	National Infrastructure Fund	PATME		
GDP Gross Domestic Product Project to Strengthen Integrated Water Resources	Fonden	National Natural Disaster Fund	PIAE		
	GDP	Gross Domestic Product		Project to Strengthen Integrated Water Resources	

Attorney General's Office for Environmental SINA according to NWL: National information s	ystem on
PROFEPA Protection water quality, quantity, uses and conservat	ion)
PROMAGUA Water Utility Modernization Project SPOT Satellite for Earth Observation	
Program for the improvement of efficiency in the SRTM Shuttle Radar Topography Model	
PROME drinking water and sanitation sector SS Ministry of Health	
PRONACOSE National Program against Drought SSA Ministry of Healthiness and Assistence (of	osolete,
PROSANEAR Federal Program for Wastewater Treatment employed in the names of NOMs)	
PROSIBA Program of Integral Sanitation of the Acapulco Bay STPS Ministry of Employment and Social Prevention	ition
Program for the Construction and Rehabilitation TD Tropical depression	
PROSSAPYS of Drinking Water and Sanitation Systems in Rural TRD Technified rainfed district	
Areas TS Tropical storm	
REPDA Public Registry of Water Duties TSS Total Suspended Solids	
SAGARPA Ministry of Agriculture, Livestock, Rural Develop- UN United Nations ment, Fishing and Food	
UNDP United Nations Development Programme	
SDGsSustainable Development Goals (evolution of the Millennium Development Goals)UNESCOUnited Nations Education, Science and Cu Organization	lture
SEEA System for Environmental-Economic Accounting	. Disaster
SCFI Ministry of Trade and Industrial Development ONISDR Reduction (obsolete, employed in the names of NOMs)	
SECCI Sustainable Energy and Climate Change Initiative UNSD United Nations Statistics Division	
SECTUR Ministry of Tourism USGS United States Geological Survey	
SPE Surcharge Pool Elevation WB World Bank	
SEDESOL Ministry of Social Development WCIF Water Conservation Investment Fund (NA	DBANK)
System of Environmental-Economic Accounting for	
SEEAW Water WMO World Meteorological Organization	
SEGOB Ministry of the Interior WQI Water Quality Index	
SEMAR Ministry of the Navy WWF World Water Forum	
SEMARNAT Ministry of the Environment and Natural Resources WWTP Wastewater treatment plant	
SHCP Ministry of Finances and Public Credit ZMVM Valley of Mexico metropolitan area	
SIAP Agro-Food and Fishing Information Service ZOFEMATAC Federal Maritime Land Area and Coastal A	reas

Renewable water resources: The calculation of renewable water resources is carried out through spatial analysis, intersecting the layers of municipalities, watersheds and aquifers in order to make up minimal spatial units (municipality-watershed-aquifer). Assuming an equal distribution throughout the area of the relevant and most up-to-date values, the renewable water resources for each minimal spatial unit are calculated. This calculation allows the value of renewable water resources to be represented through the aggregation of minimal units both in municipalities, watersheds and aquifers and in groups of municipalities: states and hydrological-administrative regions.

Closing: The closing date of the data is generally speaking December 31, 2014, except for specific cases, in which the information is derived from different censuses, such as socio-economic information at the municipal level, calculated up to 2010; when the latest information available is not at the closing date, such as the state GDP (see the note below); or when it has a significant deadline, such as the Millennium Development Goals, for which the global compliance is evaluated up to 2015.

Population: The population projection employed by CONAPO (2015), at the mid-year point, is used for the 2010-2030 period. It should be mentioned that the 2010 Census on Population and Housing found a population of 112.3 million inhabitants at the time it was carried out. For the calculation of 2010-2030 population projections, the CONAPO carried out a 1990-2010 demographic conciliation, which allowed it to establish that the population at mid-year 2010 was 114.3 million inhabitants. The Conapo's projections consider 137.48 million inhabitants by 2030.

Precipitation:The values reported by the National Meteorological Service are employed (total, regional and state-wide) for both the normal 1981-2010 precipitation and the 2014 annual precipitation.

Gross Domestic Product (GDP): For the present document the national GDP available was calculated for the year 2014. The calculation by state and by hydrolog-ical-administrative region is based on the GDP per state, the latest data on which available for this edition was for 2013.

Rounding up or down: Because of rounding up or down, the sums in the tables both in values and percentages do not necessarily add up to the totals.

Bibliographic references: The Harvard System or author-date system is used. In the text, when the reference document is quoted, a particle is included with the format "Author (date)", for example "CONA-GUA (2003)". The list of bibliographical references is included in annex G. For the previous example, the corresponding entry in the annex is "CONAGUA. 2003. Manual de Drinking water, Sanitation y saneamiento - MAPAS.". Specific formats are used for printed documents, institutional authors and sources consulted online. In order to identify the works from one author from

the same year, the years are differentiated by a progressive literal: "CONAGUA (2015a)", "CONAGUA (2015b)". Using this system results in space saving and allows the sources used to be rigorously quoted.

System of units: The units used in this document are expressed in conformity with NOM-008-SCFI-2002 "General System of Measurement Units" considering its modification on September 24, 2009, which establishes that the decimal point may be a comma or a period.

Mainland area: In INEGI's Information Bank, the "Mainland area" item (Inegi 2015p), there is information up to 2005 on the mainland area for each one of the 2 454 municipalities existing at that time, and consistent with the totals of mainland area present in INEGI's statistical almanac. Considering that the new municipalities are made up of fractions of existing municipalities, the CONAGUA, based on the analysis of the information in the geographical layer "Marco geoestadístico municipal" (Municipal geostatistical framework), 2005 and 2014 versions, assigned areas to each of the 2 457 municipalities existing in 2014, conserving the same totals. It is of interest to the CONAGUA to have the mainland areas and totals at the municipal level, since with that it is possible to calculate consistently the mainland and total area both of states and hydrological-administrative regions, which are the aggregation of municipalities.

Baseli	Baseline units, derived or conserved for their use from NOM-008-SCFI-2002						
Symbol	Unit	Equivalents					
cm	centimeter	1 cm = 0.01 m					
ha	hectare	1 ha = 10 000 m ² = 2.47 acres					
hm³	cubic hectometer	$1 \text{ hm}^3 = 1 \ 000 \ 000 \ \text{m}^3$					
kg	kilogram	1 kg = 1 000 g					
km/h	kilometer per hour	1 km/h = 0.2778 m/s					
km²	square kilometer	$1 \text{ km}^2 = 1 \ 000 \ 000 \ \text{m}^2$					
km ³	cubic kilometer	$1 \text{ km}^3 = 1 \ 000 \ 000 \ 000 \ \text{m}^3$					
L,1	liter	1 L = 0.2642 gal					
L/s, 1/s	liter per second	$1 \text{ L/s} = 0.001 \text{ m}^3/\text{s}$					
m	meter	1 m = 3.281 ft					
m ³	cubic meter	$1 \text{ m}^3 = 0.000810 \text{ AF}$					
m³/s	cubic meter per second	1 m³/s = 35.3 cfs					
mm	millimeter	1 mm = 0.001 m					
mm	millimeter	1 mm = 0.0394 in					
t	ton	1 t = 1 000 kg					
W	watt	$1 \text{ W} = 1 \text{ m}^2 \text{ kg/s}^3$					

Units not included in NOM-008-SCFI-2002					
Symbol Unit		Equivalents			
AF	acre-foot	$1 \text{ AF} = 1 233 \text{ m}^3$			
cfs	cubic feet per second	$1 \text{ cfs} = 0.0283 \text{ m}^3/\text{s}$			
ft	foot	1 foot = 0.3048 m			
gal	gallon	1 gal = 3.785 L			
hab	inhabitants	Not applicable			
in	inch	1 in = 25.4 mm			
MAF	million acre-feet	$1 \text{ MAF} = 1.23 \text{ km}^3$			
MASL	meters above sea level	Not applicable			
pesos	Mexican pesos	1 Mexican peso = 0.07643 United States dollars			
ppm	parts per million	1 ppm = 0.001 g/L			
USD	United States dollar	1 United States dollar = 14.7414 Mexican pesos			
* The FIX exchange rate as of December 31, 2014 was considered (Banxico 2015b).					

Examples of measurements

1 m³ = 1 000 liters

 $1 \text{ hm}^3 = 1 000 000 \text{ m}^3$

 $1 \text{ km}^3 = 1 \text{ 000 } \text{ hm}^3 = 1 \text{ 000 } \text{ 000 } \text{ 000 } \text{ m}^3$

1 TWh = 1 000 GWh = 1 000 000 MWh

Prefixes to form multiples						
Symbol	Name	Value	Symbol	Name	Value	
Т	tera	1012	h	hecto	10 ²	
G	giga	109	С	centi	10-2	
М	mega	106	m	mili	10-3	
k	kilo	10 ³				

Annex G. Bibliographical references

- AEMET. 2015. Agencia State-wide de Meteorología Manual de uso de términos meteorológicos. Consulted on: http://www.aemet.es/ documentos/es/eltiempo/prediccion/comun/Manual_de_uso_ de_terminos_met_2015.pdf (15/10/2015).
- Anexo de las Reglas de Operación del Fondo de Desastres Naturales 2006. Consulted on: http://www.hacienda.gob.mx/EGRESOS/ PEF/temas_gasto_federalizado/fonden/reglas_de_operacion_ fonden_2006.pdf (15/06/2015).
- Arreguín C., F. et al. 2009. "Bordos en México". In: Ingeniería Civil. pp. 12-18. Número 483. Colegio de Ingenieros Civiles de México. México, DF. Julio 2009.
- Banxico. 2015a. Compilación de informes trimestrales correspondientes al year 2014. Consulted on: http://www.banxico.org.mx/ publicaciones-y-discursos/publicaciones/informes-periodicos/ anual/%7B33FD4000-F5A5-58B6-DB8A-826D2608BADF%7D. pdf (15/06/2015).
- Banxico. 2015b. Mercado cambiario (Tipos de cambio). Consulted on: http://www.banxico.org.mx/dyn/portal-mercado-cambiario/ index.html (15/08/2015).
- CAPASEG. 2014. Inauguración del Acueducto Lomas de Chapultepec 14/04/2014. Consulted on: http://capaseg.gob.mx/?id=94 (15/10/2015).
- CEC. 2015. North American Environmental Atlas. Consulted on: http://www.cec.org/Page.asp?PageID=924&SiteNodelD=495&AA_SiteLanguageID=1 (15/06/2015).
- CEFP. 2012. Glosario de términos más usuales de finanzas públicas. Consulted on: http://www.cefp.gob.mx/portal_archivos/normatividad/glosario.pdf (15/0106/2015).
- CFE. 2015. Informe anual 2014. Consulted on: http://www.cfe.gob. mx/inversionistas/Style%20Library/assets/pdf/InformeAnual. pdf (15/08/2015).
- CILA. 2015. Tratados y Convenciones. Consulted on: http://cila.sre. gob.mx/cilanorte/images/stories/pdf/1944.pdf (15/06/2015).
- Clarke, R. and King, J. 2004. The Water Atlas. The New Press.
- CONABIO. 2015. Portal de Geoinformación Sistema Nacional de Información sobre Biodiversidad. Consulted on: http://www.conabio. gob.mx/informacion/gis/ (15/06/2015).
- CONAFOR. 2014. Programa Nacional Forestal 2014. Consulted on: http://www.conafor.gob.mx/web/apoyos/apoyos-2014/ (15/08/2015).
- CONAGUA. 2003. Manual de agua potable, alcantarillado y saneamiento - MAPAS.
- CONAGUA. 2005. Estudio de Transversalidad de las Políticas Públicas Federales en el Sector Hídrico.
- CONAGUA. 2007. Análisis de la Información del Agua de los Censos y Conteos 1990 a 2005.
- CONAGUA.2008. Inventario Nacional de Obras de Protección contra Inundaciones en Cauces Naturales.
- CONAGUA. 2012. Glosario general de términos del desarrollo de la base metodológica para el Inventario Nacional de Humedales de México.
- CONAGUA. 2013. Estadísticas Agricultures de las unidades de riego. Year Agriculture 2011-2012.
- CONAGUA. 2014a. Estadísticas del Agua en México 2014.
- Conagua. 2014b. Programa Nacional Hídrico 2014-2018.
- CONAGUA. 2014c. Deputy Director General's Office por Drinking Water, Drainage and Sanitation.
- CONAGUA. 2015a. Deputy General Director's Office for Technical Affairs.
- CONAGUA. 2015b. Deputy Director General's Office for Planning.

- CONAGUA. 2015c. Deputy Director General's Office for Water Management.
- CONAGUA. 2015d. Coordination of Emergency Attention and River Basin Councils.
- CONAGUA. 2015e. Deputy Director General's Office for Drinking Water, Drainage and Sanitation.
- CONAGUA. 2015f. Deputy Director General's Office for Hydro-Agricultural Infrastructure.
- CONAGUA. 2015g. Coordination of Duty Collection and Fiscal Control.
- CONAGUA. 2015h. Coordination of the National Meteorological Service.
- CONAGUA. 2015i. Programa de Medidas Preventivas y de Mitigación de la Sequía - Consejo de Cuenca Alto Noroeste.
- CONAGUA. 2015j. Servicio Meteorológico Nacional Descripción de El Niño. Consulted on: http://smn.cna.gob.mx/index. php?option=com_content&view=article&id=266<emid=161 (15/08/2015).
- CONAGUA. 2015k. Servicio Meteorológico Nacional Qué es un ciclón?. Consulted on: http://smn.cna.gob.mx/index.php?option=com_ content&view=article&id=39&Itemid=47 (15/06/2015).
- CONAGUA. 2015I. Proyectos estratégicos Drinking water, drenaje y saneamiento. Consulted on: http://www.conagua.gob.mx/CONA-GUA07/Noticias/SeguimientoPNI.pdf (15/10/2015).
- CONAGUA. 2015m. Cubos portátiles de información.
- CONAGUA. 2015n. Valley of Mexico River Basin Organization.
- CONAGUA. 20150. Deputy Director General's Office for Administration.
- CONAGUA.2015p. Situación del Subsector Drinking water, Sanitation y Saneamiento 2015.
- CONAGUA and UNAM. 2012. Humedales de la República Mexicana. UNAM. Mexico City.
- CONANP. 2015a. Áreas Naturales Protegidas. Consulted on: http://www.conanp.gob.mx/que hacemos (15/06/2015).
- CONAGUA.2015b. Map interactivo de las áreas naturales protegidas federales de México. Consulted on: http://sig.conanp.gob.mx/ website/anpsig/viewer.htm (15/06/2015).
- CONAGUA. 2015c. Humedales de México. Consulted on: http://ramsar.conanp.gob.mx/ (15/06/2015).
- CONAPO. 2011. Indice de marginación 2010. Consulted on: http:// www.conapo.gob.mx/es/CONAPO/Indices_de_Marginacion (15/07/2015).
- CONAPO.2015. Proyección de la población 2010-2050. Consulted on: http://www.conapo.gob.mx/en/CONAPO/Proyecciones (15/06/2015).
- CONEVAL. 2011a. Índice de Rezago Social 2010 a nivel municipal y por localidad. Consulted on: http://www.coneval.gob.mx/ Medicion/Paginas/%C3%8Dndice-de-Rezago-social-2010.aspx (15/06/2015).
- CONEVAL. 2011b. Pobreza a nivel municipio 2010. Consulted on: http://www.coneval.gob.mx/Medicion/MP/Paginas/Medicion-de-la-pobreza-municipal-2010.aspx (15/06/2015).
- Constitución Política de los Estados Unidos Mexicanos.
- Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D., Savelli, H. (eds) Sick water? The central role of wastewater management in sustainable development. – A rapid response assessment. United Nations Environment Programme, UN-HABITAT, GRID-Arendal. Consulted on: http://www.unwater.org/downloads/sickwater_ unep_unh.pdf (15/08/2014),

Economía. 2015a. Sistema de información arancelaria vía Internet. Consulted on: http://www.economia-snci.gob.mx/ (15/06/2015).

Economía. 2015b. Consulta del Catálogo de Normas Oficiales Mexicanas. Consulted on: http://www.economia-noms.gob.mx/ noms/inicio.do (15/10/2015).

FAO. 2010. Global Forest Resources Assessment 2010. Consulted on: http://www.fao.org/forestry/fra/fra2010/en/ (15/07/2015).

FAO. 2011. The state of the world's land and water resources for food and agriculture – Managing systems at risk. Consulted on: http://www.fao.org/docrep/017/i1688e/i1688e.pdf (15/08/2015).

FAO. 2015. AQUASTAT: Sistema de información sobre el uso del agua en la agricultura de la FAO. Consulted on: http://www.fao. org/nr/water/aquastat/main/indexesp.stm (15/07/2015).

FAO. 2015. Global Forest Resources Assessment 2015 - resultados preliminares. Consulted on: http://www.fao.org/3/a-i4808e.pdf (15/10/2015).

Gleick, P.H. 2002. The World's Water 2002-2003: The Biennial Report on Freshwater Resources. Island Press, Washington, D.C.

Gobierno de la República. 2014. *Inauguración de Acueducto Paralelo Chicbul-Ciudad del Carmen*. Consulted on: https://www.youtube.com/watch?v=NsyeBf_ML5s (15/10/2015).

GWI. 2015. Global Water Tariff Survey 2014.

Higueras, H. P. and Oyarzun, R. 2013. *Yacimientos minerales*. Consulted on: http://www.uclm.es/users/higueras/yymm/MarcoNuevo.htm (15/06/2015).

lcold. 2007. Dams and the world's water. Consulted on: http:// www.icold-cigb.org/GB/Publications/others_publications.asp (26/07/2014)

IEA. 2012. "Water for energy". In: IEA. World Energy Outlook 2012. Consulted on: http://www.worldenergyoutlook.org/ media/weowebsite/2012/WEO_2012_Water_Excerpt.pdf (15(08/2015).

IEA. 2014a. Key World Energy Statistics 2014. Consulted on: http://www.iea.org/publications/freepublications/publication/ KeyWorld2014.pdf (15/09/2015).

IEA. 2014b. Water for energy. Consulted on: http://www.worldenergyoutlook.org/resources/water-energynexus/ (15/08/2015).

IFAI. 2015. Portal de obligaciones de transparencia – Comisión Nacional del Agua – I. Estructura orgánica operativa. Consulted on: http://portaltransparencia.gob.mx/pot/estructura/showOrganigrama.do?method=showOrganigrama&_idDependencia=16101 (15/09/2015).

IFRC. 2014. World Disasters Report 2014. Focus on culture and risk. Consulted on: http://www.ifrc.org/world-disasters-report-2014 (15/06/2015).

IMF. 2015. World Economic Outlook Database 2015. Consulted on: https://www.imf.org/external/pubs/ft/weo/2015/01/weodata/index.aspx (15/06/2015).

INEGI. 2000. Diccionario de datos de hidrología superficial. Escalas 1:250 000 y 1:1 000 000 (Alfanumérico). Consulted on: http://www.inegi.org.mx/geo/contenidos/recnat/ hidrologia/?_file=/geo/contenidos/recnat/hidrologia/doc/DD_ HidroSup(alf)_1M_250K.pdf (15/06/2015).

INEGI. 2008. Marco geoestadístico municipal versión 3.1.1.

INEGI. 2009. Panorama censal de los organismos operadores de agua en México. 2009.

INEGI. 2011. Síntesis metodológica y conceptual del Censo de población y vivienda 2010. Consulted on: http://www.inegi.org.mx/ est/contenidos/espanol/metodologias/censos/sm_cpv2010.pdf (15/06/2015). INEGI. 2012. Continuo de elevaciones mexicano (CEM) 3.0. Consulted on: http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/continuoelevaciones.aspx (15/06/2014).

INEGI. 2013a. Estadísticas a propósito del día mundial de la Lucha contra la desertificación y la sequía. Consulted on: http://www.inegi. org.mx/inegi/contenidos/espanol/prensla/Contenidos/estadisticas/2013/sequia0.pdf (15/07/2015)

INEGI. 2013b. Sistema de Clasificación Industrial de América del Norte 2013 (SCIAN 2013). Consulted on: http://www.inegi.org.mx/est/ contenidos/proyectos/SCIAN/presentacion.aspx (15/07/2015).

INEGI. 2013c. Cartografía topográfica escala 1:250,000 y 1:50,000.

- INEGI. 2013d. Simulador de flujos de agua de cuencas hidrográficas (SIATL). Cartografía hidrográficas escala 1:50,000.
- INEGI. 2014a. Sistema para la consulta de las estadísticas históricas de México 2014. Consulted on: http://dgcnesyp.inegi.org.mx/ ehm/ehm.htm (15/06/2015).
- INEGI. 2014b. Sistema de Cuentas Nacionales de México Cuentas económicas y ecológicas de México 2012. Preliminar. Year Base 2008. INEGI. Aguascalientes, Ags.
- INEGI. 2015a. Anuario estadístico y geográfico de los Estados Unidos Mexicanos 2014. Consulted on: http:// www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx-?upc=702825063979(15/06/2015).

INEGI. 2015b. Marco geoestadístico municipal 2014 versión 6.2. Consulted on: http://www.inegi.org.mx/geo/contenidos/geoestadistica/m_geoestadistico.aspx (15/06/2015).

INEGI.2015c. Censos y conteos generales de población y vivienda.

INEGI. 2015d. Censo General de Población y Vivienda 2010.

- INEGI. 2015e. Boletín de Prensa 93/15: Producto Interno Bruto en México durante el cuarto trimestre de 2014 Consulted on: http:// www.inegi.org.mx/saladeprensa/boletines/2015/pib_pconst/ pib_pconst2015_02.pdf(15/06/2015).
- INEGI. 2015f. Calculadora de inflación. Consulted on: http://www. inegi.org.mx/sistemas/indiceprecios/CalculadoraInflacion.aspx (15/06/2015).
- INEGI. 2015g. Banco de información económica. Precios e inflación. Índice nacional de precios al consumidor.
- INEGI. 2015h. Banco de información económica. Cuentas nacionales > Producto interno bruto trimestral, base 2008.
- INEGI. 2015i. Banco de información económica. Información económica de coyuntura. Población ocupada, subocupada y desocupada (resultados trimestrales de la ENOE).
- INEGI. 2015j. Banco de información económica. Cuentas Nacionales. Producto Interno Bruto por Entidad Federativa, Base 2008.

INEGI. 2015k. Uso del suelo y vegetación. Consulted on: http://www. inegi.org.mx/geo/contenidos/recnat/usosuelo/Default.aspx (15/07/2015).

INEGI. 2015I. Directorio Estadístico Nacional de Unidades Económicas. Consulted on: http://www.inegi.org.mx/est/contenidos/proyectos/denue/presentacion.aspx (15/08/2015).

- INEGI. 2015m. Datos tabulares de superficies derivados de los conjuntos de datos vectoriales de Uso del Suelo y Vegetación escala 1:250 000, Series 1, 2, 3, 4, 5.
- INEGI. 2015o. Introducción a las cuentas ambientales Reunión preparatoria para la segunda misión de Naciones Unidas a México. June 16 and 19, 2015.
- INEGI. 2015p. Banco de información INEGI. Consulted on: http://www3. inegi.org.mx/sistemas/biinegi/default.aspx (15/06/2015).

IPCC. 2007. Fourth Assessment Report: Climate Change 2007. Anexo II Glosario. Consulted on: http://www.ipcc.ch/publications_ and_data/ar4/syr/es/annexessanexo-2.html (15/08/20015).

- IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Consulted on: http:// www.ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf (15/06/2014).
- IPCC. 2013. *Fifth Assessment Report: Climate Change*. Consulted on: http://www.ipcc.ch/report/ar5/(15/06/2014).
- Jarvis, A., Reuter, H.I., Nelson, A. and Guevara, E. 2008. *Hole-filled SRTM for the globe Version 4*. Consulted on: http://srtm.csi.cgiar. org/ (15/06/2015).
- Ley de Aquas Nacionales. Text up-to-date as of August 11, 2014.
- Ley Federal de Derechos. Text up-to-date as of January 1, 2014.
- Ley Federal sobre Metrología y Normalización. TText up-to-date as of April 9, 2012.
- Ley General del Equilibrio Ecológico y Protección al Ambiente. Text up-to-date as of January 9, 2015.
- Ley General de Protección Civil. Text up-to-date as of June 3, 2014.

Lineamientos de operación específicos del Fonden (Fondo de desastres naturales). Text up-to-date as of January 31, 2011.

- Mekonnen, M.M. and Hoekstra, A.Y. 2010a. "The green, blue and grey water footprint of crops and derived crop products" In: *Value* of Water Research Report Series N° 47, UNESCO-IHE, Delft, The Netherlands. Consulted on: http://www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf (15/07/2015).
- Mekonnen, M.M. and Hoekstra, A.Y. 2010b. "The green, blue and grey water footprint of farm animals and derived animal products" In: *Value of Water Research Report Series* N° 48, UNESCO-IHE, Delft, The Netherlands. Consulted on: http://www.waterfootprint.org/ Reports/Report-48-WaterFootprint-AnimalProducts-Vol1.pdf (15/07/2015).
- Mekonnen, M.M. and Hoekstra, A.Y. 2011. "National water footprint accounts: the green, blue and grey water footprint of production and consumption". In: Value of Water Research Report Series N° 50, UNESCO-IHE, Delft, the Netherlands. Consulted on: http:// waterfootprint.org/media/downloads/Report50-NationalWater-Footprints-Vol1.pdf (15/08/2015).
- NADM. 2015a. Monitor de Sequía de América del Norte Mayo 2014. Consulted on: https://www.ncdc.noaa.gov/temp-andprecip/drought/nadm/maps/sp/201405#map-selection (15/08/2015).
- NADM. 2015b. Monitor de Sequía de América del Norte Noviembre 2014. Consulted on: https://www.ncdc.noaa.gov/tempand-precip/drought/nadm/maps/sp/201411#map-selection (15/08/2015).
- NASA. 2015. Blue Marble Next Generation 2/ Topography and Bathymetry June 2004. Consulted on: http://visibleearth.nasa.gov/ view.php?id=73726 (15/06/2015).
- NMX-AA-147-SCFI-2008 (Norma Mexicana). Servicios de Drinking water, drenaje y saneamiento - Tarifa - Metodología de Evaluación de la tarifa.
- NOM-002-CNA-1995 (Norma Oficial Mexicana). Toma domiciliaria para abastecimiento de Drinking water-Especificaciones y métodos de prueba.
- NOM-011-CONAGUA-2000 (Norma Oficial Mexicana). Conservación del recurso agua que establece las especificaciones y el método para determinar la disponibilidad media anual de las aguas nacionales.
- NOM-014-CONAGUA-2003 (Norma Oficial Mexicana). Requisitos para la recarga artificial con agua residual tratada. 2009.
- NOM-127-SSA1-1994 (Norma Oficial Mexicana). Salud ambiental, agua para uso y consumo humano – Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion. 2000.

- NOM-143-SEMARNAT-2003 (Norma Oficial Mexicana). Especificaciones ambientales para el manejo de agua congénita asociada a hidrocarburos. 2010.
- OECD. 2013. Water Security for Better Lives. OECD Studies on Water, OECD Publishing. Consulted on: http://www.keepeek.com/ Digital-Asset-Management/oecd/environment/water-security_9789264202405-en#page1 (15/08/2015).
- Programa para la seguridad nacional 2014-2018. Published in the Official Government Gazette on April 30, 2014.
- PROY-NOM-013-CONAGUA-2015 (Proyecto de Norma Oficial Mexicana). Especificaciones y requisitos para las obras de toma y descarga que se deben cumplir en las plantas desalinizadoras o procesos que generen aguas de rechazo salobres o salinas. 2015
- Prüss-Üstün A., Bos, R., Gore, F. and Bartram, J. 2008. Safer water, better health—Costs, benefits and sustainability of interventions to protect and promote health. Geneva, World Health Organization. Consulted on: http://whqliBODc.who.int/publications/2008/9789241596435_eng.pdf (15/06/2014).
- Prüss-Üstün A., Bos, R., Gore, F. and Bartram, J. 2014. "Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a restrospective analysis of data from 145 countries". In: *Tropical Medicine & International Health.* Volume 19, tome 8. August 2014. Pages 894-905. Consulted on: http://onlinelibrary.wiley.com/enhanced/doi/10.1111/tmi.12329/ (15/8/2014).
- RAE. Diccionario de la Lengua Espyearla. Consulted on: http://www.rae.es/ (15/06/2015).
- Ramsar. 2015. Convención Ramsar. Consulted on: http://www.ramsar.org/es (15/07/2015).
- Reglas de operación del Programa Nacional Forestal 2014. Consulted on: http://dof.gob.mx/nota_detalle.php?codigo=5328575&fecha=31/12/2013 (15/08/2015).
- Salud. 2015. Indicadores de resultado. Consulted on: http:// www.dged.salud.gob.mx/contenidos/dedss/tableros.html (15/06/2015).
- Sánchez, O., Herzig, M., Peters, E., Márquez, R. and Zambrano, L. (eds). 2007. Perspectiva sobre conservación de ecosistemas acuáticos en México. INE-SEMARNAT. Pp. 17 y 37. Distrito Federal México. Consulted on: http://www.inecc.gob.mx/descargas/publicaciones/533.pdf (15/08/2014).
- SEDESOL, SEGOB, INEGI and CONAPO. 2012. Delimitación de las zonas metropolitanas de México 2010. Consulted on: http://www. conapo.gob.mx/es/CONAPO/Zonas_metropolitanas_2010 (15/07/2015).
- SEMARNAT. 2008. "3. Suelos". In: Informe de la situación del medio ambiente en México. Sistema Nacional de Información Ambiental y de Recursos Naturales. Consulted on: http://app1.semarnat.gob.mx/dgeia/informe_2008/pdf/completo.pdf (15/08/2015).
- SEMARNAT. 2010. Manifestación de impacto ambiental modalidad regional sector hidráulico "Acueducto Paralelo Chicbul-Ciudad del Carmen, Camp". Consulted on: http://sinat.semarnat.gob.mx/dgiraDocs/documentos/camp/estudios/2007/04CA2007HD064. pdf (15/10/2015).
- SEMARNAT. 2014. Compendio de estadísticas ambientales 2013. Consulted on: http://apps1.semarnat.gob.mx/dgeia/compendio_2013/dgeiawf.semarnat.gob.mx_8080/ibi_apps/WFServletd0f4.html (15/06/2015).
- SEMARNAT. 2015a. Base de datos estadísticos del Sistema Nacional de Información Ambiental y de Recursos Naturales (BADESNIARN). Consulted on: http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/ WFServlet?IBIF_ex=D3_RFORESTA05_02&IBIC_user=dgeia_ mce&IBIC_pass=dgeia_mce (15/06/2015).

SEMARNAT. 2015b. NOM - Normas oficiales mexicanas ordenadas por materia. Consulted on: http://www.semarnat.mx/leyes-y-normas/noms (15/10/2015).

SEMARNAT, Salud and COFEPRIS. 2015. Programa de playas limpias. Consulted on: http://www.semarnat.gob.mx/temas/ estadisticas-ambientales/sistema-nacional-de-indicadores-ambientales-snia/programa-de-playas (15/07/2015).

SENER. 2015. Sistema de Información Energética SIE. Consulted on: http://sie.energia.gob.mx/bdiController.do?action=temas (15/06/2015).

Sepúlveda, J. *et al.* 2007. "Aumento de la sobrevida en menores de cinco years en México: la estrategia diagonal". In: *Salud Pública de México*. Vol.49, Suplemento 1 de 2007.

SIAP. 2014. Sistema de Información Agroalimentaria de Consulta (SI-ACON). Consulted on: http://www.siap.gob.mx/optestadisticasiacon2012parcialsiacon-zip/ (15/07/2015)

Trillo M., J. 1995. "El saneamiento. Historia reciente, estado actual y perspectivas de futuro". In: *Revista del Colegio de Ingenieros de Caminos, Canales y Puertos*. Número 31. Year 1995. Saneamiento, I. Consulted on: http://hispagua.cedex.es/sites/default/files/hispagua_articulo/op/31/op31_1.htm (15/06/2015).

UN-DESA. 2014. World Urbanization Prospects: The 2014 Revision. Consulted on: http://esa.un.org/Unpd/Wup/CD-ROM/Default. aspx (15/06/2015).

UNDP. 2014. Índice de desarrollo humano municipal en México. Consulted on: http://www.mx.undp.org/content/mexico/es/home/ library/poverty/idh-municipal-en-mexico--nueva-metodologia. html (15/08/2015).

Unstats. 2012. System of Environmental-Economic Accounting for Water. UN, New York.

Unstats. 2014. System of Environmenta-Economic Accounting (SEEA). Consulted on: http://unstats.un.org/unsd/envaccounting/seea.asp (15/07/2015).

USGS. 2015a. Earth Resources Observation and Science (EROS) Center. HYDRO1K Elevation Derivative Database. Consulted on: https://lta.cr.usgs.gov/HYDRO1K (15/07/2015).

USGS. 2015b. Hydrologic unit maps. Consulted on: http://water. usgs.gov/GIS/huc.html (15/06/2015).

USGS. 2015c. Water science glossary of terms. Consulted on: http:// water.usgs.gov/edu/dictionary.html (15/06/2015).

Viessman, W. and Lewis, G.1989. *Introduction to Hydrology*. Harper & Row. Third Edition

VITO. 2014. NDVI Normalized Difference Vegetation Index - Free 10day synthesis (S10) – Central America 2014-05-10. Consulted on: http://www.vito-eodata.be/ (15/07/2014). WB. 1996. The World Bank Glossary: English-Spanish, Spanish-English-Glosario del Banco Mundial: Inglés-Espyearl, Espyearl-Inglés. The International Bank for Reconstruction and Development/The World Bank. Washington, D.C. U.S.A. Consulted on: http://www-wds.worldbank.org/external/default/WDSContent-Server/IW3P/IB/2012/09/18/000406484_2012091814541 3/Rendered/PDF/322800PUB00PUB0d0bank0glossary01996. pdf (15/08/2015).

WB. 2013. Agua urban en el Valle de México: ¿un camino verde para mañana? Consulted on: http://documentos.bancomundial.org/ curated/es/2013/03/17427532/mexico-agua-urban-en-elvalle-de-mexico-un-camino-verde-para-mañana (15/07/2014).

WFN 2015a. Water footprint network - Water footprint. Consulted on: http://waterfootprint.org/en/water-footprint/(15/08/2015).

WFN. 2015b. Water footprint network - Water footprint of crop and animal products: a comparison. Consulted on: http://waterfootprint.org/en/water-footprint/product-water-footprint/water-footprint-crop-and-animal-products/ (15/08/2015).

WHO. 2012a. Global costs and benefits of drinking-water supply and sanitation interventions to reach the MDG target and universal coverage. Consulted on: http://www.who.int/water_sanitation_health/publications/2012/global_costs/en/(15/06/2014).

WHO. 2012b. UN-Water Global Annual Assessment of Sanitation and Drinking Water (GLAAS) 2012 report: The challenge of extending and sustaining services. Consulted on: http://whqli-BODc.who.int/publications/2008/9789241596435_eng.pdf (15/06/2014).

WHO. 2014. UN-Water Global Annual Assessment of Sanitation and Drinking Water (GLAAS) 2014 report: Investing in water and sanitation: Increasing access, reducing inequalities - Main Findings. Consulted on: http://www.who.int/water_sanitation_health/publications/glaas_report_2014/en/(15/08/2015).

WHO-UNICEF. 2015. Progress on sanitation and drinking-water – 2015 update and MDG assessment. Consulted on: http://www. wssinfo.org/ (15/07/2015).

World Climate. 2011. Weather rainfall and temperature data. Consulted on: http://www.worldclimate.com/ (15/06/2015).

WSP. 2012. The Economics of Sanitation Initiative. Consulted on: https://www.wsp.org/content/economic-impacts-sanitation (15/06/2014).

WWAP. 2015. United Nations World Water Assessment Programme - World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.

А

Agriculture 3, 5, 44, 78-80, 82-85, 110, 112, 114, 115, 144, 145, 203, 218, 219, 224, 235-279, 281, 284, 285, 291 Aqueducts 4, 103, 122, 123, 195 Aquifers 3, 6, 33, 35, 36, 37, 58-61, 66, 77, 88, 123, 146, 148, 150-152, 154, 170, 172, 173, 186, 188, 195, 218, 224, 235-247, 281, 282, 283, 284, 285, 286, 289 Aquifers with saltwater intrusion 3, 60, 61 Availabilities 33, 58, 150 Availability zones 152-155, 285 B Beaches 42, 62, 66, 68-70, 170, 171, 173, 294

Biochemical oxygen demand 62, 63, 128, 173, 287 Biodiversity 186, 187, 285, 287, 291 Blue water 224, 281, 283 Chemical oxygen demand 62, 65, 287

Chlorination 180 Clean beach committees 66, 170 Climate 14, 282, 283, 285 Climate change 46, 112, 214, 216, 218, 222, 287 Climate stations 35 Climate vulnerability 46, 47 Colorado River 34, 52, 53, 123, 280 Concession or allocation deeds 144, 145, 150 Cutzamala System 124-126, 158, 168

D

Degree of water stress 95, 198, 283 Disasters 44, 46, 216, 217, 283, 285, 287, 288, 291 293 Drinking water 4, 5, 42, 86, 116-118, 120, 121, 124, 134, 142, 153, 155, 165-167, 173, 179-181, 195, 200, 203, 226, 227, 228, 230, 235-279,281-285, 289, 291, 293 Drinking water coverage 116, 117, 118, 120, 180, 181, 281 Drought 44-46, 54, 285, 288, 291-293 Ε

Economic indicators 18, 19, 209 Emergencies 4, 46, 134, 135 Energy 78, 83, 90, 91, 92, 93, 104, 134, 145, 146, 168, 203, 218, 220, 222, 283, 285, 287, 288 Erosion 62, 184, 185, 188, 285 Evapotranspiration 33, 282, 283 External financing 168

Floods 42, 114, 134, 184, 188, 203, 214, 216, 222, 285

Green water 224, 281, 283 Gross domestic product 18, 19, 84, 210, 284, 288, 289, 292, 293 Groundwater 3, 33, 58, 60, 61, 66, 145, 147, 148, 154, 170, 282, 287

н

Health 20, 46, 68, 86, 97, 173, 175, 179, 181, 220, 228, 230, 282, 284, 288, 293, 294 Human development 20, 293 Hurricanes 42, 43, 171, 216 Hydro-agricultural infrastructure 282 Hydrological-administrative regions 6, 24, 33, 82, 158, 196, 289 Hydrological regions 33, 280, 284-286 Hydrogeological units 150, 285 Hydropower 3, 78, 83, 90 Hydropower stations 78, 92, 145, 160, 161, 220, 235-279, 283

Industrial wastewater treatment plants 103, 132.133 International cooperation 168, 188, 203 Infrastructure 78, 84, 103, 110, 112, 116, 123, 134, 164, 216, 218, 220, 221, 282-288, 291 Infrastructure projects 103, 164 Investments 165 Irrigation 4, 78, 79, 82, 84, 103, 110, 111, 112, 114, 115, 156-159, 195, 200, 203, 210, 218, 220, 221, 235-279, 281- 285, 287, 288, 291 Irrigation districts 79, 84, 110-112, 114, 158, 195, 203, 218, 235-279, 284 Irrigation units 84, 110, 114, 115, 288, 291 Lakes 56, 57, 77, 88, 154, 212, 224, 281, 283, 284 Legislation 146, 147 Localities 14-17, 116, 118, 123, 166, 173, 196, 198, 216, 235-279, 284 Μ Marginalization 20, 46, 291 Mean natural surface runoff 36, 37, 48-52, 280, 282 Measurement of poverty 20 Meteorological phenomena 216 Metropolitan zones 16, 284, 198, 294

Millennium Development Goals 226, 288, 289 Mortality 179, 180, 181, 230 Municipalities 14, 16, 20, 22, 23, 27, 86, 124, 134, 142, 164, 195, 235-279, 281, 284, 285, 289 Municipal wastewater treatment plants 103,

130, 131

Ν

Т

National development plan 86, 202, 288 National Water Law 77, 112, 143, 144, 188, 202, 282, 284, 285, 286, 287, 293 National water program 86, 202, 288, 291

0

Offstream use 77, 283, 285 Overdrafting of aquifers 58

Р

Permits 144, 145, 150, 284 Political division 284 Population 14-20, 23, 24, 27, 36, 37, 46, 66, 84, 86, 116, 117, 118-121, 141, 170, 173, 179, 196-200, 209, 210, 214, 216, 218, 222, 226, 228, 230, 235-247, 281, 282, 283, 284, 289, 291, 292 Population density 36, 210 Population centers 16, 17, 198, 199, 284 Precipitation 33, 35, 36, 38-42, 60, 104, 212-214, 235-279, 282-285, 289 Precipitation anomaly 41 Prohibition zones 146, 148 Protected areas 186, 187, 291 Public registry of water duties (REPDA) 77, 78, 88, 144, 145, 195, 284, 288 Public supply 3, 78, 80, 86, 87, 104, 144, 145, 218, 219, 235-279, 285 Purification plants 103, 126, 127, 134, 248-279 R Regulations 58, 146, 148, 282, 285 Regional Emergency Attention Centers (REACs)

134, 135, 287 Renewable water resources 3, 5, 6, 23-25, 27, 36-38, 94, 95, 196, 198, 199, 200, 201, 212, 214, 215, 224, 235-247, 281, 282, 283, 289 Reserve zones 58, 146, 148 Reservoirs 35, 54, 55, 58, 103-105, 109, 123, 124, 195, 220, 222, 281-285, 287 Rio Grande 38, 54, 55, 61, 64, 82, 105, 106, 107, 108, 109, 123, 144, 158, 196, 200, 240

Rivers 33, 35, 36, 42, 48-52, 55, 77, 88, 92, 124, 152, 154, 212, 224, 235- 279, 281 River basin councils 148, 170, 203, 291 River Basin Organizations 22, 141, 282 River basin commissions 170 River basin committees 170

S

Salinization 3, 60, 61, 66, 184, 281, 283 Sanitation 86, 116, 118-121, 123, 128, 129, 130, 142, 165-167, 173, 179-181, 195, 200, 203, 226, 228, 230, 235-279, 281, 282, 285, 289, 291 Sanitation coverage 118, 119, 281 Self-supplying industry 78, 88, 89, 128, 144, 145, 235-279, 285 Social poverty 20 Social poverty index 20 Socio-demographic conditions 20 Soils 60, 61, 152, 171, 173, 184, 185, 186, 218, 281-283 Standards 172, 173, 188, 283, 292, 294 States 22, 120, 132, 164, 166, 289 Stream gages 35 Surface water 3, 33, 48, 145, 153, 154, 281, 282

т

Technical groundwater committees (Сотаѕ) 170, 282, 287 282 Technified rainfed districts 114 Temperature 35, 44, 46, 214, 282, 283 Territorial extension 13 The CONAGUA's budget 162 The CONAGUA's income collection 156-158 Transboundary watersheds 36, 48, 50, 52, 53 Trends 196, 220 Tropical cyclones 42, 43 Thermoelectric stations 78, 218, 235-279 Total dissolved solids 154, 281 Total suspended solids 62, 67, 173, 288

Uses of water 73, 77, 80, 84, 86, 88, 90, 92, 94, 144, 218, 235-279

Vegetation 44, 182, 183, 184, 281, 283, 293 Virtual water 96, 97, 222, 224, 281

Wastewater 4, 5, 37, 62, 86, 103, 128-133, 144, 150, 152, 154, 159, 166, 172, 173, 195, 226, 248-279, 281-285 Wastewater discharges 62, 128, 154, 159, 172, 173, 284 Water tariffs 166, 173, 228, 230 Wastewater treatment 103, 130, 131, 132, 133, 166, 195, 226, 248-279, 284 Wastewater treatment plants 103, 130-133, 248-279 Water duties 156, 195 Water cycle 33, 37, 186, 212 Water footprint 96, 222, 224, 283 Water inflows 281 Water outflows 96, 281 Water pays for water 162, 163 Water quality 58, 62-69, 71, 126, 171, 173, 200, 214, 220, 224, 235-279, 284 Water quality monitoring 64, 66, 69 Water reuse 124, 133, 195 Water utilities 86, 168, 292 Watersheds 33, 148, 150, 151, 154, 284, 285, 286 Wetlands 173, 188, 189, 281, 283, 287, 291

This publication is available for download on: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2015_ing.pdf

This book was created in InDesign and Illustrator CC, with the font Soberana Sans, Soberana Texto and Soberana Titular, in their different weights and values; using environmentally certified paper. It is part of the products generated by the Deputy Director General's Office for Planning. Photographs: CONAGUA photobank, Ana Karina Mendoza Cervantes It was edited by the National Water Commission's Coordination for Communication and Water Culture. It was printed in December 2015, in Mexico City.

Cuidemos y valoremos el agua que mueve a México www.gob.mx/semarnat www.conagua.gob.mx