

Gobierno federal

SEMARNAT

## Statistics on Water in Mexico 2008 edition



revised August 2009



### Statistics on Water in Mexico 2008 edition



### Acknowledgements

Various areas of the National Water Commission of Mexico took part in the preparation of this document, as well as the institutions that make up the Thematic Water Group of the Statistics and Geographical Information Technical Committee of the Environment and Natural Resources Sector. Special thanks go to the National Institute of Statistics and Geography, the Ministry of Health, the National Institute of Ecology and the Federal Commission for Electricity.

### Disclaimer

The unaltered reproduction of the material contained in this publication is authorized, for non-profit motives and quoting the source.

Title Statistics on Water in Mexico 2008 ISBN 978-968-817-896-6 First edition 2008

Author National Water Commission of Mexico Insurgentes Sur No. 2416 Col. Copilco el Bajo C.P. 04340, Coyoacan, Mexico City, D.F. Mexico www.conagua.gob.mx

Editor

Ministry of the Environment and Natural Resources Boulevard Adolfo Ruiz Cortines No. 4209 Col. Jardines de la Montaña C.P. 14210, Tlalpan, Mexico City, D.F. Mexico

Printed in Mexico Distributed free of charge. Not for sale The use of this publication is forbidden for purposes other than that of social development

#### Contact us

Your opinion and feedback are very important to us. Contact us through the Deputy Director General's Office for Planning. E-mail: sina@conagua.gob.mx. Telephone: (55) 5174 4000.

Photo credits Capt. Ricardo Garrido Dr. Manuel Maass The photograph on the cover is Tlaloc, the god of rain and fertility, courtesy of the Museum of Anthropology and History, INAH.

### **National Water Commission of Mexico**

Director General's Office

Coordination of Advisors to the Director General

Deputy Director General's Office for Administration

Deputy Director General's Office for Water Management

Deputy Director General's Office for Drinking Water, Sewerage, and Sanitation

Deputy Director General's Office for Hydro-agricultural Infrastructure

Deputy Director General's Office for Legal Affairs

Deputy Director General's Office for Planning

Deputy Director General's Office for Technical Affairs

General Coordination for Attention to Emergencies and River Basin Councils

General Coordination for Institutional Attention, Communication, and Water Culture

General Coordination for Fiscal Revision and Payments

General Coordination of the National Meteorological Service

Internal Control Agency

### Introduction

In Mexico, the management and preservation of water resources is a complex task that requires the collaborative work of several federal, state and municipal dependencies, as well as society at large. To achieve this task, these stakeholders must have at their disposal information that is reliable, up-to-date and appropriate on all aspects related with water management, from variables related to the components of the hydrologic cycle to the socio-economic aspects that affect the use of water.

In this context, the National Water Commission of Mexico has been promoting the dissemination of statistical information on water since 1999, through the Basic Compendium of Water in Mexico and up to today with the 2008 edition of "Statistics on Water in Mexico", in which we aim to present the reader with a clear and up-do-date overview of the situation as regards water in Mexico, comparing this situation to other countries in the world. This document has been produced as part of the National Information System on Water Quantity, Quality, Uses and Conservation (SINA in Spanish), which is made up of information provided by the various institutions and organizations that take part in the management and preservation of water.

One of the aims of the 2007-2012 National Water Program is to improve the technical, administrative and financial development of the water sector. One of the strategies to achieve this is through the strategic information system and indicators of the water sector, for which the goal has been stated of designing and implementing the SINA 100% by 2012. It is in this framework that the present document has been produced.

The document includes eight chapters, in which

we present information on the geographical and socio-economic context of the country and the way in which water occurs and is used. Similarly, information is included on the index and degree of poverty, precipitation, runoff, aquifer recharge, meteorological phenomena and water quality. In the theme of water infrastructure we include storage dams, aqueducts, water purification plants and wastewater treatment plants, amongst others. In the same way, the tools that exist in Mexico to carry out a better management of water resources are mentioned. Additionally, information is provided on the relationship between water and the themes of health and the environment, while offering an overview up to 2030 and the aspects related with water planning. Finally, several indicators are compared which allow us to place the information on Mexico into context with other countries.

In addition to the printed version of this document, an interactive compact disk has been prepared, which includes more detailed information for those interested in going deeper into the themes and data presented, as well as the digital information files.

We are sure that the publication we are presenting will be of interest and use, and will without doubt contribute to enhancing the appreciation of the situation as regards water in Mexico, supporting the raising of awareness on the responsible use and fair payment for water, a vital resources for life and our nation's economic development, as well as for the preservation of the environment.

Director General's Office of the National Water Commission of Mexico Mexico City, September 2008.

### Contents

| Introd | uction |  |
|--------|--------|--|
|--------|--------|--|

| Contents |  |
|----------|--|
| Contents |  |

| 1. | Geog | graphical and Socio-Economic Context         | 7  |
|----|------|----------------------------------------------|----|
|    | 1.1  | Geographical and Demographic Aspects         | 8  |
|    | 1.Z  | Population Centers                           | 10 |
|    | 1.3  | Economic Indicators                          | 11 |
|    | 1.4  | Index and Degree of Poverty                  | 12 |
|    | 1.5  | The Hydrological-Administrative              |    |
|    |      | Regions for Water Management                 | 14 |
|    | 1.6  | Regional Contrast between Development        |    |
|    |      | and the Availability of Water                | 15 |
|    | 1.7  | Summary of Data by Hydrological-             |    |
|    |      | Administrative Region and State              | 16 |
| Ζ. | Stat | e of Water Resources                         | 21 |
|    | 2.1  | Mexico's Catchments and Aquifers             | 22 |
|    | 2.2  | Mean Natural Availability of Water           | 24 |
|    | 2.3  | Meteorological Phenomena                     | 30 |
|    | 2.4  | Surface Water                                | 35 |
|    | 2.5  | Groundwater                                  | 42 |
|    | 2.6  | Water Quality                                | 44 |
| 3. | Uses | of Water                                     | 53 |
|    | 3.1  | Classification of the Uses of Water          | 54 |
|    | 3.Z  | Distribution of the Uses throughout Mexico   | 54 |
|    | 3.3  | Agricultural Use                             | 59 |
|    | 3.4  | Use for Public Water Supply                  | 59 |
|    | 3.5  | Use in Self-Supplying Industry               | 59 |
|    | 3.6  | Use in Thermoelectric Plants                 | 59 |
|    | 3.7  | Use in Hydropower Plants                     | 60 |
|    | 3.8  | Water Stress                                 | 61 |
|    | 3.9  | Virtual Water in Mexico                      | 63 |
| 4. | Hyd  | raulic Infrastructure                        | 65 |
|    | 4.1  | Mexico's Hydraulic Infrastructure            | 66 |
|    | 4.Z  | Mexico's Main Dams                           | 66 |
|    | 4.3  | Hydro-Agricultural Infrastructure            | 71 |
|    | 4.4  | Drinking Water and Sanitation Infrastructure | 78 |
|    | 4.5  | Water Treatment and Reuse                    | 86 |
|    | 4.6  | Emergency Attention                          | 92 |

| 5.  |        | er Management Tools                           | 93  |
|-----|--------|-----------------------------------------------|-----|
|     | 5.1    | Institutions Related with Water in Mexico     | 94  |
|     | 5.2    | Legal Framework for the Use of the Nation's   |     |
|     |        | Water                                         | 96  |
|     | 5.3    | Economy and Water Finances                    | 100 |
|     | 5.4    | 1                                             | 111 |
|     | 5.5    | Water-Related Standards                       | 118 |
| 6   | Wat    | er, Health and the Environment                | 123 |
|     | 6.1    | Water and Health                              | 124 |
|     | 6.Z    | Vegetation                                    | 127 |
|     | 6.3    | Biodiversity                                  | 128 |
|     | 6.4    | Wetlands                                      | 130 |
| 7.  | Futu   | re Scenarios                                  | 133 |
|     | 7.1    | Growth Trends                                 | 134 |
|     | 7.Z    | National Development Plan 2007-2012           | 140 |
|     | 7.3    | National Water Program 2007-2012              | 140 |
| 8.  | Wate   | er in the World                               | 143 |
|     | 8.1    | Socio-Economic and Demographic Aspects        | 144 |
|     | 8.Z    | Components of the Hydrologic Cycle            |     |
|     |        | in the World                                  | 146 |
|     | 8.3    | Uses of Water and Infrastructure              | 152 |
| Anı | nexes  |                                               | 165 |
| Anı | nex A. | Data by Hydrological-Administrative Region    | 166 |
| Anı | nex B. | Data by State                                 | 179 |
| Anı | nex C. | Characteristics of the Hydrological Regions   | 211 |
| Anı | nex D. | List of Over-exploited Aquifers               | 212 |
| Anı | nex E. | Characteristics of the Technical Groundwater  |     |
|     |        | Committees (COTAS)                            | 215 |
| Anı | nex F. | Bibliography for the Production of Statistics |     |
|     |        | on Water in Mexico 2008                       | 218 |
| Anı | nex G. | Glossary                                      | 220 |
| Anı | nex H. | Abbreviations and Acronyms                    | 225 |
| Anı | nex I. | Units of Measurement                          | 226 |
| Anı | nex J. | Analytical Index                              | 227 |



### Chapter 1



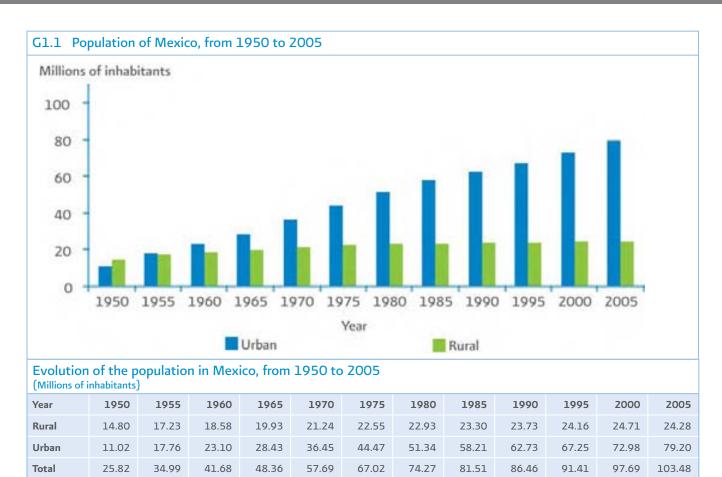
# Geographical and Socio-Economic Context



Given that catchments or river basins are the basic units of water resources management, the country has been divided into 13 Hydrological-Administrative Regions with the aim of organizing the management and preservation of the nation's water.

In this first chapter, it may be appreciated that Mexico has a substantial territorial extension and a great length of coasts; furthermore, it has gone through an accelerated population growth in recent years, which has seen the population go from being predominantly rural to mainly urban. Economic and social inequalities are presented, as well as inequalities in availability of water resources. Additionally, new concepts such as the index and degree of poverty are presented.

### **1.1** Geographical and demographic aspects


Mexico covers a total area of 1 964 375 km<sup>2</sup>, of which 1 959 248 km<sup>2</sup> is the mainland area and 5 127 km<sup>2</sup> are islands. Additionally, the Exclusive Economic Zone of territorial sea, covering 3 149 920 km<sup>2</sup> should be added to this area. As a result, the country's overall surface area is 5 114 295 km<sup>2</sup>.

Mexico is between the longitudes of 118°42' and 86°42' west and the latitudes of 14°32' and 32°43' north, the same latitudes as the Sahara and Arabian deserts. Due to Mexico's relief characteristics, there exists a great variety of climates. Two thirds of the territory of Mexico is considered arid or semi-arid, whereas the southeast is humid, with annual precipitations which exceed 2 000 mm per year in some zones. Of the country's population, 63% lives in areas at least 1 000 meters above sea level. Mexico is made up of 31 states and a Federal District (known as the D.F. in Spanish), which can be further broken down into 2 449 municipalities and 16 delegations of the D.F. respectively.

Between 1950 and 2005, the country's population quadrupled, and went from being predominantly rural (57.4%) to mainly urban (76.5%). During the same time period, the mean annual birth rate decreased significantly. The highest rate was during the period from 1960 to 1970 (3.40%), but it then fell to 1.02% in the period from 2000 to 2005. In the table of G1.1, the growth rates of the rural, urban and total population are shown for the period from 1950 to 2005.

| Surface area                                                                                                              |                                                                                                                                   | Borders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total area:1Mainland area:1Island area:1Exclusive Economic Zone of territorial sea:3                                      | 964 375 km <sup>2</sup><br>959 248 km <sup>2</sup><br>5 127 km <sup>2</sup><br>149 920 km <sup>2</sup><br>114 295 km <sup>2</sup> | 3 152 km with the United States of America<br>956 km with Guatemala<br>193 km with Belize                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Length of the coastline:<br>11 122 km<br>7 828 km in the Pacific Ocean<br>3 294 km in the Gulf of Mexico and the Caribbea | n Sea                                                                                                                             | <ul> <li>Extreme geographical coordinates:</li> <li>North: 32° 43' 06'' latitude north, marked at Monument 206, on the border with the United States of America.</li> <li>South: 14° 32' 27'' latitude north. At the mouth of the Suchiate River, at the border with Guatemala.</li> <li>East: 86° 42' 36'' longitude west. Extreme southwest of Mujeres Island in the Mexican Caribbean.</li> <li>West: 118° 27' 24'' longitude west. Tip of Elephant Rock on Guadalupe Island in the Pacific Ocean.</li> </ul> |

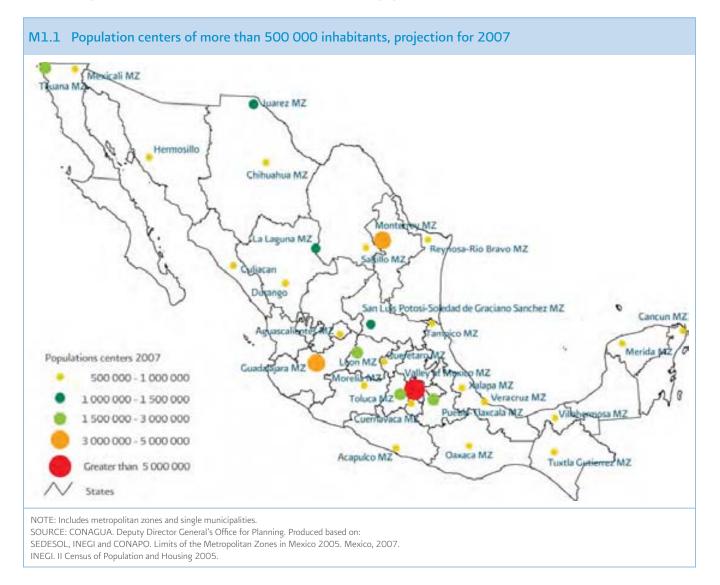
SOURCE: INEGI. Yearbook of Statistics by State, 2007 Edition. Mexico, 2007.



NOTE: The population was interpolated on December 31st of each year, based on data from the Censuses. [Translator's Note: In Mexico there are two types of Census, referred to as "Censo" and "Conteo". Both are carried out every ten years, the "Censo" in years ending with 0 and the "Conteo" in years ending in 5. For the purpose of this publication, they will only be referred to by the English term "Census".]

The rural population is considered as that which lives in localities of less than 2 500 inhabitants, whereas the urban population refers to populations of 2 500 inhabitants or more. SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from INEGI. General Censuses.

Approximately 10% of the rural population may be found spread out in small localities of less than 100 inhabitants, to whom it is particularly expensive to provide drinking water and sanitation services.


According to the latest Census from 2005, there are 187 938 inhabited localities in Mexico, spread out as follows, according to their population:

| Population of the locality | Number of localities | Population<br>(Millions of inhabitants) | Percentage of the overall population |
|----------------------------|----------------------|-----------------------------------------|--------------------------------------|
| More than 500 000          | 34                   | 29.12                                   | 28.20                                |
| Between 50 000 and 499 999 | 162                  | 26.45                                   | 25.61                                |
| Between 2 500 and 49 999   | 2 994                | 23.41                                   | 22.67                                |
| Between 100 and 2 499      | 47 233               | 21.84                                   | 21.15                                |
| Less than 100              | 137 515              | 2.44                                    | 2.36                                 |
| Total                      | 187 938              | 103.26                                  | 100.00                               |

NOTE: The data in the table is as of the date of the Census, and for that reason it differs from the data in graphic G1.1, which was interpolated.

### **1.2 Population centers**

In Mexico there are 56 metropolitan zones<sup>a</sup> in which, in 2005, 57.9 million inhabitants, or 56.0% of the total population, were concentrated. The area covered by the metropolitan zones is 167 028 km<sup>2</sup>, spread out over 345 municipalities<sup>b</sup>. There are 30 population centers in the country with more than 500 000 inhabitants, of which 27 refer to one of the metropolitan zones (MZ) and the others are individual municipalities. In the following figure these population centers are shown:



<sup>b</sup> Includes the 16 delegations of the D.F.

<sup>&</sup>lt;sup>a</sup> A metropolitan zone is defined as the sum of two or more municipalities which includes a city of 50 000 or more inhabitants, the urban area, functions and activities of which go beyond the municipal limit in which they were originally confined, incorporating mainly urban neighboring municipalities either completely or in their direct area of influence, with which they maintain a high degree of socio-economic integration; this definition also includes those municipalities which, due to their particular characteristics are relevant for urban planning and politics.

The metropolitan zones of the Valley of Mexico, Guadalajara, Monterrey, Puebla-Tlaxcala and Toluca, concentrate 30.8% of the country's population, or 31.81 million inhabitants, as shown in the following table:

| T1.3    | T1.3 Mexico's five metropolitan zones with the largest population, 2007 |                                          |                                                 |                                                               |              |  |  |
|---------|-------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--------------|--|--|
| No.     | Metropolitan<br>Zone                                                    | States                                   | Population in 2007<br>(millions of inhabitants) | Number of municipalities<br>and/or delegations<br>of the D.F. | Surface area |  |  |
| 1       | Valley of Mexico                                                        | DF-Hidalgo-State of Mexico               | 19.35                                           | 76                                                            | 7 854        |  |  |
| Z       | Guadalajara                                                             | Jalisco                                  | 4.26                                            | 8                                                             | 2 734        |  |  |
| 3       | Monterrey                                                               | Nuevo Leon                               | 3.90                                            | 12                                                            | 6 704        |  |  |
| 4       | Puebla-Tlaxcala                                                         | Puebla-Tlaxcala                          | 2.58                                            | 38                                                            | 2 217        |  |  |
| 5       | Toluca                                                                  | State of Mexico                          | 1.72                                            | 14                                                            | 2 038        |  |  |
| Total   |                                                                         |                                          | 31.81                                           | 148                                                           | 21 557       |  |  |
| SOURCE: | CONAGUA, Deputy Direc                                                   | ctor General's Office for Planning. Proc | luced based on:                                 |                                                               |              |  |  |

OURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

INEGI. II Census of Population and Housing 2005.

SEDESOL, INEGI and CONAPO. Limits of the Metropolitan Zones of Mexico 2005. Mexico, 2007

CONAPO. Population Projections in Mexico 2005-2050. Mexico 2007, interpolated in December every year.

### **1.3 Economic Indicators**

Mexico's GDP per capita in 2007 was close to 8 500 dollars and inflation has been maintained in recent years to levels of around 4%, much lower than the rate in the previous decade.

### T1.4 Mexico's Main Economic Indicators, from 1990 to 2007

| Indicators                                                                   | Year   |        |       |       |       |       |
|------------------------------------------------------------------------------|--------|--------|-------|-------|-------|-------|
|                                                                              | 1990   | 1995   | 2000  | 2005  | 2006  | 2007  |
| Gross Domestic Product (GDP) in billions of dollars                          | 262.7  | 286.2  | 580.8 | 767.7 | 840.0 | 893.4 |
| GDP per capita in dollars                                                    | 3 157  | 3 140  | 5 928 | 7 447 | 8 060 | 8 479 |
| Inflation based on the National Consumer Price<br>Index (December each year) | 29.93% | 51.97% | 8.96% | 3.33% | 4.05% | 3.76% |
|                                                                              |        |        |       |       |       |       |

SOURCE: International Monetary Fund, World Economic Outlook. United States of America, 2008. Bank of Mexico's Annual Report 2007, April 2008 www.banxico.org.mx. Mexico, 2008.

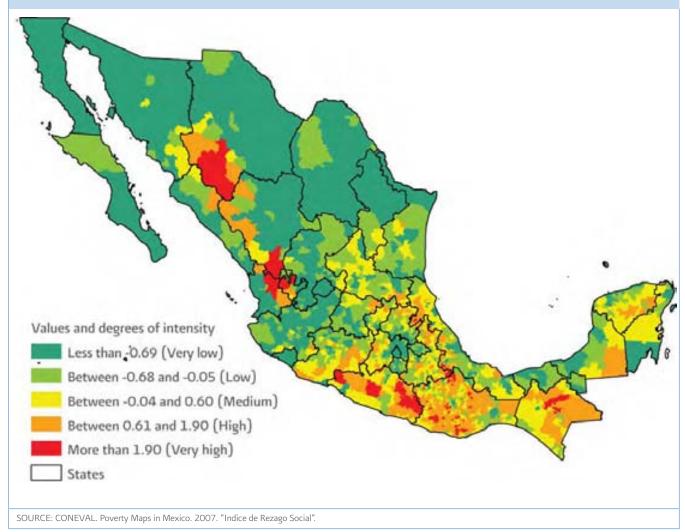
As part of the United Nations' recommendations as regards national accounting, in Mexico the damage caused to the environment and natural resources in general is quantified in physical and monetary terms, as a result of economic processes. In this sense, research headed by INEGI with the support of different sectors and public institutions, including the Conagua, has allowed the cost of exhausting natural resources and the degradation of the environment through human economic activities to be determined. It is estimated that these costs have monetary values of between 8% and 9% of the GDP. With these costs, it is possible to estimate the Environmentally-adjusted net Domestic Product (EDP) and the Ecological Gross Domestic Product (EGDP).

### 1.4 Index and degree of poverty<sup>a</sup>

The definition, identification and measurement of poverty in Mexico is one of the responsibilities of the National Council for the Evaluation of the Social Development Policy (CONEVAL, its initials in Spanish), a body created in 2006 under the General Law for Social Development. The CONEVAL developed the Poverty Index taking into account the multi-dimensional character of poverty. The index includes aspects of education, access to health and other basic services, quality housing and spaces, and household assets. The data used was obtained from the definitive results of the II Census of Population and Housing 2005. It should be mentioned that the Poverty Index is an indicator of deficiencies that is estimated at three geographical levels: state, municipality and local. With this index, the aim is to contribute to the generation of information as a decision-making tool on social policies at various levels of operation, thus facilitating the identification of areas for priority attention.

According to the value of the Poverty Index, the degree of poverty is determined, which may be very low, low, medium, high or very high. The following table presents the index and degree of poverty of the country's poorest municipalities.

| No.   | Municipality            | State                           | Total<br>population | Poverty Index | Degree of<br>Poverty |  |
|-------|-------------------------|---------------------------------|---------------------|---------------|----------------------|--|
| 1     | Cochoapa el Grande      | Guerrero                        | 15 572              | 4.49541       | Very high            |  |
| Z     | Batopilas               | Chihuahua                       | 13 298              | 3.40930       | Very high            |  |
| 3     | Coicoyan de las Flores  | Оахаса                          | 7 598               | 3.26255       | Very high            |  |
| 4     | Sitala                  | Chiapas                         | 10 246              | 3.22790       | Very high            |  |
| 5     | Del Nayar               | Nayarit                         | 30 551              | 3.11527       | Very high            |  |
| 6     | Acatepec                | Guerrero                        | 28 525              | 3.11212       | Very high            |  |
| 7     | Metlatonoc              | Guerrero                        | 17 398              | 3.07010       | Very high            |  |
| 8     | San Juan Petlapa        | Оахаса                          | 2 717               | 2.97982       | Very high            |  |
| 9     | Jose Joaquin de Herrera | Guerrero                        | 14 424              | 2.92035       | Very high            |  |
| 10    | Chalchihuitan           | Chiapas                         | 13 295              | 2.90154       | Very high            |  |
| 11    | Tehuipango              | Veracruz de Ignacio de la LLave | 20 406              | 2.86560       | Very high            |  |
| 12    | Mixtla de Altamirano    | Veracruz de Ignacio de la Llave | 9 572               | 2.82344       | Very high            |  |
| 13    | Santiago Amoltepec      | Оахаса                          | 11 113              | 2.79609       | Very high            |  |
| 14    | San Jose Tenango        | Оахаса                          | 18 120              | 2.73941       | Very high            |  |
| 15    | Santa Lucia Miahuatlan  | Оахаса                          | 3 023               | 2.70057       | Very high            |  |
| 16    | Copanatoyac             | Guerrero                        | 17 337              | 2.69112       | Very high            |  |
| 17    | San Martin Peras        | Оахаса                          | 12 406              | 2.61753       | Very high            |  |
| 18    | Santa Cruz Zenzontepec  | Оахаса                          | 16 773              | 2.61703       | Very high            |  |
| 19    | Santiago el Pinar       | Chiapas                         | 2 854               | 2.60073       | Very high            |  |
| 20    | Mitontic                | Chiapas                         | 9 042               | 2.59529       | Very high            |  |
| Total |                         |                                 | 274 270             |               |                      |  |


### T1.5 Municipalities with the highest index and degree of poverty, 2005

<sup>a</sup> Translator's Note: The Index is known in Spanish as the "Indice de Rezago Social" and the degree is referred to as the "Grado de Rezago Social".

The states of Chiapas, Guerrero and Oaxaca have a very high degree of poverty, in accordance with their level of low incomes. The main reason for this backlog may be found in the fact that these states have a high level of educational poverty, very low coverage of basic services and very low access to social security. These deficiencies, together with their low incomes, underpin the high poverty rates in these states. In the following map the index and degree of social poverty are shown by municipality.








In the 106 municipalities with a very high degree of poverty, the occurrence of food deficiency is above 40 percent: 1.4 million inhabitants live in these municipalities.

### **1.5 The Hydrological-Administrative** Regions for water management

Given that the catchment is the basic unit for the management of water resources, the country has been divided into 13 Hydrological-Administrative Regions, with the aim of organizing the management and preservation of the nation's waters. The Hydrological-Administrative Regions are made up by grouping together catchments, respecting the municipal limits so as to facilitate the integration of socio-economic information. The National Water Commission of Mexico (CONAGUA), an administrative, standard-bearing, technical and consultative agency in charge of water management in the country, carries out its functions through 13 River Basin Organizations (formerly known as Regional Departments), the scope of competence of which are the Hydrological-Administrative Regions, shown in the following figure:

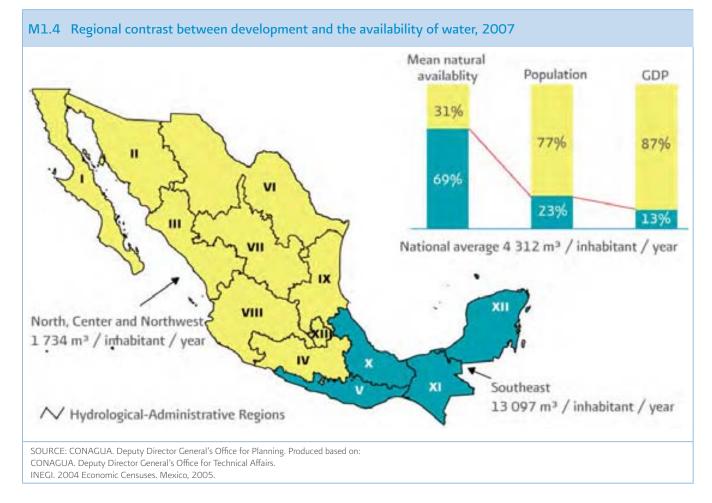


SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on the By-Laws of the CONAGUA and the CONAGUA's River Basin Organization Territorial Constituency Agreement, published in the Official Government Gazette on December 12<sup>th</sup>, 2007.

The cities in which the River Basin Organizations have their headquarters are shown in the following table:


| T1.6 Host cities of the River Basin Organizations |                               |  |  |  |
|---------------------------------------------------|-------------------------------|--|--|--|
| River Basin Organization                          | Host city                     |  |  |  |
| I Baja California Peninsula                       | Mexicali, Baja California     |  |  |  |
| II Northwest                                      | Hermosillo, Sonora            |  |  |  |
| III Northern Pacific                              | Culiacan, Sinaloa             |  |  |  |
| IV Balsas                                         | Cuernavaca, Morelos           |  |  |  |
| V Southern Pacific                                | Оахаса, Оахаса                |  |  |  |
| VI Rio Bravo                                      | Monterrey, Nuevo Leon         |  |  |  |
| VII Central Basins of the North                   | Torreon, Coahuila de Zaragoza |  |  |  |
| VIII Lerma-Santiago-Pacific                       | Guadalajara, Jalisco          |  |  |  |
| IX Northern Gulf                                  | Ciudad Victoria, Tamaulipas   |  |  |  |
| X Central Gulf                                    | Xalapa, Veracruz              |  |  |  |
| XI Southern Border                                | Tuxtla Gutierrez, Chiapas     |  |  |  |
| XII Yucatan Peninsula                             | Merida, Yucatan               |  |  |  |
| XIII Waters of the Valley of<br>Mexico            | Mexico City, Federal District |  |  |  |
| SOURCE: By-Laws of the CONAGUA. Me>               | kico, 2006.                   |  |  |  |

The Hydrological-Administrative Regions were defined according to the limits of the country's catchments, and are made up of whole municipalities. The municipalities that make up each one of these Hydrological-Administrative Regions are indicated in River Basin Organizations' Territorial Constituency Agreement, published in the Official Government Gazette on December 12<sup>th</sup>, 2007.


In addition, the CONAGUA has 20 Local Offices (formerly known as State Departments "Gerencias Estatales") in the states in which no River Basin Organization has its headquarters.<sup>a</sup>

### **1.6 Regional contrast between** development and the availability of water

The country may be divided into two main zones: the north, center and northwest zone, which concentrates 77% of the population, where 87% of the Gross Domestic Product is generated, but only 31% of the renewable water may be found; and the south and southeast zone, where 23% of the population lives, 13% of the GDP is generated and 69% of the renewable water occurs. The figure M1.4 illustrates the disparity between these two zones as regards their availability of water and economic activity.



<sup>&</sup>lt;sup>a</sup> There are 31 States and one Federal District (D.F.) in Mexico. For the purpose of this publication, all 32 will be referred to as "States".

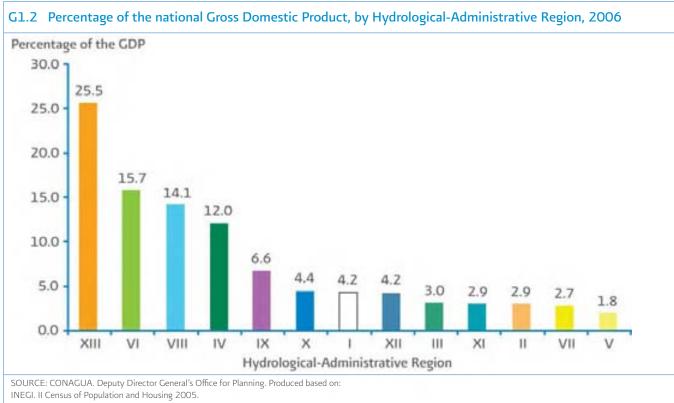


### **1.7 Summary of data by Hydrological-**Administrative Region and State

The following table shows the main geographical and socio-economic data for each Hydrological-Administrative Region. It should be mentioned that the majority of the country's economic activity is concentrated in the Hydrological-Administrative Regions XIII Waters of the Valley of Mexico, VI Rio Bravo, VIII Lerma-Santiago-Pacific and IV Balsas, which between them generate two thirds of the national Gross Domestic Product (GDP).



| Hydrological-Administrative Region  | Population<br>in 2007ª<br>(inhabitants) | Mainland<br>area <sup>b</sup><br>(km²) | Population<br>density in 2007<br>(inhabitants/km <sup>2</sup> ) | GDP 2006<br>(%) | Municipalities<br>and/or Delegations<br>of the D.F. <sup>c</sup><br>(number) |
|-------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------------------------------|-----------------|------------------------------------------------------------------------------|
| I Baja California Peninsula         | 3 580 948                               | 145 386                                | 25                                                              | 4.22            | 10                                                                           |
| II Northwest                        | 2 572 252                               | 205 218                                | 13                                                              | 2.86            | 79                                                                           |
| III Northern Pacific                | 3 959 279                               | 152 013                                | 26                                                              | 3.00            | 51                                                                           |
| IV Balsas                           | 10 535 977                              | 119 247                                | 88                                                              | 12.00           | 422                                                                          |
| V Southern Pacific                  | 4 116 080                               | 77 525                                 | 53                                                              | 1.81            | 362                                                                          |
| VI Rio Bravo                        | 10 703 815                              | 379 552                                | 28                                                              | 15.66           | 141                                                                          |
| VII Central Basins of the North     | 4 120 949                               | 202 562                                | 20                                                              | 2.66            | 83                                                                           |
| VIII Lerma-Santiago-Pacific         | 20 625 203                              | 190 366                                | 108                                                             | 14.14           | 329                                                                          |
| IX Northern Gulf                    | 4 941 244                               | 127 166                                | 39                                                              | 6.60            | 154                                                                          |
| X Central Gulf                      | 9 583 822                               | 104 790                                | 91                                                              | 4.43            | 445                                                                          |
| XI Southern Border                  | 6 502 913                               | 101 231                                | 64                                                              | 2.89            | 139                                                                          |
| XII Yucatan Peninsula               | 3 903 937                               | 137 753                                | 28                                                              | 4.22            | 124                                                                          |
| XIII Waters of the Valley of Mexico | 21 090 206                              | 16 438                                 | 1 283                                                           | 25.50           | 116                                                                          |
| Total                               | 106 236 625                             | 1 959 248                              | 54                                                              | 100             | 2 455                                                                        |


### T1.7 Geographical and socio-economic data, by Hydrological-Administrative Region

NOTE: a Calculated based on the CONAPO's 2005-2030 projections. Population as of December.

<sup>b</sup> INEGI, Municipal Geostatistical Framework, Version 3.1.1. 2008.

<sup>c</sup> Calculated based on the Gross Censual Added Value by Municipality for 2006.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from INEGI. General Censuses.



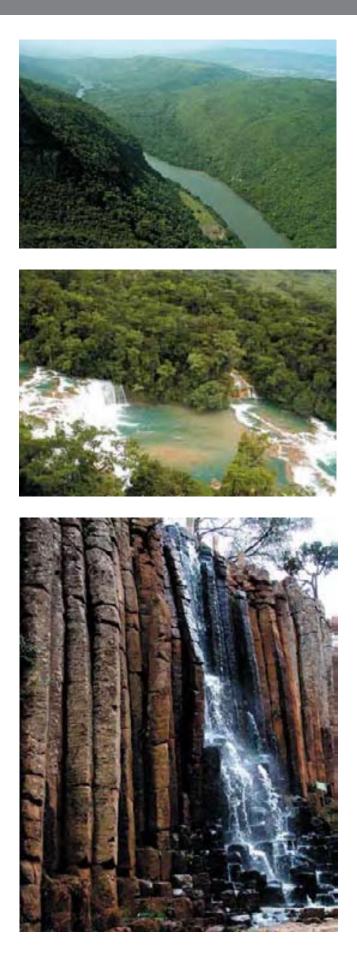
INEGI. 2004 Economic Censuses. Mexico, 2007.

The following table presents geographical and socioeconomic data on the states of Mexico, as well as a graph showing the contribution of each of them to the nation's Gross Domestic Product. It is worth mentioning that the Federal District concentrates more than a fifth of the national GDP.

| State                              | Population                | Mainland                   | Population                           | GDP 2006 <sup>c</sup> | Municipalities                                             |
|------------------------------------|---------------------------|----------------------------|--------------------------------------|-----------------------|------------------------------------------------------------|
|                                    | in 2007ª<br>(inhabitants) | area <sup>b</sup><br>(km²) | density in 2007<br>(inhabitants/km²) | (%)                   | and/or Delegations<br>of the D.F. <sup>b</sup><br>(number) |
| 1 Aguascalientes                   | 1 115 304                 | 5 618                      | 199                                  | 1.27                  | 11                                                         |
| 2 Baja California                  | 3 036 393                 | 71 463                     | 42                                   | 3.60                  | 5                                                          |
| 3 Baja California Sur              | 544 556                   | 73 922                     | 7                                    | 0.62                  | 5                                                          |
| 4 Campeche                         | 782 130                   | 51 352                     | 15                                   | 1.22                  | 11                                                         |
| 5 Coahuila de Zaragoza             | 2 587 917                 | 151 623                    | 17                                   | 3.29                  | 38                                                         |
| 6 Colima                           | 589 327                   | 5 625                      | 105                                  | 0.54                  | 10                                                         |
| 7 Chiapas                          | 4 435 911                 | 73 178                     | 61                                   | 1.62                  | 118                                                        |
| 8 Chihuahua                        | 3 343 408                 | 247 478                    | 14                                   | 4.55                  | 67                                                         |
| 9 Durango                          | 1 541 433                 | 123 287                    | 13                                   | 1.30                  | 39                                                         |
| 10 Federal District                | 8 832 734                 | 1 496                      | 5 905                                | 21.52                 | 16                                                         |
| 11 Guanajuato                      | 5 008 063                 | 30 609                     | 164                                  | 3.46                  | 46                                                         |
| 12 Guerrero                        | 3 147 680                 | 63 652                     | 49                                   | 1.60                  | 81                                                         |
| 13 Hidalgo                         | 2 402 682                 | 20 824                     | 115                                  | 1.29                  | 84                                                         |
| 14 Jalisco                         | 6 931 957                 | 78 598                     | 88                                   | 6.21                  | 125                                                        |
| 15 State of Mexico                 | 14 536 860                | 22 357                     | 650                                  | 9.69                  | 125                                                        |
| 16 Michoacan de Ocampo             | 3 984 577                 | 58 614                     | 68                                   | 2.13                  | 113                                                        |
| 17 Morelos                         | 1 655 138                 | 4 882                      | 339                                  | 1.34                  | 33                                                         |
| 18 Nayarit                         | 965 641                   | 27 815                     | 35                                   | 0.56                  | 20                                                         |
| 19 Nuevo Leon                      | 4 365 090                 | 64 225                     | 68                                   | 7.52                  | 51                                                         |
| 20 Оахаса                          | 3 552 685                 | 93 524                     | 38                                   | 1.52                  | 570                                                        |
| 21 Puebla                          | 5 567 191                 | 34 283                     | 162                                  | 3.68                  | 217                                                        |
| 22 Queretaro Arteaga               | 1 674 737                 | 11 707                     | 143                                  | 1.82                  | 18                                                         |
| 23 Quintana Roo                    | 1 243 989                 | 38 784                     | 32                                   | 1.58                  | 8                                                          |
| 24 San Luis Potosi                 | 2 467 651                 | 61 112                     | 40                                   | 1.90                  | 58                                                         |
| 25 Sinaloa                         | 2 645 933                 | 57 377                     | 46                                   | 1.89                  | 18                                                         |
| 26 Sonora                          | 2 475 658                 | 179 484                    | 14                                   | 2.85                  | 72                                                         |
| 27 Tabasco                         | 2 034 507                 | 24 743                     | 82                                   | 1.27                  | 17                                                         |
| 28 Tamaulipas                      | 3 135 501                 | 80 243                     | 39                                   | 3.22                  | 43                                                         |
| 29 Tlaxcala                        | 1 112 200                 | 4 006                      | 278                                  | 0.53                  | 60                                                         |
| 30 Veracruz de Ignacio de la Llave | 7 251 626                 | 71 846                     | 101                                  | 4.25                  | 212                                                        |
| 31 Yucatan                         | 1 886 161                 | 37 409                     | 50                                   | 1.41                  | 106                                                        |
| 32 Zacatecas                       | 1 381 991                 | 75 313                     | 18                                   | 0.75                  | 58                                                         |
| Total                              | 106 236 625               | 1 946 449                  | 54                                   | 100                   | 2 455                                                      |

### T1.8 Geographical and socio-economic data by state

NOTE: a Calculated based on the CONAPO's 2005-2030 projections. Population as of December.


<sup>b</sup> The total does not add up the total surface area of 1 959 248 km<sup>2</sup> since there are still seven areas of the country that have not yet been assigned in version 3.1.1 of the Municipal Geostatistical Framework, 2008, for a total area of 12 798 km<sup>2</sup>.

<sup>c</sup> Calculated based on the Gross Censual Added Value by Municipality for 2006.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from INEGI. General Censuses.



SOURCE: INEGI. 2004 Economic Censuses. Mexico, 2007.



### **Chapter 2**

# The state of water resources

This chapter presents the various elements of the hydrologic cycle, from precipitation to runoff into rivers and streams, and aquifer recharge, as well as the evolution in availability of water in Mexico. The list of the country's main rivers is also elaborated on.

On the subject of meteorological phenomena, the intense hurricanes that have hit Mexico since 1970 are presented, as is the opposite phenomena, droughts, which are discussed in greater depth in this edition.

As regards the information related to the quality of surface and groundwater, the evolution in recent years is also included.

### 2.1 Mexico's Catchments and Aquifers

In the hydrologic cycle, a significant proportion of the precipitation returns to the atmosphere in the form of evapotranspiration, whereas the rest runs off to the country's rivers and streams, grouped together in catchments, or filters through to the country's aquifers.

As a result of work carried out by the CONAGUA, INEGI and INE, 1471 catchments or river basins ("cuencas hidrograficas") have been identified in Mexico. For the purpose of this work, the terms "catchment" and "river basin" are used indiscriminately to translate the Spanish term "cuenca hidrografica". For the purpose of the publication of surface water, they have been grouped and/or divided into 728 watersheds ("cuencas hidrologicas").

The country's catchments have been organized into 37 hydrological regions, which are in turn covered by the 13 Hydrological-Administrative Regions mentioned in the previous chapter.

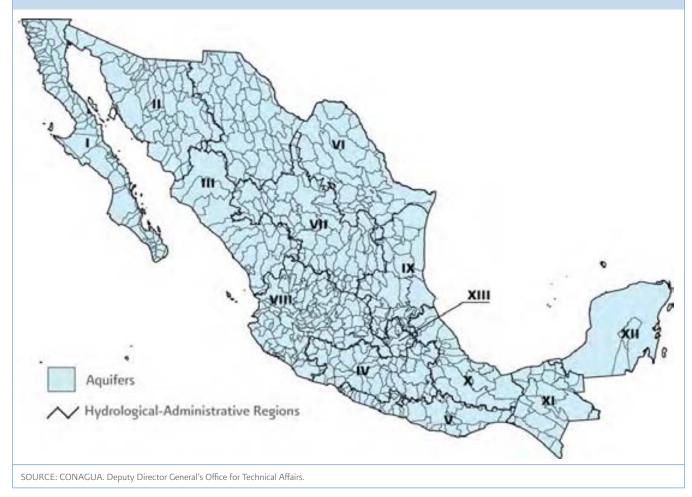


### Hydrological Regions:

- 1. Baja California Northwest
- 2. Baja California Central-West
- 3. Baja California Southwest
- 4. Baja California Northeast
- 5. Baja California Central-East
- 6. Baja California Southeast

- 7. Colorado River
- 8. Sonora North
- 9. Sonora South
- 10. Sinaloa
- 11. Presidio-San Pedro
- 12. Lerma-Santiago
- 13. Huicicila River

- 14. Ameca River
- 15. Jalisco Coast
- 16. Armeria-Coahuayana
- 17. Michoacan Coast
- 18. Balsas
- 19. Greater Guerrero Coast
- 20. Lower Guerrero Coast


- 21. Oaxaca Coast
- 22. Tehuantepec
- 23. Chiapas Coast
- 24. Bravo-Conchos
- 25. San Fernando-Soto La Marina
- 26. Panuco

- 27. North of Veracruz
- (Tuxpan-Nautla Rivers)
- 28. Papaloapan
- 29. Coatzacoalcos
- 30. Grijalva-Usumacinta
- 31. Yucatan West

- 32. Yucatan North
- 33. Yucatan East
- 34. Closed Catchments of the North
- 35. Mapimi
- 36. Nazas-Aguanaval
- 37. El Salado

As regards groundwater, the country is divided into 653 aquifers or hydrogeological units, as published in the Official Government Gazette on December 5<sup>th</sup>, 2001, and as shown in the following map:

### M2.2 Limits of the aquifers by Hydrological-Administrative Region



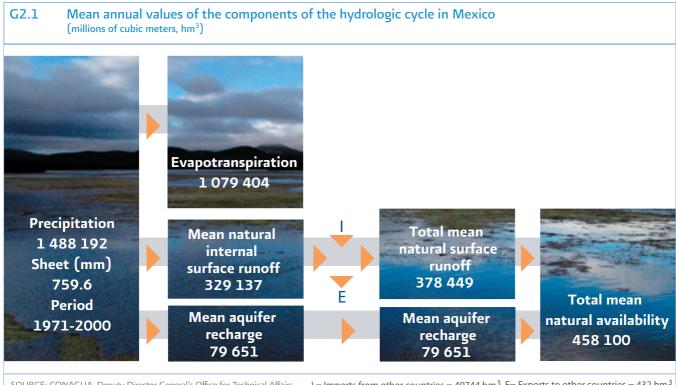
The CONAGUA has 4058 stations in operation to measure climate and hydrometric variables. The climate stations measure the temperature, precipitation, evaporation, wind speed and direction. The stream gages measure the levels and flows of water in rivers and the volumes of water stored in dams, as well as the withdrawal for the purpose of sampling. The hydroclimate stations take climatic and hydrometric measurements.

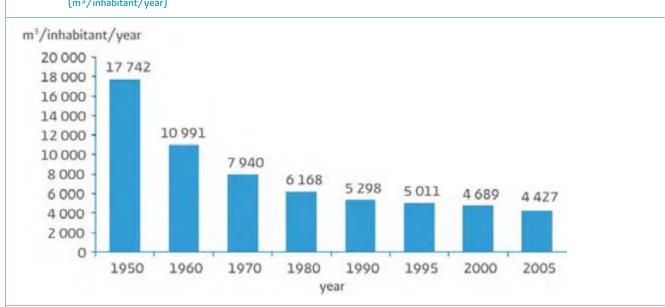
| T2.1                                                                        | T2.1 Number of climate and stream gages<br>in Mexico, 2007 |                    |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| Туре о                                                                      | of station                                                 | Number of stations |  |  |  |  |  |  |  |
| Climate                                                                     | Stations <sup>1</sup>                                      | 3 348              |  |  |  |  |  |  |  |
| Stream                                                                      | gages                                                      | 499                |  |  |  |  |  |  |  |
| Stations                                                                    | i                                                          | 211                |  |  |  |  |  |  |  |
| Total                                                                       |                                                            | 4 058              |  |  |  |  |  |  |  |
| <sup>1</sup> DOf a total of 5 880 climate stations, 3 348 are in operation. |                                                            |                    |  |  |  |  |  |  |  |

Of the latter, 1 062 are considered reference stations.

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

Includes 1062 reference climate stations (see the glossary). Additionally, the CONAGUA, through the National Meteorological Service, operates 79 observatories and 146 automatic meteorological stations.


### 2.2 Mean Natural Availability of Water


Every year, Mexico receives around 1 488 billon cubic meters of water in the form of precipitation. Of this water, 72.5% evaporates and returns to the atmosphere, 22.1% runs off into rivers and streams and the remaining 5.4% filters through to the subsoil and recharges the aquifers, in such a way that every year the country has 458 billion cubic meters of renewable freshwater, which is referred to as its mean natural availability. The diagram below shows the components and values of this availability.

The imports from other countries refer to the volume of water generated in the shared catchments with the three countries with which Mexico has borders (United States of America, Guatemala and Belize) and which runs off to Mexico. The exports refer to the volume of water that Mexico delivers to the United States of America as part of the 1944 Water Treaty.

In addition to the freshwater that is renewed by rainfall, Mexico has reserves of water stored mainly in its aquifers, but also in the country's natural and artificial lakes; however, this water is not considered in the calculation of mean natural availability, since it is not renewable.

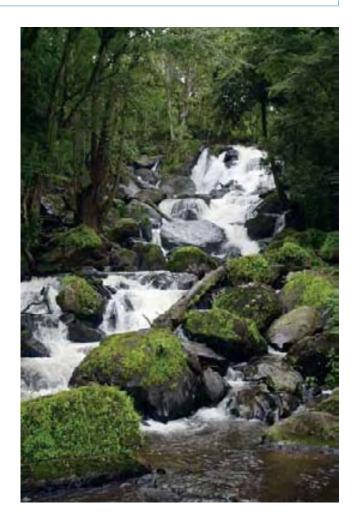
The mean natural per capita availability, which can be calculated by dividing the national value by the number of inhabitants, has decreased from  $18035 \text{ m}^3$ inhabitant/year in 1950 to only 4 312 in 2007. In the graph G2.2, it may be observed how this value has decreased.





### G2.2 Variation in the mean natural per capita availability of water, from 1950 to 2005 (m<sup>3</sup>/inhabitant/year)

NOTE: The total natural availability, in millions of cubic meters per year, is 458 100.


For the years 1950, 1960, 1970, 1980, 1990 and 2000, the population data was interpolated on December 31<sup>st</sup> every year based on the figures from INEGI's Censuses. For 1995 and 2005, interpolation was also carried out on December 31<sup>st</sup> of each year, based on INEGI's Censuses.

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs. Mexico, 2008.

It is worth mentioning that the availability should be analyzed from three perspectives:

- Seasonal distribution, since in Mexico there is a great variation in availability throughout the year. The majority of the rainfall occurs in the summer, whereas the rest of the year is relatively dry.
- Geographical distribution, since some regions of the country have an abundant precipitation and low population density, whereas in others exactly the opposite occurs.
- The area of analysis, since water problems are predominantly local in scale. Indicators calculated on a greater scale may hide some strong variations which exist throughout the country.

In some Hydrological-Administrative Regions, such as XIII Waters of the Valley of Mexico, VI Rio Bravo and VIII Lerma-Santiago-Pacific, the mean natural per capita availability is alarmingly low. In the following table the availability for each of the Hydrological-Administrative Regions may be observed:



| 12.2 Mean natural per capita availability, by Hydrological-Administrative Region, 2007 |                                     |                                                      |                                                                |                                                                         |                                                       |                                                                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| Hy                                                                                     | drological-Administration<br>Region | Total mean<br>natural<br>availabilityª<br>(hm³/year) | Population in<br>December 2007<br>(millions of<br>inhabitants) | Mean natural per<br>capita availability<br>2007<br>(m³/inhabitant/year) | Total mean<br>natural surface<br>runoff<br>(hm³/year) | Mean total<br>groundwater<br>recharge <sup>a</sup><br>(hm³/year) |  |  |  |  |  |
| I                                                                                      | Baja California Peninsula           | 4616                                                 | 3.58                                                           | 1 289                                                                   | 3 367                                                 | 1 249                                                            |  |  |  |  |  |
| Ш                                                                                      | Northwest                           | 8 204                                                | 2.57                                                           | 3 192                                                                   | 5 074                                                 | 3 1 3 0                                                          |  |  |  |  |  |
| Ш                                                                                      | Northern Pacific                    | 25 627                                               | 3.96                                                           | 6 471                                                                   | 22 364                                                | 3 263                                                            |  |  |  |  |  |
| IV                                                                                     | Balsas                              | 21 651                                               | 10.54                                                          | 2 055                                                                   | 17 057                                                | 4 601                                                            |  |  |  |  |  |
| V                                                                                      | Southern Pacific                    | 32 794                                               | 4.12                                                           | 7 960                                                                   | 30 800                                                | 1994                                                             |  |  |  |  |  |
| VI                                                                                     | Rio Bravo                           | 12 024                                               | 10.70                                                          | 1124                                                                    | 6 857                                                 | 5167                                                             |  |  |  |  |  |
| VII                                                                                    | Central Basins of the North         | 7 780                                                | 4.12                                                           | 1888                                                                    | 5 506                                                 | 2 274                                                            |  |  |  |  |  |
| VIII                                                                                   | Lerma-Santiago-Pacific              | 34 037                                               | 20.63                                                          | 1 650                                                                   | 26 351                                                | 7 686                                                            |  |  |  |  |  |
| IX                                                                                     | Northern Gulf                       | 25 500                                               | 4.94                                                           | 5 162                                                                   | 24 227                                                | 1 274                                                            |  |  |  |  |  |
| Х                                                                                      | Central Gulf                        | 95 455                                               | 9.58                                                           | 9 964                                                                   | 91 606                                                | 3 849                                                            |  |  |  |  |  |
| XI                                                                                     | Southern Border                     | 157 754                                              | 6.50                                                           | 24 270                                                                  | 139 739                                               | 18 015                                                           |  |  |  |  |  |
| XII                                                                                    | Yucatan Peninsula                   | 29 645                                               | 3.90                                                           | 7 603                                                                   | 4 329                                                 | 25 316                                                           |  |  |  |  |  |
| XIII                                                                                   | Waters of the Valley of Mexico      | 3 008                                                | 21.09                                                          | 143                                                                     | 1174 <sup>b</sup>                                     | 1834                                                             |  |  |  |  |  |
| Total                                                                                  |                                     | 458 100                                              | 106.23                                                         | 4 312                                                                   | 378 449                                               | 79 651                                                           |  |  |  |  |  |

T2.2 Mean natural per capita availability, by Hydrological-Administrative Region, 2007

NOTES: The sums may not add up precisely due to the rounding up or down of the figures.

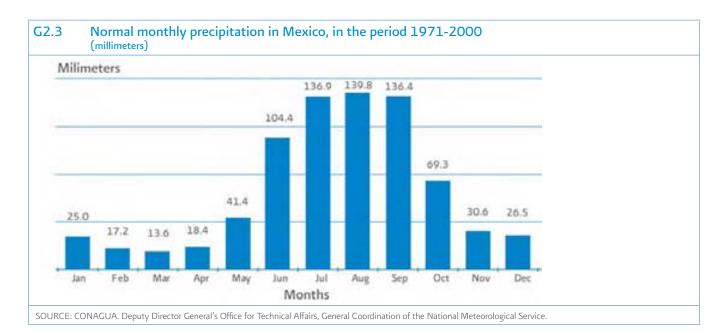
The quantities expressed in this table are indicative and for planning purposes only; they may be used themselves to carry out water concessions or to determine the feasibility of any given project.

<sup>a</sup> The mean values refer to historical values, according to the availability of hydrological studies.

<sup>b</sup> Includes the wastewater produced in the Metropolitan Zone of the Valley of Mexico.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from:

CONAGUA. Deputy Director General's Office for Technical Affairs.


CONAPO. Population Projections in Mexico 2005-2050. Mexico, 2007.

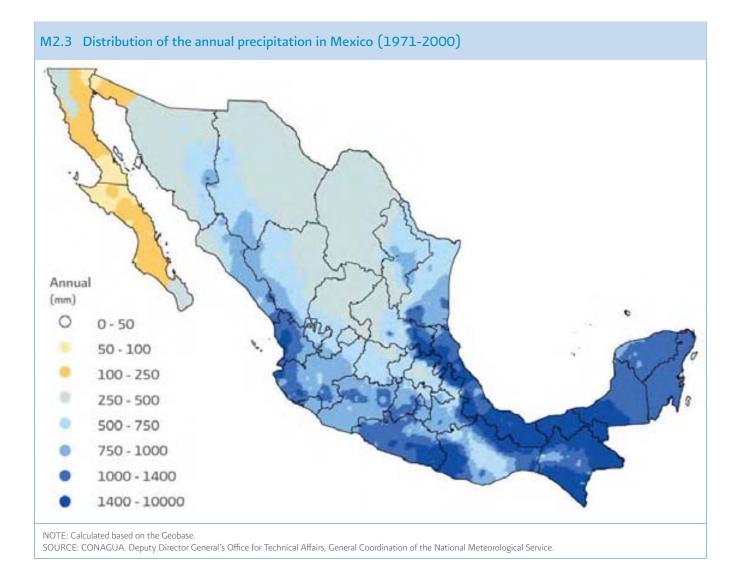
### Precipitation

The country's normal precipitation in the period from 1941 to 2000 was 759.6 mm. According to the WMO, the "normal" values correspond to periodic measurements, calculated for a uniform and relatively long period, which must be at least 30 years of data, which is considered as a minimum representative climatalogical period, and which starts on January 1<sup>st</sup> of a year ending with one, and ends on December 31<sup>st</sup> of a year ending in zero.

It is worth mentioning that the monthly distribution of the precipitation in particular accentuates the problems related with the availability of water, since 68% of the normal monthly precipitation falls between the months of June and September.

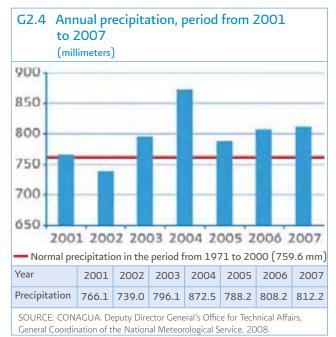





### T2.3 Monthly normal precipitation, by Hydrological-Administrative Region, in the period from 1971-2000 (millimeters)

|      | (ininitectory)                     |             |             |             |             |            |             |           |          |             |       |       |      |         |
|------|------------------------------------|-------------|-------------|-------------|-------------|------------|-------------|-----------|----------|-------------|-------|-------|------|---------|
| Hyd  | rological-Administrative<br>Region | Jan.        | Feb.        | Mar.        | Apr.        | May.       | Jun.        | Jul.      | Aug.     | Sep.        | Oct.  | Nov.  | Dec. | Annual  |
| I    | Baja California Peninsula          | 23.1        | 21.8        | 17.1        | 4.Z         | 1.1        | 0.5         | 9.0       | 22.6     | 25.4        | 11.5  | 11.2  | 20.7 | 168.3   |
| П    | Northwest                          | 25.4        | 22.9        | 13.2        | 5.6         | 4.8        | 18.1        | 112.9     | 107.3    | 57.6        | 28.3  | 19.7  | 32.3 | 448.1   |
| Ш    | Northern Pacific                   | 26.7        | 12.5        | 6.8         | 5.3         | 9.0        | 63.Z        | 187.6     | 191.3    | 134.8       | 52.5  | 29.2  | 28.7 | 747.7   |
| IV   | Balsas                             | 14.7        | 5.2         | 6.3         | 13.9        | 51.9       | 186.9       | 198.1     | 191.9    | 188.3       | 82.5  | 16.1  | 7.2  | 963.0   |
| V    | Southern Pacific                   | 9.0         | 8.1         | 7.7         | 20.4        | 79.3       | 243.5       | 205.0     | 223.8    | 247.4       | 110.6 | 20.6  | 9.1  | 1184.6  |
| VI   | Rio Bravo                          | 16.0        | 12.3        | 9.6         | 16.1        | 29.9       | 48.8        | 75.1      | 81.0     | 80.4        | 35.4  | 14.8  | 16.5 | 435.9   |
| VII  | Central Basins of the North        | 15.8        | 6.Z         | 5.2         | 12.2        | 27.0       | 58.9        | 86.5      | 85.0     | 71.5        | 31.9  | 13.1  | 14.4 | 427.6   |
| VIII | Lerma-Santiago-Pacific             | 21.3        | 6.Z         | 3.8         | 6.5         | 23.7       | 131.4       | 202.9     | 185.6    | 148.7       | 58.4  | 17.3  | 12.2 | 817.9   |
| IX   | Northern Gulf                      | 26.3        | 17.2        | 20.9        | 40.5        | 75.8       | 140.3       | 143.3     | 129.6    | 176.6       | 81.6  | 30.4  | 28.5 | 910.9   |
| х    | Central Gulf                       | 44.3        | 34.4        | 29.7        | 40.3        | 84.6       | 224.4       | 252.7     | 252.6    | 279.4       | 163.6 | 86.9  | 59.8 | 1 552.8 |
| XI   | Southern Border                    | 59.4        | 53.6        | 38.Z        | 52.1        | 136.9      | 275.0       | 219.1     | 266.1    | 332.6       | 222.5 | 112.9 | 77.3 | 1845.6  |
| XII  | Yucatan Peninsula                  | 46.6        | 31.6        | 28.4        | 37.9        | 84.6       | 170.7       | 161.1     | 175.8    | 212.2       | 144.7 | 73.7  | 51.9 | 1 219.2 |
| XIII | Waters of the Valley of<br>Mexico  | 9.3         | 8.3         | 12.6        | 27.9        | 56.1       | 105.2       | 115.7     | 105.9    | 98.7        | 50.8  | 12.6  | 7.0  | 610.2   |
| Tota | I                                  | 25.0        | 17.2        | 13.6        | 18.4        | 41.4       | 104.4       | 136.9     | 139.8    | 136.4       | 69.3  | 30.6  | 26.5 | 759.6   |
| SOUR | CE: CONAGUA. Deputy Director Ge    | neral's Off | ice for Tec | hnical Affa | iirs, Gener | al Coordin | ation of th | e Nationa | Meteorol | ogical Serv | vice. |       |      |         |

The following table presents the normal precipitation by state in the period from 1971 to 2000. It may be observed, for example, that in Tabasco, the rainiest state, the precipitation during this period was almost 13 times more than in Baja California Sur, the driest state. In the majority of states, the precipitation occurs mainly between June and September, with the exception of Baja California and Baja California Sur, where the rainfall is mainly in the winter.


T2.4 Normal monthly historical precipitation by state, in the period from 1971 to 2000 (millimeters)

|       | (millimeters)                      |             |             |             |              |             |             |            |          |             |       |       |       |        |
|-------|------------------------------------|-------------|-------------|-------------|--------------|-------------|-------------|------------|----------|-------------|-------|-------|-------|--------|
|       | State                              | Jan.        | Feb.        | Mar.        | Apr.         | May.        | Jun.        | Jul.       | Aug.     | Sep.        | Oct.  | Nov.  | Dec.  | Annual |
| 1     | Aguascalientes                     | 18.1        | 5.7         | Z.8         | 7.2          | 21.1        | 75.9        | 130.2      | 114.7    | 78.8        | 35.8  | 10.8  | 11.3  | 512.5  |
| Z     | Baja California                    | 30.8        | 34.6        | 30.6        | 7.8          | 1.7         | 0.6         | 3.9        | 8.0      | 9.0         | 10.9  | 13.5  | 24.2  | 175.7  |
| 3     | Baja California Sur                | 15.6        | 9.1         | 3.8         | 0.6          | 0.6         | 0.5         | 14.2       | 37.0     | 41.5        | 12.1  | 8.9   | 17.2  | 161.0  |
| 4     | Campeche                           | 48.2        | 32.3        | 26.2        | 33.6         | 79.3        | 190.3       | 174.5      | 204.3    | 240.4       | 166.9 | 86.4  | 54.5  | 1336.8 |
| 5     | Coahuila de Zaragoza               | 14.4        | 10.2        | 8.3         | 16.9         | 33.4        | 48.7        | 54.7       | 61.4     | 69.7        | 33.0  | 14.1  | 14.2  | 379.0  |
| 6     | Colima                             | 29.1        | 3.3         | 1.5         | 0.8          | 13.6        | 130.7       | 206.7      | 217.0    | 217.2       | 88.8  | 27.2  | 10.5  | 946.4  |
| 7     | Chiapas                            | 40.6        | 37.5        | 31.9        | 51.7         | 148.1       | 287.5       | 229.1      | 275.3    | 333.3       | 191.3 | 84.9  | 52.6  | 1763.9 |
| 8     | Chihuahua                          | 17.1        | 13.7        | 7.4         | 7.5          | 12.3        | 39.0        | 113.2      | 109.0    | 75.4        | 30.6  | 15.9  | 20.9  | 462.0  |
| 9     | Durango                            | 20.1        | 7.1         | 4.7         | 6.2          | 13.9        | 67.4        | 138.3      | 136.7    | 99.5        | 38.Z  | 18.8  | 19.7  | 570.6  |
| 10    | Federal District                   | 9.6         | 6.6         | 12.3        | 29.6         | 69.Z        | 168.6       | 194.0      | 192.3    | 161.4       | 73.6  | 12.9  | 7.2   | 937.4  |
| 11    | Guanajuato                         | 13.0        | 5.8         | 5.7         | 13.7         | 36.1        | 101.6       | 142.4      | 121.8    | 96.8        | 41.2  | 10.2  | 8.5   | 596.8  |
| 12    | Guerrero                           | 13.3        | 4.Z         | 3.7         | 6.8          | 45.Z        | 237.7       | 234.4      | 245.4    | 262.5       | 117.7 | 16.8  | 7.3   | 1195.0 |
| 13    | Hidalgo                            | 20.0        | 17.5        | 22.2        | 39.3         | 67.7        | 124.5       | 131.3      | 119.5    | 155.7       | 82.2  | 32.3  | 19.6  | 831.8  |
| 14    | Jalisco                            | 22.9        | 6.4         | 3.4         | 4.5          | 20.6        | 150.2       | 224.1      | 201.0    | 162.7       | 64.7  | 20.5  | 12.2  | 893.1  |
| 15    | State of Mexico                    | 13.3        | 8.1         | 10.2        | 23.0         | 61.9        | 155.7       | 176.5      | 165.7    | 145.1       | 66.9  | 15.5  | 8.8   | 850.6  |
| 16    | Michoacan de Ocampo                | 21.8        | 4.3         | 4.0         | 6.9          | 30.8        | 157.2       | 208.6      | 197.6    | 175.4       | 77.7  | 18.2  | 8.7   | 911.1  |
| 17    | Morelos                            | 10.8        | 4.0         | 5.7         | 14.8         | 62.1        | 211.0       | 193.8      | 199.9    | 187.2       | 72.5  | 14.0  | 5.5   | 981.4  |
| 18    | Nayarit                            | 28.8        | 8.8         | 2.2         | 1.8          | 9.7         | 138.1       | 311.2      | 315.5    | 252.5       | 74.5  | 23.6  | 19.2  | 1185.8 |
| 19    | Nuevo Leon                         | 24.0        | 16.0        | 18.4        | 35.5         | 64.8        | 78.1        | 56.8       | 79.5     | 118.7       | 53.1  | 20.1  | 19.5  | 584.5  |
| 20    | Oaxaca                             | 14.3        | 13.8        | 12.9        | 27.8         | 90.Z        | 225.3       | 205.9      | 214.1    | 223.7       | 101.6 | 33.1  | 19.2  | 1181.8 |
| 21    | Puebla                             | 19.1        | 17.0        | 21.4        | 39.5         | 83.3        | 183.6       | 166.9      | 160.3    | 190.6       | 95.9  | 35.7  | 20.7  | 1034.1 |
| 22    | Queretaro Arteaga                  | 15.4        | 10.2        | 15.6        | 27.3         | 52.6        | 120.4       | 133.9      | 117.7    | 133.4       | 60.8  | 22.4  | 14.8  | 724.4  |
| 23    | Quintana Roo                       | 53.9        | 35.Z        | 32.9        | 44.7         | 96.8        | 167.8       | 155.6      | 160.4    | 204.0       | 144.5 | 79.5  | 59.Z  | 1234.4 |
| 24    | San Luis Potosi                    | 20.5        | 10.7        | 13.0        | 29.7         | 59.8        | 110.8       | 126.5      | 98.8     | 127.0       | 56.5  | 19.8  | 19.3  | 692.5  |
| 25    | Sinaloa                            | 25.3        | 12.2        | 6.5         | 4.2          | 4.5         | 43.3        | 184.0      | 194.4    | 136.2       | 57.7  | 32.8  | 29.0  | 730.1  |
| 26    | Sonora                             | 24.5        | 22.3        | 13.0        | 5.2          | 4.0         | 14.7        | 105.4      | 101.0    | 53.4        | 27.2  | 18.9  | 31.7  | 421.2  |
| 27    | Tabasco                            | 114.6       | 101.0       | 57.4        | 55.3         | 107.6       | 241.2       | 191.4      | 242.3    | 332.3       | 315.1 | 194.5 | 149.3 | 2102.0 |
| 28    | Tamaulipas                         | 26.1        | 15.3        | 19.1        | 40.0         | 75.9        | 116.1       | 99.4       | 107.7    | 145.9       | 67.2  | 24.0  | 26.9  | 763.6  |
| 29    | Tlaxcala                           | 8.0         | 8.9         | 15.7        | 38.5         | 75.3        | 130.9       | 120.8      | 116.9    | 107.9       | 55.1  | 14.6  | 7.5   | 700.0  |
| 30    | Veracruz de Ignacio<br>de la Llave | 53.1        | 40.1        | 33.6        | 43.1         | 84.2        | 217.8       | 250.7      | 246.4    | 293.5       | 178.7 | 97.9  | 71.4  | 1610.6 |
| 31    | Yucatan                            | 38.8        | 29.4        | 28.1        | 37.3         | 80.1        | 148.3       | 148.6      | 152.6    | 184.5       | 120.1 | 54.3  | 44.5  | 1066.6 |
| 32    | Zacatecas                          | 17.9        | 6.2         | 3.2         | 7.4          | 21.4        | 69.4        | 103.7      | 99.5     | 71.8        | 33.9  | 12.9  | 13.7  | 460.8  |
| Natio | nal                                | 25.0        | 17.2        | 13.6        | 18.4         | 41.4        | 104.4       | 136.9      | 139.8    | 136.4       | 69.3  | 30.6  | 26.5  | 759.6  |
| SOUR  | CE: CONAGUA. Deputy Director Ge    | neral's Off | ice for Tec | hnical Affa | iirs, Genera | al Coordina | ation of th | e National | Meteorol | ogical Serv | ice.  |       |       |        |



The accumulated precipitation in the Mexican Republic from January  $1^{st}$  to December  $31^{st}$ , 2007 reached a sheet of 812.2 mm, which was 6.9% higher than the normal historical mean for the period from 1971 to 2000 (759.6 mm).

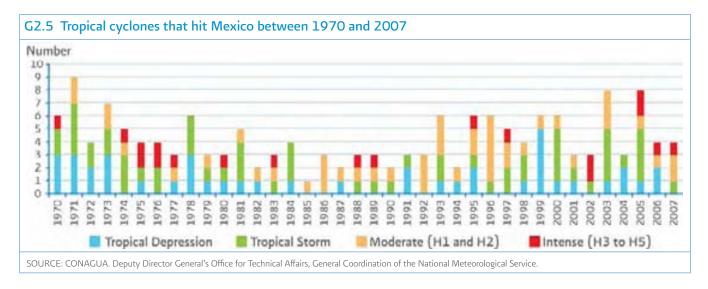




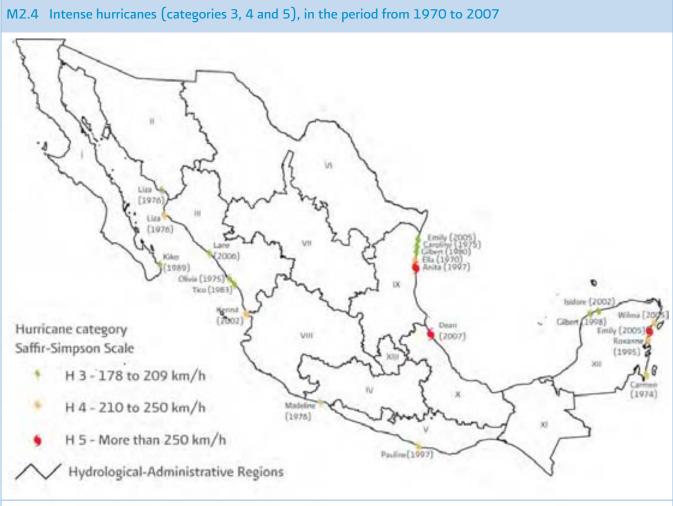
### 2.3 Meteorological Phenomena

### **Tropical cyclones**

Tropical cyclones are natural phenomena that should be given high priority, since the majority of the movement of sea humidity to the semi-arid zones of the countries occurs through them. In various regions of the country, cyclonic rains represent the majority of the annual precipitation.


Cyclones are classified according to the intensity of the maximum winds sustained. When they are stronger than 119 km/h (33.1 m/s), they are referred to as hurricanes; when they are between 61 km/h (16.9 m/s) and 119 km/h (33.1 m/s), they are tropical storms; and when the winds are less than 61 km/h (16.9 m/s), they are tropical depressions.

Between 1970 and 2007, 162 tropical cyclones hit Mexico's coasts. The following table lists the number that has hit the Atlantic and Pacific Oceans, through which it may be observed that despite the fact that a greater number of cyclones has hit the Pacific Coast, there have been more intense hurricanes in the Atlantic side.




The table T2.6 presents the number of tropical cyclones that hit Mexico in the period from 1970 to 2007, according to their category.

| T2.5 Tropical cyclones that hit Mexico between 1970 and 2007 |                         |                 |                                       |                               |              |  |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------|-----------------|---------------------------------------|-------------------------------|--------------|--|--|--|--|--|--|
| Ocean                                                        | Tropical<br>depressions | Tropical storms | Moderate<br>hurricanes<br>(H1 and H2) | Intense hurricanes<br>(H3-H5) | Total number |  |  |  |  |  |  |
| Atlantic                                                     | 22                      | 18              | 10                                    | 11                            | 61           |  |  |  |  |  |  |
| Pacific                                                      | 20                      | 38              | 35                                    | 8                             | 101          |  |  |  |  |  |  |
| Total                                                        | 42                      | 56              | 45                                    | 19                            | 162          |  |  |  |  |  |  |



The following shows a map and a chronological list of the 19 intense hurricanes (categories 3, 4 or 5) that hit Mexico between 1970 and 2007.



SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs, General Coordination of the National Meteorological Service.

| T2.6 | T2.6 Intense hurricanes that hit Mexico, according to the starting date, in the period from 1970 to 2007 |                                                |                                                    |                            |                       |          |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------|-----------------------|----------|--|--|--|--|--|--|
| No.  | Name of the<br>hurricane                                                                                 | Place(s) in which it hit ground <sup>a</sup>   | Date of occurrence                                 | Maximum<br>speed<br>(km/h) | Category <sup>b</sup> | Costa    |  |  |  |  |  |  |
| 1    | Ella                                                                                                     | Akumal, Quintana Roo,<br>[La Pesca,Tamaulipas] | Sep 8 <sup>th</sup> - 13 <sup>th</sup> , 1970      | 55 [195]                   | TD [H3]               | Atlantic |  |  |  |  |  |  |
| Z    | Carmen                                                                                                   | Punta Herradura, Quintana Roo                  | Aug 29 <sup>th</sup> - Sep 10 <sup>th</sup> , 1974 | 222                        | H4                    | Atlantic |  |  |  |  |  |  |
| 3    | Caroline                                                                                                 | La Pesca, Tamaulipas                           | Aug 24 <sup>th</sup> - Sep 1 <sup>st</sup> , 1975  | 185                        | H3                    | Atlantic |  |  |  |  |  |  |
| 4    | Olivia                                                                                                   | Villa Union, Sinaloa                           | Oct 22 <sup>nd</sup> - 25 <sup>th</sup> , 1975     | 185                        | H3                    | Pacific  |  |  |  |  |  |  |
| 5    | Liza                                                                                                     | La Paz BCS,<br>[Topolobampo, Sinaloa]          | Sep 25 <sup>th</sup> - Oct 2 <sup>nd</sup> , 1976  | 220 [215]                  | H4                    | Pacific  |  |  |  |  |  |  |

#### (continues)

#### (continued)

| T2.6 | T2.6 Intense hurricanes that hit Mexico, according to the starting date, in the period from 1970 to 2007 |                                                                                                                      |                                                   |                            |                       |          |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-----------------------|----------|--|--|--|--|--|--|--|
| No.  | Name of the<br>hurricane                                                                                 | Place(s) in which it hit ground <sup>a</sup>                                                                         | Date of occurrence                                | Maximum<br>speed<br>(km/h) | Category <sup>b</sup> | Costa    |  |  |  |  |  |  |  |
| 6    | Madeline                                                                                                 | B. Petacalco, Guerrero                                                                                               | Sep 28 <sup>th</sup> - Oct 8 <sup>th</sup> , 1976 | 230                        | H4                    | Pacific  |  |  |  |  |  |  |  |
| 7    | Anita                                                                                                    | La Pesca, Tamaulipas                                                                                                 | Aug 29 <sup>th</sup> - Sep 3 <sup>rd</sup> , 1977 | 280                        | H5                    | Atlantic |  |  |  |  |  |  |  |
| 8    | Allen                                                                                                    | Lauro Villar, Tamaulipas                                                                                             | Jul 31 <sup>st</sup> -Aug 11 <sup>th</sup> , 1980 | 185                        | HЗ                    | Atlantic |  |  |  |  |  |  |  |
| 9    | Tico                                                                                                     | Caimanero, Sinaloa                                                                                                   | Oct 11 <sup>th</sup> - 19 <sup>th</sup> , 1983    | 205                        | H3                    | Pacific  |  |  |  |  |  |  |  |
| 10   | Gilbert                                                                                                  | Puerto Morelos, Quintana Roo<br>[La Pesca, Tamaulipas]                                                               | Sep 8 <sup>th</sup> - 20 <sup>th</sup> , 1988     | 287[215]                   | H5 [H4]               | Atlantic |  |  |  |  |  |  |  |
| 11   | Kiko                                                                                                     | Los Muertos Bay, Baja California Sur                                                                                 | Aug 24 <sup>th</sup> - 29 <sup>th</sup> , 1989    | 195                        | H3                    | Pacific  |  |  |  |  |  |  |  |
| 12   | Roxanne                                                                                                  | Tulum, Quintana Roo<br>[Martinez de la Torre, Veracruz<br>de Ignacio de la Llave]<br>[Punta Canoas, Baja California] | Oct 8 <sup>th</sup> - 20 <sup>th</sup> , 1995     | 185 [45]                   | H3 [TD]               | Atlantic |  |  |  |  |  |  |  |
| 13   | Pauline                                                                                                  | Puerto Angel, Oaxaca<br>[Acapulco, Guerrero]                                                                         | Oct 6 <sup>th</sup> - 10 <sup>th</sup> , 1997     | 195 [165]                  | H3 [H2]               | Pacific  |  |  |  |  |  |  |  |
| 14   | Isidore                                                                                                  | Telchac Puerto, Yucatan                                                                                              | Sep 14 <sup>th</sup> - 26 <sup>th</sup> , 2002    | 205                        | H3                    | Atlantic |  |  |  |  |  |  |  |
| 15   | Kenna                                                                                                    | San Blas, Nayarit                                                                                                    | Oct 21 <sup>st</sup> - 25 <sup>th</sup> , 2002    | 230                        | H4                    | Pacific  |  |  |  |  |  |  |  |
| 16   | Emily                                                                                                    | 20 km North of Tulum, Quintana Roo<br>[El Mezquite, Tamaulipas]                                                      | Jul 10 <sup>th</sup> - 21 <sup>st</sup> , 2005    | 215                        | H4 [H3]               | Atlantic |  |  |  |  |  |  |  |
| 17   | Wilma                                                                                                    | Isla Cozumel<br>[Puerto Morelos, Quintana Roo]                                                                       | Oct 15 <sup>th</sup> - 25 <sup>th</sup> , 2005    | 230[220]                   | H4                    | Atlantic |  |  |  |  |  |  |  |
| 18   | Lane                                                                                                     | Cruz de Elota, Sinaloa                                                                                               | Sep 13 <sup>th</sup> - 17 <sup>th</sup> , 2006    | 205                        | НЗ                    | Pacific  |  |  |  |  |  |  |  |
| 19   | Dean                                                                                                     | Puerto Bravo, Quintana Roo<br>[Tecolutla, Veracruz de Ignacio<br>de la Llave]                                        | Aug 13 <sup>th</sup> - 23 <sup>th</sup> , 2007    | 260 [155]                  | H5 [H2]               | Atlantic |  |  |  |  |  |  |  |

NOTE: <sup>a</sup> When the hurricane hit ground in two places, the second is indicated in brackets.

<sup>b</sup> Categories:

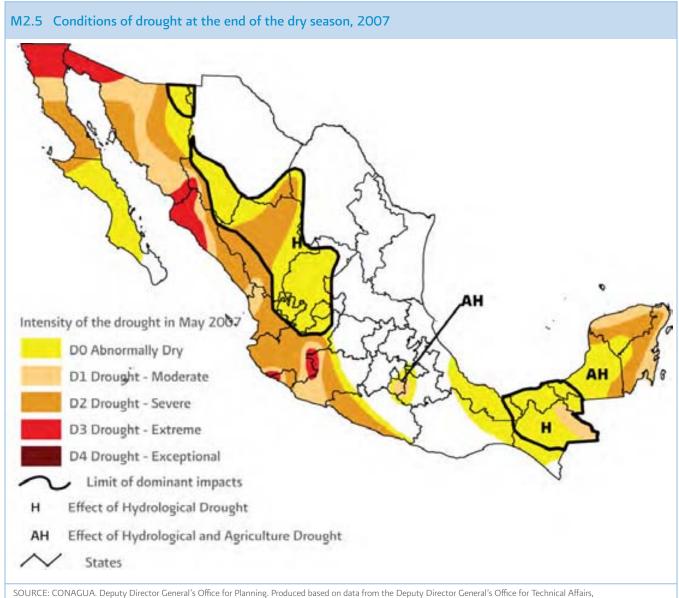
TD= Tropical depression (a tropical cyclone in which the mean maximum surface wind is 62 km/h or less).

TS= Tropical storm (a well-organized tropical cyclone with a hot core in which the mean maximum surface wind is between 63 km/h and 117 km/h).

H= Hurricane (a tropical cyclone with a hot core in which the mean maximum surface wind is 118 km/h or more).

The Saffir / Simpson Hurricane Scale, according to the wind speed in  ${\rm km/h:}$ 

| Hl | 119 to 153    |
|----|---------------|
| HZ | 154 to 177    |
| Н3 | 178 to 209    |
| H4 | 210 to 250    |
| H5 | More than 250 |


SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs, General Coordination of the National Meteorological Service. National Weather Service of the United States of America. www.nhc.noaa.gov/aboutsshs.shtml. June 2007.

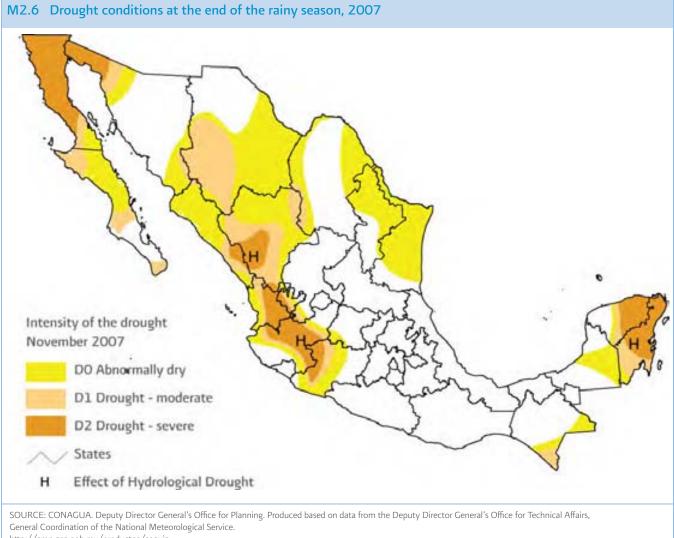
### Droughts

August 2007 was warmer than normal, with an average temperature of 24.2 °C, whereas the normal temperature is 23.5 °C. Nationwide, the precipitation in May was 38.8 millimeters, slightly below the climato-logical average which is 40.2 millimeters. The National Meteorological Service (NMS) ranked May 2007 as the 37<sup>th</sup> wettest month since 1941.

The maximum average temperatures showed that May was 32.2 °C on average. The maximum average temperatures extended over the northwest of Sonora, the states of the Eastern Sierra Madre mountain range, affecting the northwest of Chihuahua, Sinaloa and a part of the west side of Durango, Nayarit, Guanajuato, Michoacan, Guerrero, Oaxaca and Chiapas.

Conditions of extreme drought (D3) and severe drought (D2) spread through the northwest and west of Mexico in May, in response to the persistent drought conditions that developed the previous November. The above-average temperatures in this region exacerbated the drought conditions, despite the reserve levels remaining higher than the previous year (2006). The severe drought (D2) and extreme drought conditions




SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs General Coordination of the National Meteorological Service. http://smn.cna.gob.mx/productos/sequia also intensified in Guerrero, Michoacan and Jalisco as a result of a very dry period from November to May with a warm climate at the end of spring.

In April 2007, abnormally dry drought conditions (DO) were observed in Veracruz and moderate drought conditions (D1) spread through Tabasco and Chiapas. The maximum conditions of severe drought (D2) to moderate drought (D0) were observed in the Yucatan peninsula in the middle of May, but the strong rainfall at the end of the month began to invert the drought that had intensified since the last rainfall.

In November 2007, the country's average precipitation was 23.9 millimeters, 24% below the climatological average. The National Meteorological Service classified this month as the 17<sup>th</sup> driest November in the period 1941-2006. The states with rainfall above the climatological average were: Baja California Sur, Sonora, Baja California, Chihuahua, Veracruz de Ignacio de la Llave and Quintana Roo. The rest of the country registered rainfall below the normal level, in particular: Morelos, Guerrero, Colima, Nayarit, Aguascalientes, Oaxaca, Campeche and Chiapas.

In the south of the Baja California peninsula and in some regions of the northwest of Sonora, the drought conditions diminished compared to the previous month. However, a new area classified as D1 was registered in the extreme south of the peninsula.

The areas of DO drought in the northeast region of



http://smn.cna.gob.mx/productos/sequia

Mexico increased, especially in the states of Coahuila, Nuevo Leon and Tamaulipas. The classification (D1) remains strong in Chihuahua, Sinaloa, Durango, Nayarit, Zacatecas, Jalisco and Michoacan.

In the southeast of the country, a new region with a classification of DO-D1 developed, in the south and east of Chiapas, as well as a new area (DO) in the territory of Campeche. To the east of the Yucatan peninsula, the moderate drought conditions deteriorated to the classification of severe (D1-D2).

The aforementioned is based on the North American Drought Monitor (NADM), which is drawn up monthly between Mexico, Canada and the United States of America.

### 2.4 Surface water

#### **Rivers**

Mexico's rivers and streams constitute a hydrographic network of 633 thousand kilometers, in which 50 main rivers stand out since 87% of the country's surface runoff flows through them, and their catchments cover 65% of the country's mainland surface area.

Two thirds of the surface runoff belongs to seven rivers: Grijalva-Usumacinta, Papaloapan, Coatzacoalcos, Balsas, Panuco, Santiago and Tonala. The surface area of their catchments represents 22% of the country's surface. The Balsas and Santiago flow into the Pacific Ocean and the other five flow into the Gulf of Mexico. For the surface they cover, the catchments of the



Grande and Balsas rivers stand out, and for their length, the Grande and Grijalva-Usumacinta rivers. The Lerma, Nazas and Aguanaval are inland rivers. In the following map, the most important data on the country's rivers is presented, according to the water body into which they flow:

|       | River                 | River Hydrological-Administrative Region |                           | Mean natural<br>surface runoff <sup>a</sup> | Area of the catchment | Length of the river | Maximum<br>order |
|-------|-----------------------|------------------------------------------|---------------------------|---------------------------------------------|-----------------------|---------------------|------------------|
|       |                       |                                          | Region                    | (millions of cubic<br>meters/year)          | (km <sup>2</sup> )    | (km)                | order            |
| 1     | Balsas                | IV                                       | Balsas                    | 16 587                                      | 117 406               | 770                 | 7                |
| Z     | Santiago              | VIII                                     | Lerma-Santiago-Pacific    | 7 849                                       | 76 416                | 562                 | 7                |
| 3     | Verde                 | V                                        | South Pacific             | 5 937                                       | 18 812                | 342                 | 6                |
| 4     | Ometepec              | V                                        | South Pacific             | 5 779                                       | 6 922                 | 115                 | 4                |
| 5     | Fuerte                | 111                                      | North Pacific             | 5 176                                       | 33 590                | 540                 | 6                |
| 6     | Papagayo              | V                                        | South Pacific             | 4 237                                       | 7 410                 | 140                 | 6                |
| 7     | San Pedro             | 111                                      | North Pacific             | 3 417                                       | 26 480                | 255                 | 6                |
| 8     | Yaqui                 | П                                        | Northwest                 | 3 163                                       | 72 540                | 410                 | б                |
| 9     | Culiacan              | 111                                      | North Pacific             | 3 161                                       | 15 731                | 875                 | 5                |
| 10    | Suchiate <sup>b</sup> | XI                                       | Southern Border           | 2 737                                       | 203                   | 75                  | 2                |
| 11    | Ameca                 | VIII                                     | Lerma-Santiago-Pacific    | 2 236                                       | 12 214                | 205                 | 5                |
| 12    | Sinaloa               | 111                                      | North Pacific             | 2 126                                       | 12 260                | 400                 | 5                |
| 13    | Armeria               | VIII                                     | Lerma-Santiago-Pacific    | 2 015                                       | 9 795                 | 240                 | 5                |
| 14    | Coahuayana            | VIII                                     | Lerma-Santiago-Pacific    | 1867                                        | 7 114                 | 203                 | 5                |
| 15    | Colorado <sup>b</sup> | I                                        | Baja California Peninsula | 1863                                        | 3 840                 | 160                 | 6                |
| 16    | Baluarte              | 111                                      | North Pacific             | 1838                                        | 5 094                 | 142                 | 5                |
| 17    | San Lorenzo           | 111                                      | North Pacific             | 1 680                                       | 8 919                 | 315                 | 5                |
| 18    | Acaponeta             | 111                                      | North Pacific             | 1 438                                       | 5 092                 | 233                 | 5                |
| 19    | Piaxtla               | 111                                      | North Pacific             | 1 415                                       | 11 473                | 220                 | 5                |
| 20    | Presidio              | 111                                      | North Pacific             | 1 250                                       | 6 479                 | NA                  | 4                |
| 21    | Mayo                  | П                                        | Northwest                 | 1 232                                       | 15 113                | 386                 | 5                |
| 22    | Tehuantepec           | V                                        | South Pacific             | 950                                         | 10 090                | 240                 | 5                |
| 23    | Coatan <sup>b</sup>   | XI                                       | Southern Border           | 751                                         | 605                   | 75                  | 3                |
| 24    | Tomatlan              | VIII                                     | Lerma-Santiago-Pacific    | 668                                         | 2 118                 | NA                  | 4                |
| 25    | Marabasco             | VIII                                     | Lerma-Santiago-Pacific    | 648                                         | 2 526                 | NA                  | 5                |
| 26    | San Nicolas           | VIII                                     | Lerma-Santiago-Pacific    | 543                                         | 2 330                 | NA                  | 5                |
| 27    | Elota                 | 111                                      | North Pacific             | 506                                         | 2 324                 | NA                  | 4                |
| 28    | Sonora                | П                                        | Northwest                 | 408                                         | 27 740                | 421                 | 5                |
| 29    | Concepcion            | П                                        | Northwest                 | 123                                         | 25 808                | 335                 | 2                |
| 30    | Matape                | II                                       | Northwest                 | 90                                          | 6 606                 | 205                 | 4                |
| 31    | Tijuana <sup>b</sup>  | I                                        | Baja California Peninsula | 78                                          | 3 203                 | 143                 | 4                |
| 32    | Sonoyta               | П                                        | Northwest                 | 16                                          | 7 653                 | 311                 | 5                |
| Total |                       |                                          |                           | 81 781                                      | 563 906               | 8 318               |                  |

NOTES: 1 hm<sup>3</sup> = 1 million cubic meters

<sup>a</sup> The data on mean natural surface runoff represent the mean annual value of their historical registry and include the runoff of the transboundary catchments. <sup>b</sup> The mean natural surface runoff of this river includes imports from other countries. The area and length of the catchment refer only to the Mexican part. NA: Not available.

Order determined according to the Strahler method.

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

| No.   | River                            | Hyd | rological-Administrative<br>Region | Mean natural<br>surface runoff <sup>a</sup><br>(millions of cubic<br>meters/year) | Area of the<br>catchment<br>(km <sup>2</sup> ) | Length of the<br>river<br>(km) | Maximum<br>order |
|-------|----------------------------------|-----|------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|------------------|
| 33    | Grijalva-Usumacinta <sup>b</sup> | XI  | Southern Border                    | 115 536                                                                           | 83 553                                         | 1 521                          | 7                |
| 34    | Papaloapan                       | Х   | Central Gulf                       | 44 662                                                                            | 46 517                                         | 354                            | 6                |
| 35    | Coatzacoalcos                    | Х   | Central Gulf                       | 28 093                                                                            | 17 369                                         | 325                            | 5                |
| 36    | Panuco                           | IX  | Northern Gulf                      | 20 330                                                                            | 84 956                                         | 510                            | 7                |
| 37    | Tonala                           | XI  | Southern Border                    | 11 389                                                                            | 5 679                                          | 82                             | 5                |
| 38    | Tecolutla                        | Х   | Central Gulf                       | 6 095                                                                             | 7 903                                          | 375                            | 5                |
| 39    | Bravo <sup>b,c</sup>             | VI  | Rio Bravo                          | 5 588                                                                             | 226 280                                        | 2018                           | 7                |
| 40    | Jamapa                           | Х   | Central Gulf                       | 2 563                                                                             | 4061                                           | 368                            | 4                |
| 41    | Nautla                           | Х   | Central Gulf                       | 2 217                                                                             | 2 785                                          | 124                            | 4                |
| 42    | La Antigua                       | Х   | Central Gulf                       | 2 139                                                                             | 2 827                                          | 139                            | 5                |
| 43    | Soto La Marina                   | IX  | Northern Gulf                      | 2 086                                                                             | 21 183                                         | 416                            | 6                |
| 44    | Tuxpan                           | Х   | Central Gulf                       | 2 076                                                                             | 5 899                                          | 150                            | 4                |
| 45    | Candelaria                       | XII | Yucatan Peninsula                  | 2 011                                                                             | 13 790                                         | 150                            | 4                |
| 46    | Cazones                          | Х   | Central Gulf                       | 1712                                                                              | 2 688                                          | 145                            | 4                |
| 47    | San Fernando                     | IX  | Northern Gulf                      | 1 545                                                                             | 17 744                                         | 400                            | 5                |
| 48    | Hondo                            | XII | Yucatan Peninsula                  | 533                                                                               | 7 614                                          | 115                            | 4                |
| Total |                                  |     |                                    | 248 572                                                                           | 550 848                                        | 7 192                          |                  |

### T.2.8. Characteristics of the main rivers that flow into the Gulf of Mexico and Caribbean Sea, ordered by their mean natural surface runoff

NOTES: <sup>a</sup> The data on mean natural surface runoff represent the mean annual value of their historical registry.

<sup>b</sup> The mean natural surface runoff of this river includes imports from other countries. The area and length of the catchment refer only to the Mexican part.

<sup>c</sup> Length of the border between Mexico and the United States of America.

Order determined according to the Strahler method.

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

### T2.9 Characteristics of the main inland rivers, ordered by the mean natural surface runoff

| No.   | River              | Hydrological-Administrative<br>Region        | Mean natural<br>surface runoff <sup>a</sup><br>(millions of cubic<br>meters/year) | Area of the<br>catchment<br>(km²) | Length of the<br>river<br>(km) | Maximum<br>order |
|-------|--------------------|----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------|
| 49    | Lerma <sup>b</sup> | VIII Lerma-Santiago-Pacific                  | 4 742                                                                             | 47 116                            | 708                            | 6                |
| 50    | Nazas-Aguanaval    | VII Central Basins of the North              | 1 912                                                                             | 89 239                            | 1081                           | 7                |
| Total |                    |                                              | 6 654                                                                             | 136 355                           | 1 789                          |                  |
|       |                    | where would concern the mapping applied with |                                                                                   |                                   |                                |                  |

NOTES: " The data on mean natural surface runoff represent the mean annual value of their historical registry.

<sup>b</sup> This river is considered an inland river because it flows into Lake Chapala.

Order determined according to the Strahler method.

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

## Mexico's transboundary catchments or river basins

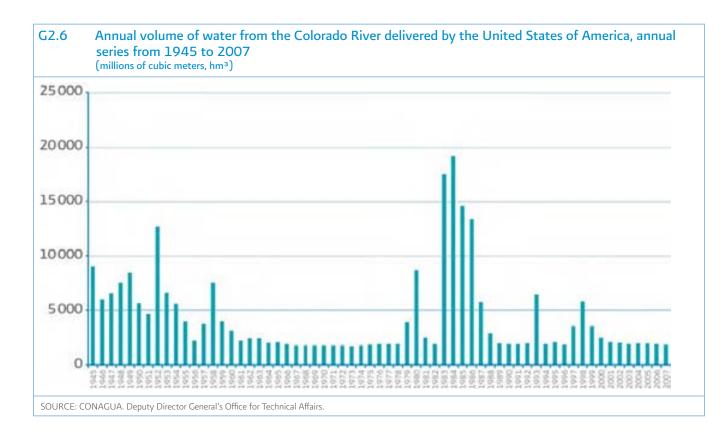
Mexico shares eight catchments in total with its neighboring countries: three with the United States of America (Grande, Colorado and Tijuana), four with Guatemala (Grijalva-Usumacinta, Suchiate, Coatan and Candelaria) and one with both Belize and Guatemala (River Hondo).

| T2.10 | 0 Characteristics of the rivers with transboundary catchments, by Hydrological-Administrative Region |                                       |            |                                                                      |                                                |                                |  |  |  |
|-------|------------------------------------------------------------------------------------------------------|---------------------------------------|------------|----------------------------------------------------------------------|------------------------------------------------|--------------------------------|--|--|--|
| No.   | River                                                                                                | Hydrological-Administrative<br>Region | Country    | Mean natural<br>surface runoff<br>(millions of cubic<br>meters/year) | Area of the<br>catchment<br>(km <sup>2</sup> ) | Length<br>of the river<br>(km) |  |  |  |
|       |                                                                                                      |                                       | Mexico     | 5 588                                                                | 225 242                                        | NA                             |  |  |  |
| 1     | Grande                                                                                               | VI Rio Bravo                          | USA        | 502                                                                  | 241 697                                        | 1074                           |  |  |  |
|       |                                                                                                      |                                       | Binational | NA                                                                   | NA                                             | 2 034                          |  |  |  |
|       |                                                                                                      | rado I Baja California Peninsula      | Mexico     | 13                                                                   | 10 029                                         | 160                            |  |  |  |
| 2     | Colorado                                                                                             |                                       | USA        | 18 500                                                               | 616 771                                        | 2 063                          |  |  |  |
|       |                                                                                                      |                                       | Binational | NA                                                                   | NA                                             | 29                             |  |  |  |
| 3     | Tiluana                                                                                              | L Deie Celifernie Deningule           | Mexico     | 78                                                                   | 3 203                                          | 143                            |  |  |  |
| 2     | Tijuana                                                                                              | I Baja California Peninsula           | USA        | 92                                                                   | 1 221                                          | 9                              |  |  |  |
| 4     | Grijalva-Usumacinta                                                                                  | XI Southern Border                    | Mexico     | 71 716                                                               | 83 553                                         | 1 521                          |  |  |  |
| 4     | Gijaiva-Osumacinta                                                                                   | XI Southern Border                    | Guatemala  | 43 820                                                               | 44 837                                         | 390                            |  |  |  |
| 5     | Suchiate                                                                                             | XI Southern Border                    | Mexico     | 184                                                                  | 203                                            | 75ª                            |  |  |  |
| ر ر   | Suchate                                                                                              | XI Southern border                    | Guatemala  | 2 553                                                                | 1084                                           | 60                             |  |  |  |
| 6     | Coatan                                                                                               | XI Southern Border                    | Mexico     | 354                                                                  | 605                                            | 75                             |  |  |  |
| U     | Coatan                                                                                               | XI Soutien bolder                     | Guatemala  | 397                                                                  | 280                                            | 12                             |  |  |  |
| 7     | Candelaria                                                                                           | XII Yucatan Peninsula                 | Mexico     | 1 750                                                                | 13 790                                         | 150                            |  |  |  |
| ,     | canaciana                                                                                            |                                       | Guatemala  | 261                                                                  | 1 558                                          | 8                              |  |  |  |
|       |                                                                                                      |                                       | Mexico     | 533                                                                  | 7 614                                          | 115 <sup>b</sup>               |  |  |  |
| 8     | Hondo                                                                                                | XII Yucatan Peninsula                 | Guatemala  | NA                                                                   | 2 873                                          | 45                             |  |  |  |
|       |                                                                                                      |                                       | Belize     | NA                                                                   | 2 978                                          | 16                             |  |  |  |

NOTAS: 1 hm<sup>3</sup> = 1 million cubic meters

<sup>a</sup> The 75 km belong to the border between Mexico and Guatemala

<sup>b</sup> The 115 km belong to the border between Mexico and Belize


SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

The waters of the Grande, Colorado and Tijuana rivers are shared according to the indications of the Treaty on the Distribution of International Waters between the United Mexican States and the United States of America, signed in Washington, D.C. on February 3<sup>rd</sup>, 1944.

In the case of the Colorado River, the Treaty specifies that the United States of America must deliver 1 850.2 million cubic meters (1.5 million AF) each year to Mexico.



NA = Not Applicable



As regards the Tijuana River, the Treaty only establishes that both countries, through the International Boundary and Water Commission (IBWC), will make recommendations for the equitable distribution of its waters, will draw up projects for storage infrastructure and flood control, will estimate the costs and build the infrastructure that is agreed upon, sharing the construction and operation costs equitably.

As regards the Rio Grande (referred to in Mexico as the Rio Bravo), the distribution of its waters, shown in table T2.11, is established in the Treaty.

In the Treaty, three criteria are established regarding the six Mexican channels previously referred to, which should be mentioned:

1. The volume that Mexico must provide to the United States of America, as part of the third of the volume in the six aforementioned Mexican channels, shall not be greater on the whole, on average and in consecutive five-year cycles than 2 158.6 hm<sup>3</sup> (1 750 000 AF), the equivalent of supplying a minimum volume of 431.72 hm<sup>3</sup> (350 000 AF) each year during the five-year cycle.

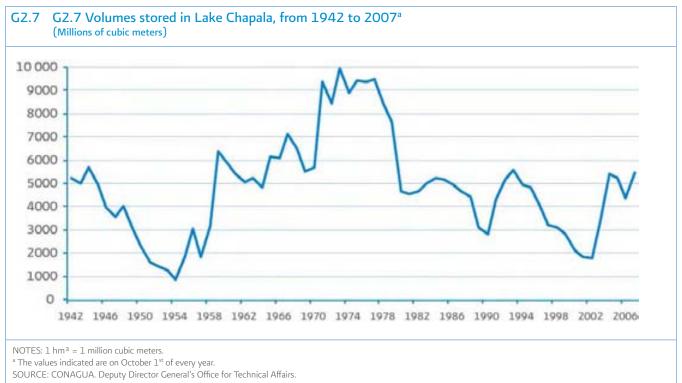
| T2.11 Distribution of the Rio Grande's waters                                                                                                                                                                                   |                                                                                                                                                                                                                                |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The United Mexican<br>States' share                                                                                                                                                                                             | The United States of America's share                                                                                                                                                                                           |  |  |  |  |  |
| • The total of the runoff of the<br>Alamo and San Juan rivers.                                                                                                                                                                  | • The total of the runoff from<br>the Pecos and Devils riv-<br>ers, from the Goodenough<br>spring and from the Alamito,<br>Terlingua, San Felipe and Pinto<br>streams.                                                         |  |  |  |  |  |
| • Two thirds of the water that<br>enters the mainstream of the<br>Rio Grande from the following<br>six Mexican channels: the Con-<br>chos, San Diego, San Rodrigo,<br>Escondido and Salado rivers,<br>and the Las Vacas stream. | • One third of the water that<br>enters the mainstream of the<br>Rio Grande from the following<br>six Mexican channels: the Con-<br>chos, San Diego, San Rodrigo,<br>Escondido and Salado rivers,<br>and the Las Vacas stream. |  |  |  |  |  |
| • One half of the runoff not<br>assigned in the Treaty that<br>reaches the main channel,<br>between Fort Quitman and<br>Falcon.                                                                                                 | • One half of the runoff not<br>assigned in the Treaty that<br>reaches the main channel,<br>between Fort Quitman and<br>Falcon.                                                                                                |  |  |  |  |  |
| • One half of the runoff of the<br>Rio Grande watershed, down-<br>stream from Falcon.                                                                                                                                           | • One half of the runoff of the<br>Rio Grande watershed, down-<br>stream from Falcon.                                                                                                                                          |  |  |  |  |  |

2. In cases of extraordinary drought or a serious accident in the hydraulic systems of the Mexican tributaries that might make it difficult for Mexico to allow the 431.72 hm<sup>3</sup> to flow, the remaining flow that exists at the end of the five-year cycle will be added to the following cycle with water from the same tributaries.

3. In the event that the United States of America's assigned capacity in the international dams shared by both countries (La Amistad and Falcon) is covered, the five-year cycle is considered finished and all volumes not yet delivered will be totally covered, a new cycle starting from that point.

| T2.12 Capacities assigned in the international dams, 2007<br>(millions of cubic meters, hm <sup>3</sup> ) |       |       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------|-------|--|--|--|--|--|
| Country La Amistad Falcon                                                                                 |       |       |  |  |  |  |  |
| Mexico                                                                                                    | 1 703 | 1 355 |  |  |  |  |  |
| United States of America 2 185 1 918                                                                      |       |       |  |  |  |  |  |
| SOURCE: CONAGUA. Coordination of Advisors of the Director General's Office.                               |       |       |  |  |  |  |  |






## Mexico's Main Lakes

Lake Chapala is the biggest inner lake in Mexico. It has an extension of 1116 km<sup>2</sup> and has an average depth of between 4 and 6 m.

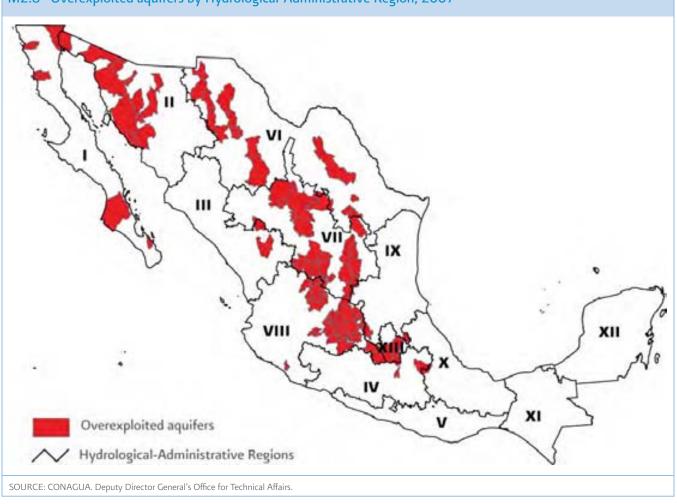
| T2.13 | T2.13 Area and storage volume of Mexico's main lakes, by Hydrological-Administrative Region and state, 2007 |                                                |                              |                                     |                                 |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|-------------------------------------|---------------------------------|--|--|--|
| No.   | Lake                                                                                                        | Area of the<br>catchment<br>(km <sup>2</sup> ) | Storage<br>capacity<br>(hm³) | Hydrological-Administrative Region  | State(s)                        |  |  |  |
| 1     | Chapala                                                                                                     | 1 116                                          | 8 126                        | VIII Lerma-Santiago-Pacific         | Jalisco and Michoacan de Ocampo |  |  |  |
| Z     | Cuitzeo                                                                                                     | 306                                            | 920ª                         | VIII Lerma-Santiago-Pacific         | Michoacan de Ocampo             |  |  |  |
| 3     | Patzcuaro                                                                                                   | 97                                             | 550ª                         | VIII Lerma-Santiago-Pacific         | Michoacan de Ocampo             |  |  |  |
| 4     | Yuriria                                                                                                     | 80                                             | 188                          | VIII Lerma-Santiago-Pacific         | Guanajuato                      |  |  |  |
| 5     | Catemaco                                                                                                    | 75                                             | 454                          | X Central Gulf                      | Veracruz de Ignacio de la Llave |  |  |  |
| 6     | Tequesquitengo                                                                                              | 8                                              | 160ª                         | IV Balsas                           | Morelos                         |  |  |  |
| 7     | Nabor Carrillo                                                                                              | 10                                             | 12ª                          | XIII Waters of the Valley of Mexico | State of Mexico                 |  |  |  |
| 7     | Nabor Carrillo                                                                                              |                                                | 12ª                          | XIII Waters of the Valley of Mexico |                                 |  |  |  |

NOTE: <sup>a</sup> The data refers to the mean volume stored; no updated studies exist on their storage capacity. SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.



## 2.5 Groundwater

The importance of groundwater is manifest due to the magnitude of the volume employed by the main users; close to 37% (28.9 hm<sup>3</sup>/year) of the total volume assigned for offstream uses is from groundwater sources. For the purpose of groundwater management, the country has been divided into 653 aquifers, the official names of which were published in the Official Government Gazette on December 5<sup>th</sup>, 2001. At the time of closing this edition, the availability of groundwater in 282 aquifers had been published in the Official Government Gazette. This information may be found in the compact disk that accompanies this edition.


## **Overexploitation of aquifers**

From the 1970s onwards, the number of overexploited aquifers has been growing steadily, from 32 in 1975, 36 in 1981, 80 in 1985, 97 in 2001, 102 in 2003 and 104 in 2006. However, in 2007 this number was reduced to 101. From these aquifers 58% of groundwater is extracted for all uses.

## T2.14 Mexico's aquifers, by Hydrological-Administrative Region, 2007

|                                     | Number of aquifers |               |                             |                                                                                           |                              |  |
|-------------------------------------|--------------------|---------------|-----------------------------|-------------------------------------------------------------------------------------------|------------------------------|--|
| Hydrological-Administrative Region  | Total              | Overexploited | With saltwater<br>intrusion | Suffering from<br>the phenomenon<br>of soil saliniza-<br>tion and brackish<br>groundwater | Average<br>recharge<br>(hm³) |  |
| I Baja California Peninsula         | 87                 | 7             | 9                           | 4                                                                                         | 1 249                        |  |
| II Northwest                        | 63                 | 13            | 5                           | 0                                                                                         | 3 130                        |  |
| III Northern Pacific                | 24                 | 2             | 0                           | 0                                                                                         | 3 263                        |  |
| IV Balsas                           | 46                 | 2             | 0                           | 0                                                                                         | 4 601                        |  |
| V Southern Pacific                  | 35                 | 0             | 0                           | 0                                                                                         | 1 994                        |  |
| VI Rio Bravo                        | 100                | 15            | 0                           | 4                                                                                         | 5 167                        |  |
| VII Central Basins of the North     | 68                 | 24            | 0                           | 8                                                                                         | 2 274                        |  |
| VIII Lerma-Santiago-Pacific         | 127                | 32            | 1                           | 0                                                                                         | 7 686                        |  |
| IX Northern Gulf                    | 40                 | 2             | 0                           | 0                                                                                         | 1 274                        |  |
| X Central Gulf                      | 22                 | 0             | Z                           | 0                                                                                         | 3 849                        |  |
| XI Southern Border                  | 23                 | 0             | 0                           | 0                                                                                         | 18 015                       |  |
| XII Yucatan Peninsula               | 4                  | 0             | 0                           | 1                                                                                         | 25 316                       |  |
| XIII Waters of the Valley of Mexico | 14                 | 4             | 0                           | 0                                                                                         | 1834                         |  |
| Total                               | 653                | 101           | 17                          | 17                                                                                        | 79 651                       |  |

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.



M2.8 Overexploited aquifers by Hydrological-Administrative Region, 2007

To consult more detailed information on Mexico's overexploited aquifers, we recommend you read Annex D of the compact disk which accompanies this edition.

# Aquifers with saltwater intrusion and/or suffering from the phenomenon of soil salinization and brackish groundwater

Saltwater intrusion is understood as the phenomenon in which seawater is introduced by the subsoil into the inner continent, causing the salinization of the groundwater; this occurs when the withdrawal of water causes the groundwater level to fall below sea level, thus altering the dynamic natural balance between seawater and freshwater.

The phenomenon of soil salinization and brackish groundwater are factors that affect groundwater; the former by causing the recharge with saltwater and the latter by inducing the transport of connate saltwater.

There are 17 aquifers in Mexico with problems of saltwater intrusion, situated in the states of Baja California, Baja California Sur, Colima, Sonora and Veracruz de Ignacio de la Llave. Among these are Maneadero and San Quintin in Baja California, Santo Domingo in Baja California Sur, Caborca, Hermosillo Coast, Guaymas Valley and San Jose de Guaymas in Sonora.

## 2.6 Water Quality

## Monitoring of water quality

In 2007, the National Monitoring Network had 1 014 sites, distributed throughout the country as described in the following table:

| T2.15 Sites of the National Monitoring Network,<br>2007                  |                |                   |  |  |  |
|--------------------------------------------------------------------------|----------------|-------------------|--|--|--|
| Network                                                                  | Area           | Sites<br>(number) |  |  |  |
|                                                                          | Surface bodies | 207               |  |  |  |
| Primary Network                                                          | Coastal zones  | 52                |  |  |  |
|                                                                          | Groundwater    | 130               |  |  |  |
| Secondary Network                                                        | Surface bodies | 241               |  |  |  |
|                                                                          | Coastal zones  | 19                |  |  |  |
|                                                                          | Groundwater    | 25                |  |  |  |
|                                                                          | Surface bodies | 81                |  |  |  |
| Special Studies                                                          | Coastal zones  | 47                |  |  |  |
|                                                                          | Groundwater    | 123               |  |  |  |
| Groundwater<br>Reference Network                                         |                | 89                |  |  |  |
| Total 1014                                                               |                |                   |  |  |  |
| SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs. |                |                   |  |  |  |

The physio-chemical and biological determinations are carried out in the National Laboratory Network, which is made up of 13 laboratories in the River Basin Organizations, 17 in the local offices and one National Reference Laboratory in Mexico City.

In 2007, 191 surface water bodies were covered in 96 catchments, including 34 of the 50 water bodies of national importance, with fixed sites to evaluate the evolving trends in time (Primary Network).

In addition to the aforementioned physio-chemical and microbiological parameters, since 2005 biological monitoring has been carried out in some regions of the country, which allows water quality to be evaluated, using simple low-cost methods (the benthic organisms diversity index).

## T2.16 Samples for biological monitoring, by selected Hydrological-Administrative Region, 2007

| Hydrological-Administrative<br>Region                                    | No. of samples |  |  |  |  |
|--------------------------------------------------------------------------|----------------|--|--|--|--|
| IV Balsas                                                                | 14             |  |  |  |  |
| VII Central Basins of the North                                          | 30             |  |  |  |  |
| IX Northern Gulf                                                         | 1              |  |  |  |  |
| X Central Gulf                                                           | 9              |  |  |  |  |
| XI Southern Border                                                       | 1              |  |  |  |  |
| Total                                                                    | 55             |  |  |  |  |
| SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs. |                |  |  |  |  |

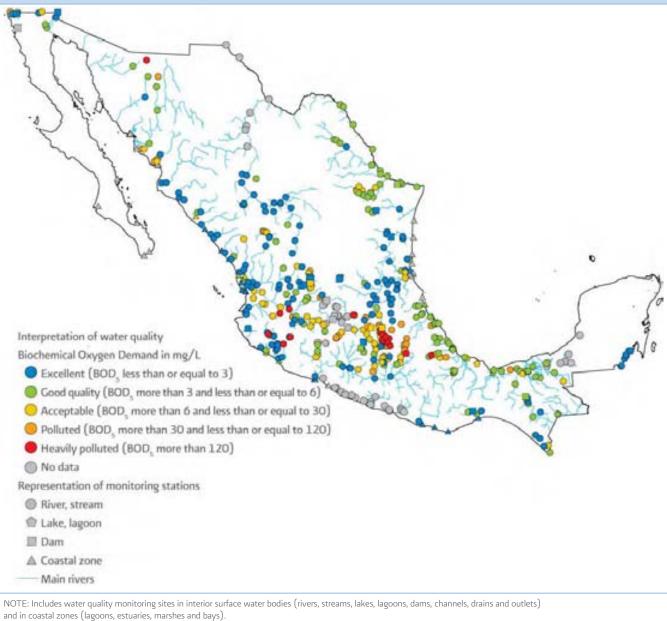
## **Evaluation of water quality**

The evaluation of water quality is carried out by using three indicators, five-day Biochemical Oxygen Demand ( $BOD_s$ ), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS). The  $BOD_s$  and COD are used to determine the quantity of organic matter present in water bodies, mainly from municipal and non-municipal wastewater discharges.

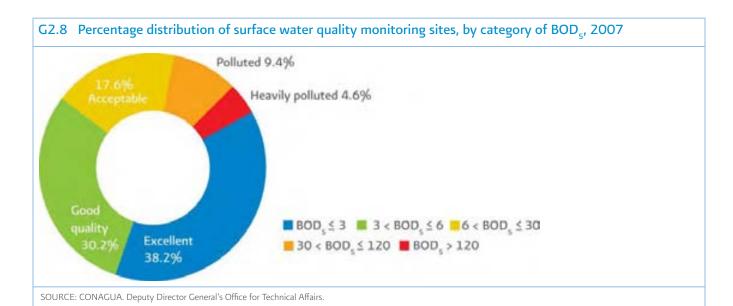
The  $BOD_5$  determines the quantity of biodegradable organic matter whereas the COD measures the total quantity of organic matter. The increase in the concentration of these parameters has an impact on the decrease of the dissolved oxygen content in the water bodies with the consequent affectation of aquatic ecosystems. Additionally, the increase in COD indicates the presence of substances coming from non-municipal discharges.

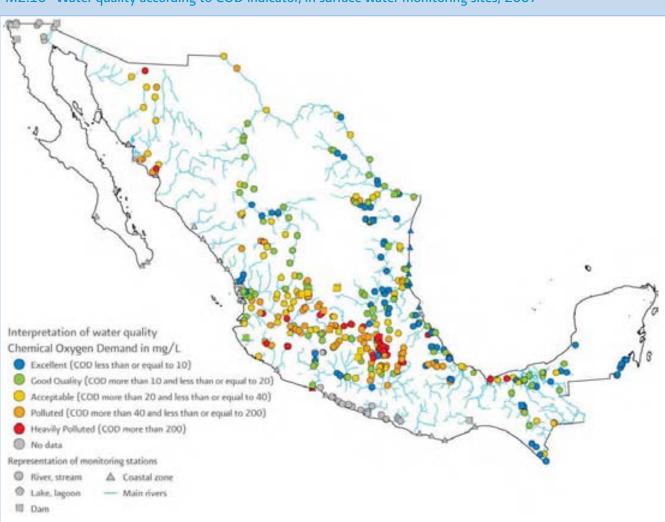
The TSS originate in wastewater and through soil erosion. The increase in the levels of TSS results in the water body losing its capacity to support the diversity of aquatic life. These parameters allow levels to be identified that vary from a relatively normal condition or with no influence of human activity, to water which shows significant signs of municipal and non-municipal wastewater discharges, as well as areas with severe deforestation.

It should be mentioned that the sites with water quality monitoring are situated in areas with a high anthropogenic influence.


| Criteria                   | Classification                                                                                                                                                                                    | Color  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                            | Biochemical Oxygen Demand (BOD <sub>5</sub> )                                                                                                                                                     |        |
| ng/L<br>SOD <sub>5</sub> 3 | Excellent<br>Not polluted                                                                                                                                                                         | Blue   |
| $< BOD_5 \le 6$            | Good quality<br>Surface water with a low content of biodegradable organic matter                                                                                                                  | Green  |
| < BOD <sub>5</sub> ≤ 30    | Acceptable<br>With some signs of pollution. Surface water with a capacity of self-purification or<br>with biologically treated wastewater discharges                                              | Yellow |
| $0 < BOD_{5} \leq 120$     | Polluted<br>Surface water with raw wastewater discharges, mainly of municipal origin                                                                                                              | Orange |
| OD <sub>5</sub> > 120      | Heavily polluted<br>Surface water with a strong impact of raw municipal and non-municipal<br>wastewater discharges                                                                                | Red    |
|                            | Chemical Oxygen Demand (COD)                                                                                                                                                                      |        |
| COD ≤ 10                   | Excellent<br>Not polluted                                                                                                                                                                         | Blue   |
| .0 < COD ≤ 20              | Good quality<br>Surface water with a low content of biodegradable and non-biodegradable<br>organic matter                                                                                         | Green  |
| $0 < COD \le 40$           | Acceptable<br>With some signs of pollution. Surface water with a self-purification capacity or<br>with biologically treated wastewater discharges                                                 | Yellow |
| 0 < COD ≤ 200              | Polluted<br>Surface water with raw wastewater discharges, mainly of municipal origin                                                                                                              | Orange |
| OD > 200                   | Heavily polluted<br>Surface water with a strong impact of raw municipal and non-municipal<br>wastewater discharges                                                                                | Red    |
|                            | Total Suspended Solids (TSS)                                                                                                                                                                      |        |
| SS ≤ 25                    | Excellent<br>Exceptional, very high quality                                                                                                                                                       | Blue   |
| 5 < TSS ≤ 75               | Good Quality<br>Surface water with a low suspended solids content, generally in natural<br>conditions. Favors the conservation of aquatic communities and unrestricted<br>agricultural irrigation | Green  |
| ′5 < TSS ≤ 150             | Acceptable<br>Surface water with some signs of pollution. With biologically treated wastewater<br>discharges. A regular condition for fish. Restricted agricultural irrigation                    | Yellow |
| 50 < TSS ≤ 400             | Polluted<br>Poor quality surface water with raw wastewater discharges. Water with a high<br>suspended material content                                                                            | Orange |
| 55 > 400                   | Heavily polluted<br>Surface water with a strong impact of raw municipal and non-municipal<br>wastewater discharges with a high polluting load. Poor conditions for fish                           | Red    |

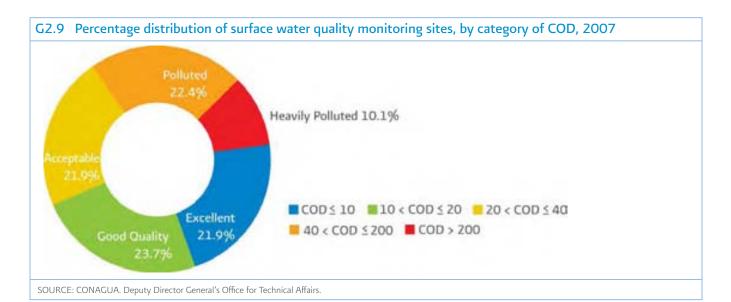
The evaluation of water quality in 2007 for these quality indicators was carried out at the sites mentioned in the following table:


## T2.18 Monitoring sites, for each water quality indicator, 2007


| Water quality indicator                                                                                                                                                     | Number of monitoring sites |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
| Five-day Biochemical Oxygen Demand (BOD <sub>5</sub> )                                                                                                                      | 437                        |  |  |  |  |
| Chemical Oxygen Demand (COD)                                                                                                                                                | 397                        |  |  |  |  |
| Total Suspended Solids (TSS)                                                                                                                                                | 501                        |  |  |  |  |
| NOTE: The total number of sites is 503; however, the stations without data were not considered.<br>SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs. |                            |  |  |  |  |

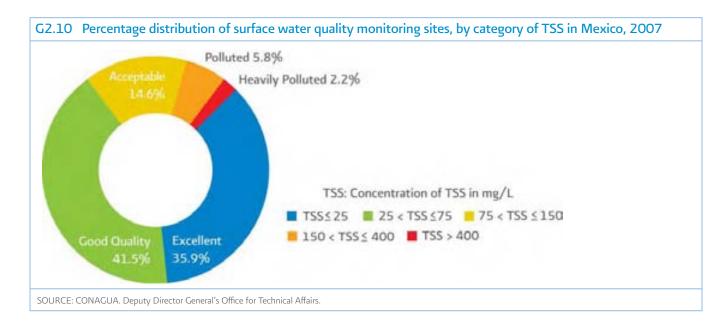




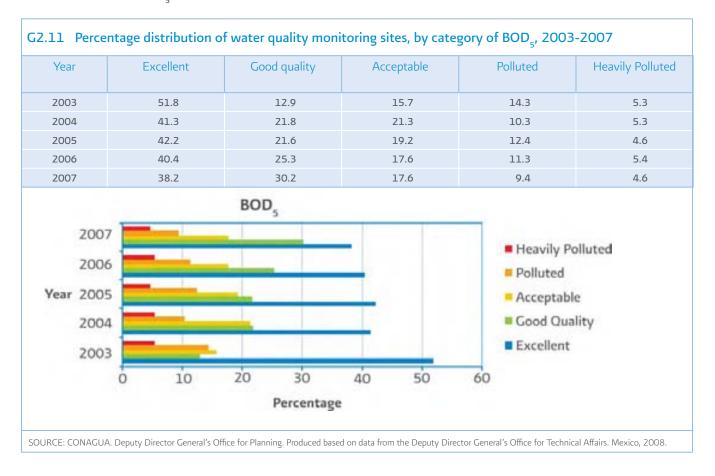

SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

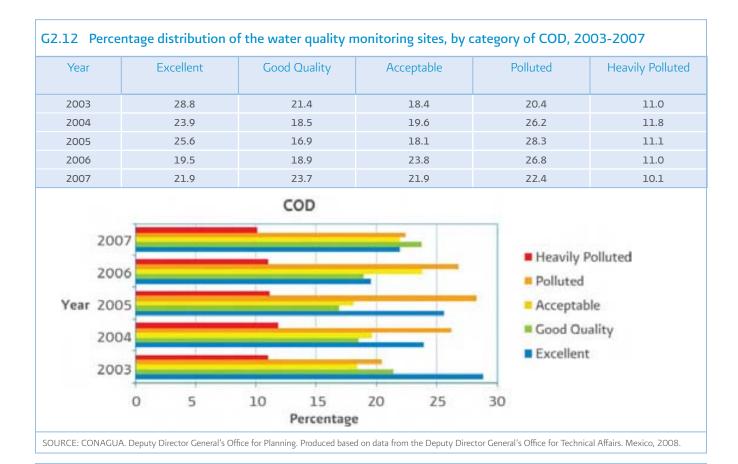


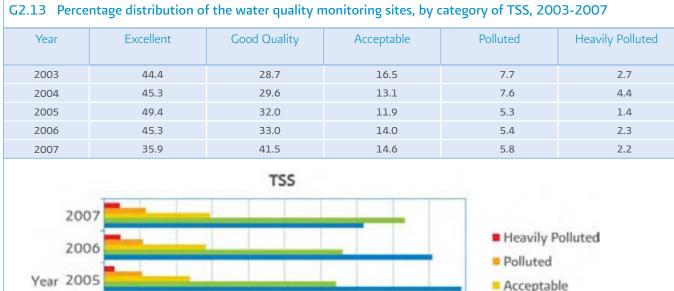


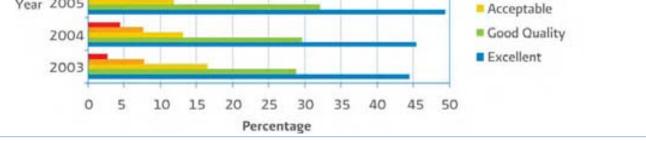

M2.10 Water quality according to COD indicator, in surface water monitoring sites, 2007

NOTE: Includes water quality monitoring sites in interior surface water bodies (rivers, streams, lakes, lagoons, dams, channels, drains and outlets) and in coastal zones (lagoons, estuaries, marshes and bays). SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.





SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.




The following graphic shows the trends in water quality as percentages in the period 2003-2007, based on three indicators,  $BOD_{r}$ , COD and TSS.









SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs. Mexico, 2008.

## Groundwater quality

One of the parameters that allows groundwater salinization to be evaluated is the total solids. According to its concentration, groundwater is classified as fresh (< 1,000 mg/L), lightly brackish (1,000-2,000 mg/L), brackish (2,000-10,000 mg/L) and salty (> 10,000 mg/L).

The limit between freshwater and lightly brackish coincides with the maximum concentration indicated by the modification of the Official Mexican Standard NOM-127-SSA1-1994, which "establishes the maximum permissible limits that should be adhered to for water for human consumption and treatment as regards water quality for human consumption".

## Water quality on beaches

Through the Clean Beach Program, the sanitation of beaches and the watersheds and aquifers associated with them is promoted. The finality of the program is to prevent and turn back the pollution of Mexico's beaches, respecting the native ecology, making them competitive and thus raising the quality and standard of living of the local population and increasing tourism.

For the development of the program, Beach Committees have been set up in various tourist destinations, which are headed by the President of the municipality in which the beach is found (in chapter 5, you will find a complete list of the Beach Committees set up). Additionally, in order to support the program, an interinstitutional group has been created, whose activities commenced in April 2006, and which is made up of staff from the SEMARNAT, PROFEPA, SEMAR, Sector, COFEPRIS and the CONAGUA.

In order to evaluate water quality on beaches, the values of the enterococcus faecalis indicator are determined. The qualification criteria are the following:

• Apt for recreational use: 0 or less than 500 MLN/100 mL.

- Not apt for recreational use:
- > 500 MLN/100 mL.

MLN; Most likely number of organisms or *entero*-coccus faecalis.





According to the Water Quality Monitoring Program on Beaches carried out by COFEPRIS, between 2003 and 2007, water quality on beaches improved, as shown in the following table:

| T2.19 Results of the water quality monitoring program on beaches, annual series from 2003 to 2007              |                   |              |      |      |      |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------|--------------|------|------|------|--|--|
| Year                                                                                                           | 2003              | 2004         | 2005 | 2006 | 2007 |  |  |
| Number of tourist destinations                                                                                 | 35                | 37           | 44   | 45   | 46   |  |  |
| Number of beaches                                                                                              | 226               | 209          | 259  | 274  | 276  |  |  |
| Number of coastal states                                                                                       | 17                | 17           | 17   | 17   | 17   |  |  |
| Samples that comply with quality criteria (%)         93.7         94.5         96.5         96.2         98.4 |                   |              |      |      |      |  |  |
| SOURCE: SEMARNAT. CONAGUA. PROFEPA. SEMAR. SECTUR and COFEPRIS. Clean E                                        | Beach Program, Me | exico, 2007. |      |      |      |  |  |

The following map shows the bacteriological quality on the beaches of tourist destinations in 2007.




## Chapter 3





## **Uses of Water**



This chapter presents the various uses of water by Hydrological-Administrative Region and State. For the purpose of this document, the twelve uses of water as defined in the Public Registry of Water Rights (REPDA, its initials in Spanish) have been reduced to five main headings; agricultural, public supply, self-supplying industry, thermoelectric and hydropower. For each use, among other aspects, the volumes allocated are shown, as well as the source of withdrawal, from both surface and groundwater.

It is worth mentioning that the theme of virtual water has been incorporated into the present edition. This theme has been gaining significance in current affairs and may serve as a reference to situate Mexico in the section on water in the world.

Finally, the level of water stress by Hydrological-Administrative Region is shown, by means of which we can observe that almost two thirds of the territory of Mexico is already under high pressure on its water resources.

## 3.1 Classification of the uses of water

In the Public Registry of Water Deeds (REPDA), the volumes allocated (or assigned) to the users of the nation's water are registered. In this Registry, the uses of water are classified into 12 groups, which for practical purposes have been grouped into five headings; four that correspond to offstream uses, namely agricultural, public supply, self-supplying industry and thermoelectric, as well as hydropower, which is considered separately since it corresponds to an instream use of water.

As may be observed in the figure, the greatest volume allocated for offstream uses of water is the one corresponding to agricultural activities, since Mexico is one of the countries with the most substantial irrigation infrastructures in the world.

# Distribution in percentages of the volumes allocated for offstream uses, 2007

Of the water used in Mexico for offstream use, 63% comes from surface sources (rivers, streams and lakes), whereas the remaining 37% comes from sources of groundwater (aquifers).

As regards hydropower plants (instream use), 122.8 billion cubic meters of water (km<sup>3</sup>) were used in 2007. It should be pointed out that for this use the same water is used and counted several times, in all the country's plants.



NOTE: This data comes from the volumes of water declared for the payment of duties for the withdrawal and use of water.

It should be mentioned that the volume registered in the REPDA for the use in hydropower plants was 161.2 km<sup>2</sup> in December 2007.

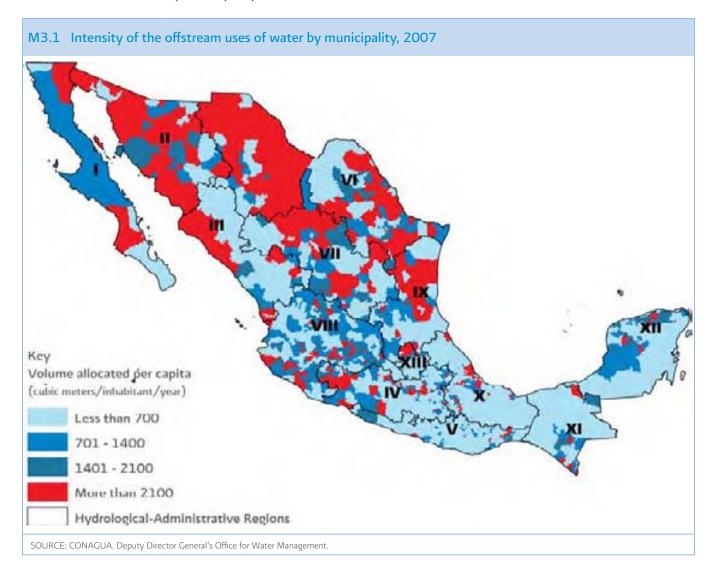
SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

### T3.1 Offstream uses, according to the origin of the source of withdrawal, 2007 (billions of cubic meters, km<sup>3</sup>)

| Use                                                                      | 0                   | Total |        |
|--------------------------------------------------------------------------|---------------------|-------|--------|
|                                                                          | Surface Groundwater |       | volume |
| Agricultural <sup>a</sup>                                                | 40.5                | 20.1  | 60.6   |
| Public supply <sup>b</sup>                                               | 4.2                 | 6.9   | 11.1   |
| Self-supplying<br>industry <sup>c</sup><br>(excluding<br>thermoelectric) | 1.7                 | 1.4   | 3.1    |
| Thermoelectric <sup>d</sup>                                              | 3.6                 | 0.5   | 4.1    |
| Total                                                                    | 50.0                | 28.9  | 78.9   |

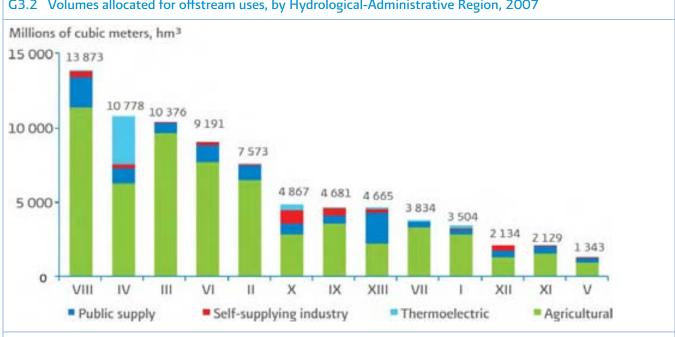
NOTE: 1 km<sup>3</sup> = 1 000 hm<sup>3</sup> = 1 billion m<sup>3</sup>.

The data corresponds to volumes allocated on December 31<sup>st</sup>, 2007.


<sup>a</sup> Includes the agricultural, livestock, aquaculture, multiple and other headings of the REPDA classification, as well as the volumes of water still pending registration (2.05 km<sup>3</sup>).

<sup>b</sup> Includes the public urban and domestic headings of the REPDA classification.
 <sup>c</sup> Includes the industrial, agro-industrial, service and trade headings of the REPDA classification.

<sup>d</sup> Includes all energy generation plants that are not hydropower plants. SOURCE: CONAGUA. Deputy Director General's Office for Water Management.


# **3.2 Distribution of the uses throughout Mexico**

The following map shows the volume assigned for offstream uses in 2007, by municipality.





The following figure shows the way in which volumes of water have been allocated for offstream uses in Mexico. It may be observed that the Hydrological-Administrative Regions with the largest allocation of water are: VIII Lerma-Santiago-Pacific, IV Balsas, III Northern Pacific and VI Bravo. It is also worth mentioning that the use for agriculture is more than 80% of the total of all allocations in these regions, with the exception of IV Balsas, where the thermoelectric plant in Petacalco, situated near the mouth of the river Balsas, occupies a significant volume of water.



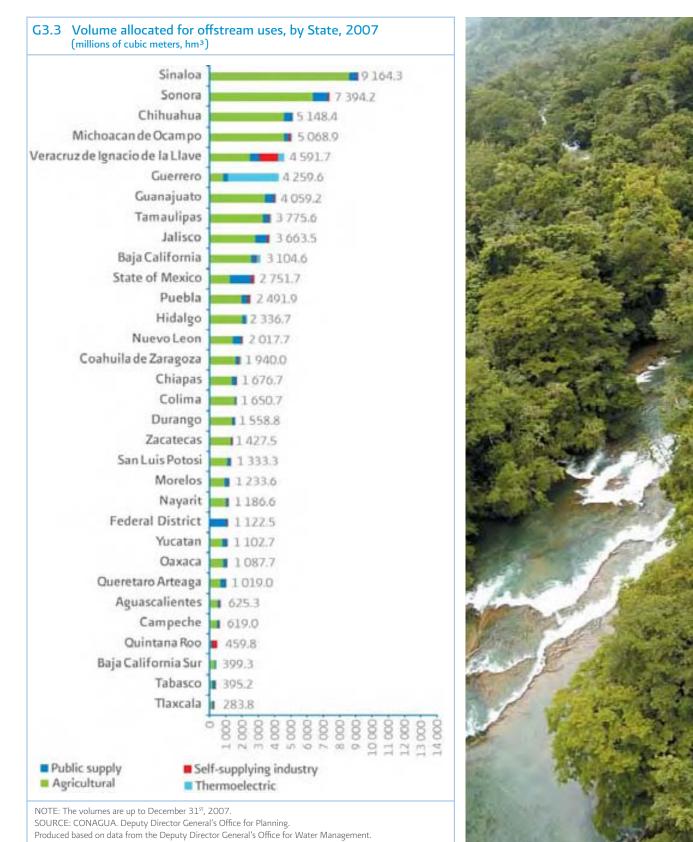
G3.2 Volumes allocated for offstream uses, by Hydrological-Administrative Region, 2007

NOTE: The regionalization of volumes was carried out based on the location of the use as registered in the REPDA, rather than the place of allocation of the corresponding deeds. SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on the volumes registered in the REPDA on December 31st, 2007

#### T3.2 Volumes allocated for offstream uses, by Hydrological-Administrative Region, 2007 hm3) (millions of cubic

|      | (millions of cubic meters, hm <sup>3</sup> ) |                           |                           |                            |                                                                     |                             |  |
|------|----------------------------------------------|---------------------------|---------------------------|----------------------------|---------------------------------------------------------------------|-----------------------------|--|
| H    | /drological-Administrative<br>Region         | Total volume<br>Allocated | Agricultural <sup>a</sup> | Public supply <sup>b</sup> | Self-supplying<br>industry excluding<br>thermoelectric <sup>c</sup> | Thermoelectric <sup>d</sup> |  |
| I    | Baja California Peninsula                    | 3 503.9                   | 2 889.3                   | 327.4                      | 88.Z                                                                | 199.0                       |  |
| П    | Northwest                                    | 7 572.8                   | 6 517.1                   | 976.7                      | 79.0                                                                | 0.0                         |  |
| Ш    | Northern Pacific                             | 10 376.5                  | 9 674.5                   | 640.9                      | 61.1                                                                | 0.0                         |  |
| IV   | Balsas                                       | 10 778.1                  | 6 324.3                   | 1014.3                     | 269.3                                                               | 3 170.2                     |  |
| V    | Southern Pacific                             | 1 343.2                   | 990.6                     | 331.7                      | 20.9                                                                | 0.0                         |  |
| VI   | Rio Bravo                                    | 9 191.3                   | 7 690.4                   | 1 182.2                    | 203.4                                                               | 115.3                       |  |
| VII  | Central Basins of the North                  | 3 834.3                   | 3 367.6                   | 370.1                      | 58.3                                                                | 38.3                        |  |
| VIII | Lerma-Santiago-Pacific                       | 13 872.9                  | 11 443.7                  | 2 002.4                    | 402.3                                                               | 24.5                        |  |
| IX   | Northern Gulf                                | 4 681.4                   | 3 630.5                   | 524.7                      | 460.6                                                               | 65.6                        |  |
| х    | Central Gulf                                 | 4 867.3                   | 2 872.8                   | 742.9                      | 877.3                                                               | 374.3                       |  |
| XI   | Southern Border                              | 2 128.7                   | 1 588.1                   | 446.0                      | 94.6                                                                | 0.0                         |  |
| XII  | Yucatan Peninsula                            | 2 133.7                   | 1 343.4                   | 461.1                      | 319.8                                                               | 9.4                         |  |
| XIII | Waters of the Valley of Mexico               | 4 665.4                   | 2 239.6                   | 2 137.6                    | 198.6                                                               | 89.6                        |  |
| Tota | I                                            | 78 949.5                  | 60 571.9                  | 11 158.0                   | 3 133.4                                                             | 4 086.2                     |  |

NOTES: The sums may not add up precisely to the total, due to the rounding up or down of figures.


The regionalization of volumes was carried out based on the location of the use as registered in the REPDA, rather than the place of allocation of the corresponding deeds. <sup>a</sup> Includes the agricultural, livestock, aquaculture, multiple and other headings of the REPDA classification.

<sup>b</sup> Includes the public urban and domestic headings of the REPDA classification.

<sup>c</sup> Includes the industrial, agro-industrial, service and trade headings of the REPDA classification.

<sup>d</sup> Includes the total volume allocated for the generation of electricity, not including hydropower.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on the volumes registered in the REPDA on December 31st, 2007.



The following figure shows the information on the volumes of water allocated by State, among which

Sinaloa and Sonora stand out, for their extensive areas under irrigation.

#### Volumes allocated for offstream uses, by State, 2007 T3.3 (millions of cubic meters, hm<sup>3</sup>)

|       | State                              | Total volume<br>allocated | Agriculture <sup>a</sup> | Public supply <sup>b</sup> | Self-supplying<br>industry excluding<br>thermoelectric <sup>c</sup> | Thermoelectric <sup>d</sup> |
|-------|------------------------------------|---------------------------|--------------------------|----------------------------|---------------------------------------------------------------------|-----------------------------|
| 1     | Aguascalientes                     | 625.3                     | 495.0                    | 118.9                      | 11.4                                                                | 0.0                         |
| Z     | Baja California                    | 3 104.6                   | 2 563.7                  | 265.9                      | 79.9                                                                | 195.1                       |
| 3     | Baja California Sur                | 399.3                     | 325.7                    | 61.5                       | 8.2                                                                 | 3.9                         |
| 4     | Campeche                           | 619.0                     | 476.8                    | 125.4                      | 16.8                                                                | 0.0                         |
| 5     | Coahuila de Zaragoza               | 1 940.0                   | 1 606.3                  | 185.3                      | 73.5                                                                | 74.9                        |
| 6     | Colima                             | 1 650.7                   | 1 561.0                  | 61.5                       | 24.4                                                                | 3.8                         |
| 7     | Chiapas                            | 1 676.7                   | 1 385.9                  | 261.4                      | 29.4                                                                | 0.0                         |
| 8     | Chihuahua                          | 5 148.4                   | 4 593.0                  | 476.1                      | 51.7                                                                | 27.6                        |
| 9     | Federal District                   | 1 122.5                   | 1.2                      | 1 089.8                    | 31.5                                                                | 0.0                         |
| 10    | Durango                            | 1 558.8                   | 1 375.1                  | 153.4                      | 18.8                                                                | 11.5                        |
| 11    | Guanajuato                         | 4 059.2                   | 3 395.6                  | 587.1                      | 56.0                                                                | 20.5                        |
| 12    | Guerrero                           | 4 259.6                   | 838.0                    | 287.0                      | 12.5                                                                | 3 122.1                     |
| 13    | Hidalgo                            | 2 336.7                   | 2 019.7                  | 168.0                      | 66.4                                                                | 82.6                        |
| 14    | Jalisco                            | 3 663.5                   | 2 815.0                  | 717.7                      | 130.7                                                               | 0.1                         |
| 15    | State of Mexico                    | 2 741.7                   | 1 250.0                  | 1 338.4                    | 156.4                                                               | 6.9                         |
| 16    | Michoacan de<br>Ocampo             | 5 068.9                   | 4 606.6                  | 271.9                      | 142.2                                                               | 48.2                        |
| 17    | Morelos                            | 1 233.6                   | 916.1                    | 258.5                      | 59.0                                                                | 0.0                         |
| 18    | Nayarit                            | 1 186.6                   | 1 025.9                  | 105.0                      | 55.7                                                                | 0.0                         |
| 19    | Nuevo Leon                         | 2 017.7                   | 1 421.7                  | 511.7                      | 79.9                                                                | 4.4                         |
| 20    | Oaxaca                             | 1 087.7                   | 847.7                    | 200.8                      | 39.1                                                                | 0.0                         |
| 21    | Puebla                             | 2 491.9                   | 1 989.0                  | 382.8                      | 113.6                                                               | 6.5                         |
| 22    | Queretaro Arteaga                  | 1 019.0                   | 660.3                    | 291.7                      | 61.3                                                                | 5.7                         |
| 23    | Quintana Roo                       | 459.8                     | 93.0                     | 91.1                       | 275.7                                                               | 0.0                         |
| 24    | San Luis Potosi                    | 1 333.3                   | 1 092.3                  | 170.8                      | 29.2                                                                | 41.0                        |
| 25    | Sinaloa                            | 9 164.3                   | 8 608.3                  | 509.6                      | 46.4                                                                | 0.0                         |
| 26    | Sonora                             | 7 394.2                   | 6 361.6                  | 954.6                      | 78.0                                                                | 0.0                         |
| 27    | Tabasco                            | 395.2                     | 153.5                    | 182.8                      | 58.9                                                                | 0.0                         |
| 28    | Tamaulipas                         | 3 775.6                   | 3 300.2                  | 317.7                      | 103.7                                                               | 54.0                        |
| 29    | Tlaxcala                           | 283.8                     | 178.9                    | 85.5                       | 19.4                                                                | 0.0                         |
| 30    | Veracruz de Ignacio<br>de la Llave | 4 591.7                   | 2 504.7                  | 568.5                      | 1 150.6                                                             | 367.9                       |
| 31    | Yucatan                            | 1 102.7                   | 814.5                    | 245.1                      | 33.6                                                                | 9.5                         |
| 32    | Zacatecas                          | 1 427.5                   | 1 295.5                  | 112.5                      | 19.5                                                                | 0.0                         |
| Total |                                    | 78 949.5                  | 60 571.9                 | 11 158.0                   | 3 133.4                                                             | 4 086.2                     |
|       |                                    |                           |                          |                            |                                                                     |                             |

NOTES: The sums may not add up precisely to the total, due to the rounding up or down of figures.

The volumes are up to December 31<sup>st</sup>, 2007.

Due to the rounding up and down of the figure, the national total may also differ from the sum of the values by State. <sup>a</sup> Includes the agricultural, livestock, aquaculture, multiple and other headings of the REPDA classification.

<sup>b</sup> Includes the public urban and domestic headings of the REPDA classification.

<sup>c</sup> Includes the industrial, agro-industrial, service and trade headings of the REPDA classification.

 $^{\rm d}$  Includes the total volume allocated for the generation of electricity excluding hydropower.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

## 3.3 Agricultural use

The main use of water in Mexico is for agriculture, which mainly refers to the water used for the irrigation of crops. The area assigned to agricultural work in Mexico varies between 20 and 25 million hectares, with a harvested area of between 18 and 22 million hectares per year. The value of the direct production is



the equivalent of 6.5% of the nation's Gross Domestic Product. Furthermore, the population occupied under this heading varies between 4 and 5 million individuals, and it is estimated that around 25 million Mexicans depend directly on this activity, the majority of them among the rural population.

Mexico is in sixth place worldwide in terms of the area with irrigation infrastructure, with 6.46 million hectares. 54% of the surface under irrigation corresponds to 85 Irrigation Districts and the remaining 46% to more than 39 000 Irrigation Units.

## 3.4 Use for public water supply

The use for public supply includes all water delivered through the drinking water networks, which supplies domestic (home) users, as well as the various industries and services connected to these networks.

According to the Censuses of Capture, Treatment and Water Supply carried out by INEGI on the country's water utilities, it was calculated that in 2003, 82% of the water supplied by the drinking water networks was for domestic use and the remaining 18% for industries and services. Additionally, comparing the data from the 1998 Census with the 2003 version, it may be observed that in this five-year period the volume of water used by water utilities increased by 22%. Another relevant fact is that in 2003, the percentage of water billed compared to the total of water used by water utilities was 49%, which indicates that the remaining 51% of this volume was lost in leaks, was used illegally or corresponds to deficiencies in the roster of users.

## 3.5 Use in self-supplying industry

This heading includes the industry that takes its water directly from the country's rivers, streams, lakes or aquifers.

The main industrial uses are those that correspond to the chemical industry and the production of sugar, petroleum, cellulose and paper

## 3.6 Use in thermoelectric plants

The water included under this heading refers to that used in steam, dual, coal-electric, combined cycle, turbo-gas and internal combustion plants.

In 2007, thermoelectric plants generated 198.79 TWh, which represented 87.0% of the total of electricity produced in the country. The corresponding plants have an installed capacity of 38 799 MW, or 77.8% of the country's total.

It should be noted that 76% of the water assigned to thermoelectric plants in Mexico corresponds to the coal-electric plant in Petacalco, situated on the Guerrero coast, very close to the mouth of the river Balsas.



| T3.4 Generation of thermoelectricity and the capacity installed, annual series from 1999 to 2007 |        |        |        |        |        |        |        |        |        |
|--------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Parameter / Year                                                                                 | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   |
| Generation of thermoelectricity (TWh)                                                            | 147.07 | 157.39 | 167.11 | 174.60 | 181.95 | 181.24 | 188.78 | 191.78 | 198.79 |
| Total generation of electricity (TWh)                                                            | 179.07 | 190.00 | 194.92 | 198.88 | 200.94 | 205.39 | 215.63 | 221.00 | 228.49 |
| Thermoelectric capacity installed (MW)                                                           | 25 449 | 25 995 | 28 312 | 30 971 | 34 348 | 35 423 | 35 306 | 37 572 | 38 799 |
| Total capacity installed (MW)                                                                    | 34 839 | 35 385 | 37 691 | 40 350 | 43 727 | 45 687 | 45 576 | 47 857 | 49 854 |
|                                                                                                  |        |        |        |        |        |        |        |        |        |

NOTE: 1 TWh = 1000 GWh

SOURCE: Federal Commission for Electricity. www.cfe.gob.mx/es/LaEmpresa/igenerationelectricity

## 3.7 Use in hydropower plants

The uses described up to now are known as offstream uses, since water is diverted from a source to carry out a specific activity according to the type of use. On the other hand, the generation of hydropower is an instream use, since the water used is taken directly from the source. Nationwide, the two Hydrological-Administrative Regions with the largest allocation of water for this use are XI Southern Border and IV Balsas, since in these regions the rivers with the heaviest flow and as a result the country's largest hydropower plants are located. It should be noted that the region XII Yucatan Peninsula does not have a hydropower plant.



T3.5 Volumes declared for the payment of duties for the use of water in hydropower plants, by Hydrological-Administrative Region, annual series from 1999 to 2007 (millions of cubic meters, hm<sup>3</sup>)

| H     | lydrological-Administrative<br>Region    |                   |               |               | Volume  | of water o | declared |         |         |         |
|-------|------------------------------------------|-------------------|---------------|---------------|---------|------------|----------|---------|---------|---------|
|       | 11051011                                 |                   | 2000          | 2001          | 2002    | 2003       | 2004     | 2005    | 2006    | 2007    |
| I.    | Baja California Peninsula                | 0                 | 0             | 0             | 0       | 0          | 0        | 0       | 0       | 0       |
| П     | Northwest                                | 2 758             | 3 369         | 2 740         | 2 613   | 1987       | 1014     | 3 251   | Z 929   | 3 351   |
| - 111 | Northern Pacific                         | 7 950             | 8 309         | 9 479         | 5 859   | 5168       | 7 284    | 11 598  | 10 747  | 11 184  |
| IV    | Balsas                                   | 41 524            | 32 596        | 25 992        | 45 588  | 30 969     | 35 207   | 32 141  | 21 820  | 31 099  |
| V     | Southern Pacific                         | 2 075             | 2 104         | 1891          | 1 705   | 1925       | Z 049    | 1 890   | 1949    | 2 140   |
| VI    | Rio Bravo                                | 2 503             | 2 867         | 2 067         | 1 550   | 1 110      | 462      | 2 074   | 2 263   | Z 890   |
| VII   | Central Basins of the North              | 0                 | 0             | 0             | 0       | 0          | 0        | 0       | 0       | 0       |
| VIII  | Lerma-Santiago-Pacific                   | 13 468            | 6122          | 4126          | 5 572   | 7 792      | 10 418   | 7361    | 4 658   | 10 517  |
| IX    | Northern Gulf                            | 1 230             | 1 230         | 1180          | 989     | 997        | 1 598    | 1488    | 810     | 1 105   |
| Х     | Central Gulf                             | 19 407            | 16 844        | 15 510        | 12 602  | 12 108     | 16 043   | 13 978  | 17 835  | 14 279  |
| XI    | Southern Border                          | 62 322            | 92 365        | 65 821        | 44 454  | 34 056     | 36 454   | 41 573  | 77 246  | 46 257  |
| XII   | Yucatan Peninsula                        | 0                 | 0             | 0             | 0       | 0          | 0        | 0       | 0       | 0       |
| XIII  | Waters of the Valley of Mexico           | 33                | 38            | 42            | 50      | 52         | 54       | 31      | 39      | 11      |
| Tota  | Total                                    |                   | 165 844       | 128 848       | 120 982 | 96 164     | 110 581  | 115 386 | 140 295 | 122 832 |
| NOTE  | The sums may not add up precisely to the | a total, due to t | he rounding u | or down of fi | auros.  |            |          |         |         |         |

NOTE: The sums may not add up precisely to the total, due to the rounding up or down of figures. SOURCE: CONAGUA. Deputy Director General's Office for Water Management. In 2007, the country's hydropower plants employed a volume of 122.8 billion cubic meters of water, which allowed 29.70 TWh of electricity to be generated, or 13.0% of the total generated in Mexico. The installed capacity in the hydropower plants is 11 055 MW, which corresponds to 22.2% of the total installed in the country.

| T3.6 Generation of hydropower and     | T3.6 Generation of hydropower and installed capacity, annual series from 1999 to 2007 |        |        |        |        |        |        |        |        |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| Parameter / Year                      | 1999                                                                                  | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   |  |  |
| Generation of hydropower (TWh)        | 32.01                                                                                 | 32.61  | 27.81  | 24.28  | 18.99  | 24.16  | 26.85  | 29.22  | 29.70  |  |  |
| Total generation of electricity (TWh) | 179.07                                                                                | 190.00 | 194.92 | 198.88 | 200.94 | 205.39 | 215.63 | 221.00 | 228.49 |  |  |
| Hydropower capacity installed (MW)    | 9 390                                                                                 | 9 390  | 9 379  | 9 379  | 9 379  | 10 264 | 10 270 | 10 285 | 11 055 |  |  |
| Total capacity installed (MW)         | 34 839                                                                                | 35 385 | 37 691 | 40 350 | 43 727 | 45 687 | 45 576 | 47 857 | 49 854 |  |  |
| NOTE: 1 TWh = 1000 GWh                |                                                                                       |        |        |        |        |        |        |        |        |  |  |

SOURCE: Federal Commission for Electricity. www.cfe.gob.mx/es/LaEmpresa/generacionelectricity

## 3.8 Water stress

The percentage of water used for offstream uses as compared to the total availability is an indicator of the water stress in any given country, catchment or region. It is considered that if the percentage is greater than 40%, there is strong water stress.

On the whole, Mexico is experiencing 17% water stress, which is considered moderate; however, the central, northern and northwest area of the country is experiencing 47% water stress, which is considered as a strong degree of stress. In the following table, this indicator is shown for each of the country's Hydrological-Administrative Regions.

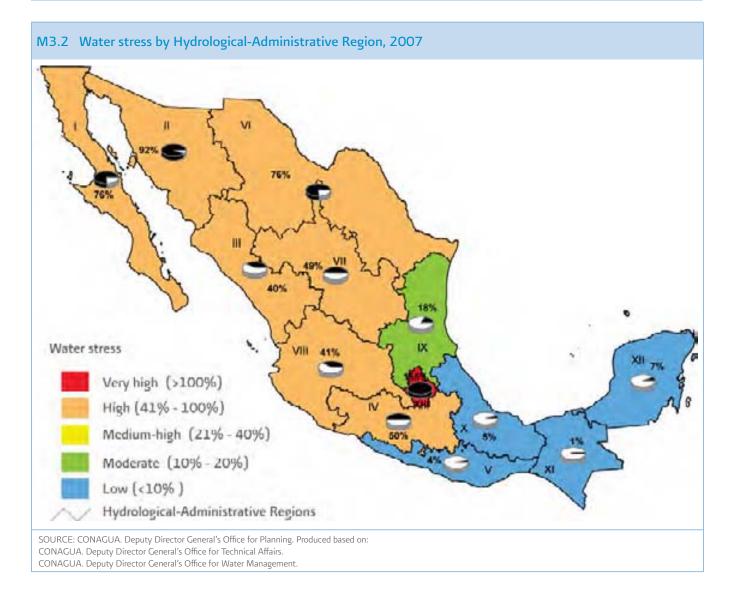
| J.        | T      | X      |
|-----------|--------|--------|
|           | $\sim$ | X      |
|           | $\Box$ |        |
| Z         | X      | A.     |
| 1 million | X/M    | ALL IN |

| T3.7 | Water stress, by Hydrologi     | cal-Administrative Re                                    | gion, 2007                            |                     |                                              |
|------|--------------------------------|----------------------------------------------------------|---------------------------------------|---------------------|----------------------------------------------|
| Hydr | ological-Administrative Region | Total volume of water<br>allocated<br>(hm <sup>3</sup> ) | Mean natural<br>availability<br>(hm³) | Water stress<br>(%) | Classification<br>of the degree<br>of stress |
| I    | Baja California Peninsula      | 3 503.9                                                  | 4 616                                 | 75.91               | High                                         |
| Ш    | Northwest                      | 7 572.8                                                  | 8 204                                 | 92.30               | High                                         |
| Ш    | Northern Pacific               | 10 376.5                                                 | 25 627                                | 40.49               | High                                         |
| IV   | Balsas                         | 10 778.1                                                 | 21 657                                | 49.77               | High                                         |
| V    | Southern Pacific               | 1 343.2                                                  | 32 794                                | 4.10                | Low                                          |
| VI   | Rio Bravo                      | 9 191.3                                                  | 12 024                                | 76.44               | High                                         |
| VII  | Central Basins of the North    | 3 834.3                                                  | 7 780                                 | 49.28               | High                                         |
| VIII | Lerma-Santiago-Pacific         | 13 872.9                                                 | 34 037                                | 40.76               | High                                         |

(continues)

### (continued)

| Γ3.7 Water stress, by Hydrologi     | cal-Administrative Re                       | gion, 2007                            |                     |                                              |
|-------------------------------------|---------------------------------------------|---------------------------------------|---------------------|----------------------------------------------|
| Hydrological-Administrative Region  | Total volume of water<br>allocated<br>(hm³) | Mean natural<br>availability<br>(hm³) | Water stress<br>(%) | Classification<br>of the degree<br>of stress |
| IX Northern Gulf                    | 4 681.4                                     | 25 500                                | 18.36               | Moderate                                     |
| X Central Gulf                      | 4 867.3                                     | 95 455                                | 5.10                | Low                                          |
| XI Southern Border                  | 2 128.7                                     | 157 754                               | 1.35                | Low                                          |
| XII Yucatan Peninsula               | 2 133.7                                     | 29 645                                | 7.20                | Low                                          |
| XIII Waters of the Valley of Mexico | 4 665.4                                     | 3 008                                 | 155.00              | High                                         |
| Total                               | 78 949.5                                    | 458 100                               | 17.23               | Moderate                                     |


NOTES: The sums may not add up precisely to the total, due to the rounding up or down of figures.

Water stress =  $100^*$  (Total volume of water allocated / Mean natural availability of water).

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Deputy Director General's Office for Water Management.

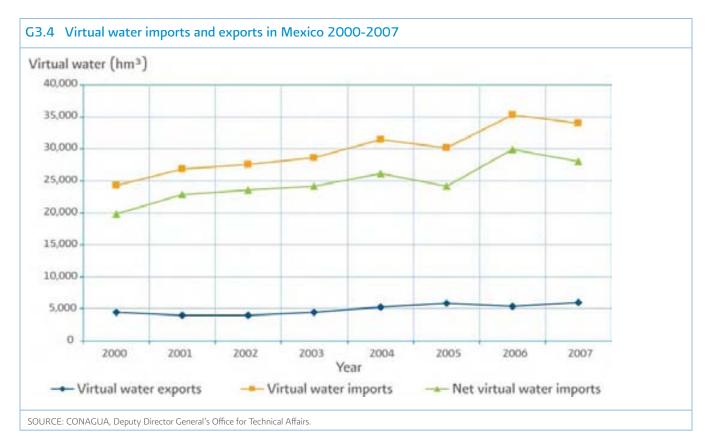
CONAGUA. Deputy Director General's Office for Technical Affairs.



## 3.9 Virtual water in Mexico

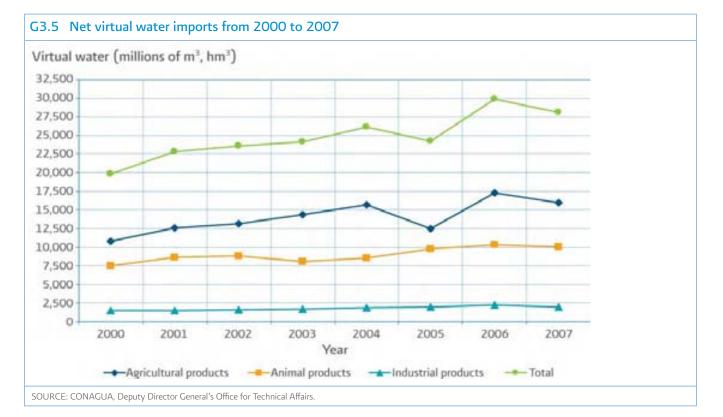
Virtual water is defined as the total quantity of water used by or embedded in a product, good or service. For example, in order to produce one kilogram of wheat in Mexico, on average 1 000 liters of water is required, whereas to put a kilogram of beef on somebody's table requires 13 500 liters. These values vary between countries.

Through Mexico's commercial exchanges with other countries, in 2007 Mexico exported 5 936 million cubic meters of virtual water, and imported 33 977, meaning that it had a net import of 28 041 million cubic meters of virtual water. Of this quantity, 57% is related with agricultural products, 36% with animal products and the remaining 7% with industrial products.


The three products that consume the most virtual water that were exported in 2007 were edible fruit with 1 042 million cubic meters, meats and edible

remains with 767 million cubic meters and different types of vegetables with 740 million cubic meters. The industrial products which export the most virtual water were the iron and steel industry with 656 million cubic meters and the petrol industry with 155 million cubic meters.

On the other hand, the three products with which the most virtual water was imported were cereals, with 11 367 million cubic meters, meats and edible remains with 10 046 million cubic meters and grains and fruit with 6 815 million cubic meters. As regards industry, the greatest imports were obtained in the field of iron and steel, with 908 hm<sup>3</sup> and organic chemical products with 357 hm<sup>3</sup>.


## Evolution of imports and exports

The following figure presents the annual evolution of virtual water imports and exports in the period from 2000 to 2007.



The behavior of the net virtual water imports (the imports minus the exports) for agricultural products, animals and industry, mark an increase in recent years. The growth in the net virtual water import through agricultural products is noteworthy.

Between 2000 and 2007, Mexico's virtual water exports increased by 33% with a maximum in 2007, whereas the imports grew by 40%, which a maximum in 2006. The net virtual water imports grew 41% in this period.



Net virtual water imports in Mexico from 2000 to 2007 T3.8 (millions of cubic meters per year)

| Concept/Year                             | 2000                 | 2001                 | 2002     | 2003   | 2004   | 2005   | 2006   | 2007   |  |  |
|------------------------------------------|----------------------|----------------------|----------|--------|--------|--------|--------|--------|--|--|
| Virtual water export                     | 4 461                | 40 045               | 4 022    | 4 488  | 5 251  | 5 884  | 5 396  | 5 936  |  |  |
| Virtual water import                     | 24 304               | 26 864               | 27 596   | 28 617 | 31 405 | 30 097 | 35 255 | 33 977 |  |  |
| Net import of virtual water (difference) | 19 843               | 22 819               | 23 575   | 24 129 | 26 154 | 24 213 | 29 859 | 28 041 |  |  |
| SOURCE: CONAGUA, Deputy D                | Director General's ( | Office for Technical | Affairs. |        |        |        |        |        |  |  |



# **Chapter 4**





# Hydraulic Infrastructure

Mexico is a country with a great hydraulic tradition, with the construction of large hydraulic infrastructure being a constant from the beginning of the National Irrigation Commission to nowadays.

As a part of this strategic infrastructure of national security, and in order to make appropriate use of the nation's water, this chapter focuses on its large storage dams, aqueducts, treatment plants and wastewater treatment plants. It is worth mentioning that one of the goals of the current administration is to increase the coverage of wastewater treatment, which explains why a significant increase in the construction of this type of infrastructure may be noted. On the other hand, as regards reuse, this chapter shows the reuse of both municipal and non-municipal water.

Due to the importance of irrigation in Mexico, a section of this chapter focuses on this subject, as well as on the evolution in drinking water and sanitation coverage.

## 4.1 Mexico's Hydraulic Infrastructure

Among the hydraulic infrastructure available within the country to provide the water required for the various national users, the following stands out:

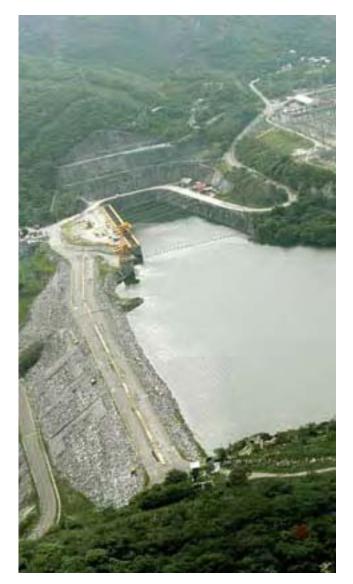
4 000 storage dams.

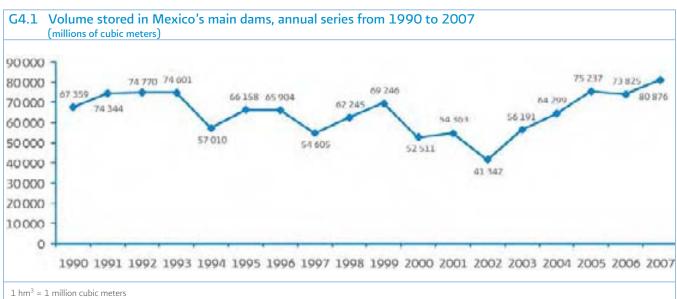
6.46 million hectares with irrigation.

2.74 million hectares with technified rainfed infrastructure.

541 drinking water treatment plants in operation.

1 710 municipal wastewater treatment plants in operation.


2 O21 industrial wastewater treatment plants in operation.


3 000 km of aqueducts.

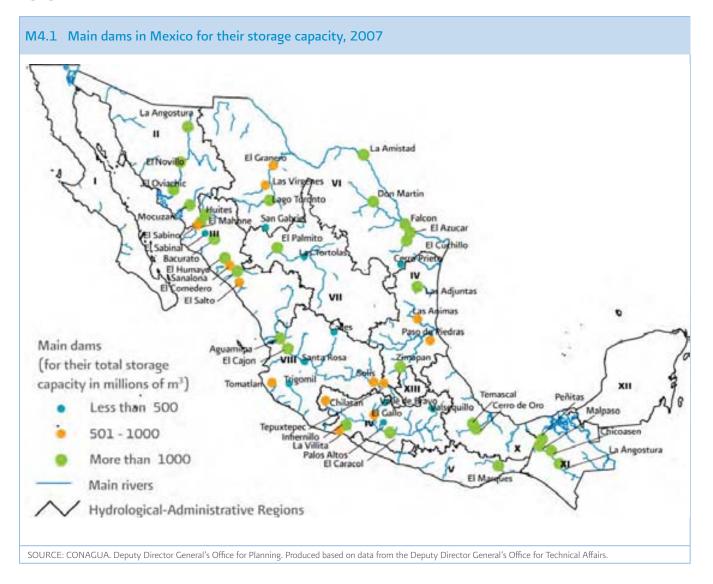
## 4.2 Mexico's Main Dams

There are approximately 4 000 dams in Mexico, of which 667 are classified as large dams, according to the definition of the International Commission on Large Dams (ICOLD).

The storage capacity of the country's dams is 150 billion cubic meters. The volume stored in these dams, in the period from 1990 to 2007, is shown in the following figures, both nationally and regionally. This volume depends on the precipitation and runoff in the various regions of the country.






NOTE: Volume stored until October 1<sup>st</sup> every year.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs.



SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs.

The country's 52 dams with the greatest storage capacity represent almost 70% of the country's total storage capacity. Their location is shown in the following figure:



| No. | Official name                 | Common       | Total                          | Height                   | Year of    | Hydrological-               | State                   | Uses          | Effective        |
|-----|-------------------------------|--------------|--------------------------------|--------------------------|------------|-----------------------------|-------------------------|---------------|------------------|
|     |                               | name         | capacity <sup>a</sup><br>(hm³) | of the<br>curtain<br>(m) | completion | Administrative<br>Region    |                         |               | capacity<br>(MW) |
| 1   | Belisario Dominguez           | La Angostura | 10 727                         | 143                      | 1974       | Southern Border             | Chiapas                 | G             | 900              |
| Ζ   | Netzahualcoyotl               | Malpaso      | 9 605                          | 138                      | 1964       | Southern Border             | Chiapas                 | G             | 1080             |
| 3   | Infiernillo                   | Infiernillo  | 9 340                          | 149                      | 1963       | Balsas                      | Guerrero –<br>Michoacan | G, C          | 1000             |
| 4   | Presidente Miguel<br>Aleman   | Temascal     | 8 119                          | 76                       | 1955       | Central Gulf                | Oaxaca                  | G, C          | 354              |
| 5   | Solidaridad                   | Aguamilpa    | 5 540                          | 186                      | 1993       | Lerma-Santiago-<br>Pacific  | Nayarit                 | G, I          | 960              |
| 6   | General Vicente<br>Guerrero   | Las Adjuntas | 3 900                          | 60                       | 1971       | Norther Gulf                | Tamaulipas              | Ι, Α          |                  |
| 7   | Internacional<br>La Amistad   | La Amistad   | 3 887                          | 77                       | 1969       | Rio Bravo                   | Coahuila –<br>Texas     | G, I,<br>A, C | 66               |
| 8   | Internacional Falcon          | Falcon       | 3 273                          | 50                       | 1953       | Rio Bravo                   | Tamaulipas –<br>Texas   | A, C, G       | 32               |
| 9   | Adolfo Lopez Mateos           | El Humaya    | 3 087                          | 106                      | 1964       | Northern Pacific            | Sinaloa                 | G, I          | 90               |
| 10  | Alvaro Obregon                | El Oviachic  | Z 989                          | 90                       | 1952       | Northwest                   | Sonora                  | G, I          | 19               |
| 11  | Plutarco Elias Calles         | El Novillo   | 2 925                          | 139                      | 1964       | Northwest                   | Sonora                  | G, I          | 135              |
| 12  | Miguel Hidalgo y<br>Costilla  | El Mahone    | 2921                           | 81                       | 1956       | Northern Pacific            | Sinaloa                 | G, I          | 60               |
| 13  | Luis Donaldo Colosio          | Huites       | 2 908                          | 165                      | 1995       | Northern Pacific            | Sinaloa                 | G, I          | 422              |
| 14  | La Boquilla                   | Lago Toronto | 2 903                          | 80                       | 1916       | Rio Bravo                   | Chihuahua               | G, I          | 25               |
| 15  | Lazaro Cardenas               | El Palmito   | 2 873                          | 105                      | 1946       | Central Basins of the North | Durango                 | I, C          |                  |
| 16  | Leonardo Rodriguez<br>Alcaine | El Cajon     | 2 282                          | 186                      | 2006       | Lerma-Santiago-<br>Pacific  | Nayarit                 | G             | 750              |
| 17  | Jose Lopez Portillo           | El Comedero  | 2 250                          | 134                      | 1983       | Northern Pacific            | Sinaloa                 | G, I          | 100              |
| 18  | Gustavo Diaz Ordaz            | Bacurato     | 1860                           | 116                      | 1981       | Northern Pacific            | Sinaloa                 | G, I          | 92               |
| 19  | Carlos Ramirez Ulloa          | El Caracol   | 1 414                          | 126                      | 1986       | Balsas                      | Guerrero                | G             | 600              |
| 20  | Manuel Moreno Torres          | Chicoasen    | 1 376                          | 261                      | 1980       | Southern Border             | Chiapas                 | G             | Z 400            |
| 21  | Ing. Fernando Hiriart         | Zimapan      | 1360                           | 203                      | 996        | Northern Gulf               | Hidalgo -Querétaro      | G             | 292              |
| 22  | Venustiano Carranza           | Don Martin   | 1 313                          | 35                       | 1930       | Rio Bravo                   | Coahuila de<br>Zaragoza | I, A, C       |                  |
| 23  | Miguel de la Madrid           | Cerro de Oro | 1 250                          | 70                       | 1988       | Central Gulf                | Oaxaca                  | G, I          | 360              |
| 24  | Cuchillo-Solidaridad          | El Cuchillo  | 1 123                          | 44                       | 1994       | Rio Bravo                   | Nuevo Leon              | A,I           |                  |
| 25  | Angel Albino Corzo            | Peñitas      | 1091                           | 58                       | 1986       | Southern Border             | Chiapas                 | G             | 420              |
| 26  | Adolfo Ruiz Cortines          | Mocuzari     | 950                            | 62                       | 1955       | Northwest                   | Sonora                  | G, I          | 10               |
| 27  | Benito Juarez                 | El Marques   | 947                            | 86                       | 1961       | Southern Pacific            | Oaxaca                  | I             |                  |
| 28  | Marte R. Gomez                | El Azucar    | 824                            | 49                       | 1946       | Rio Bravo                   | Tamaulipas              | I.            |                  |
| 29  | Solis                         | Solis        | 728                            | 52                       | 1980       | Lerma-Santiago-<br>Pacific  | Guanajuato              | I             |                  |

(continues)

## (continued)

| No. | Official name                    | Common<br>name  | Total<br>capacityª<br>(hm³) | Height<br>of the<br>curtain<br>(m) | Year of completion | Hydrological-<br>Administrative<br>Region | State                                 | Uses | Effective<br>capacity<br>(MW) |
|-----|----------------------------------|-----------------|-----------------------------|------------------------------------|--------------------|-------------------------------------------|---------------------------------------|------|-------------------------------|
| 30  | Lazaro Cardenas                  | La Angostura    | 703                         | 73                                 | 1942               | Northwest                                 | Durango                               | I, C |                               |
| 31  | Sanalona                         | Sanalona        | 673                         | 81                                 | 1948               | Northern Pacific                          | Sinaloa                               | G, I | 14                            |
| 32  | Constitucion<br>de Apatzingan    | Chilatan        | 601                         | 105                                | 1989               | Balsas                                    | Jalisco                               | I    |                               |
| 33  | Estudiante Ramiro<br>Caballero   | Las Animas      | 571                         | 31                                 | 1976               | Northern Gulf                             | Tamaulipas                            | I    |                               |
| 34  | Jose Maria Morelos               | La Villita      | 541                         | 73                                 | 1968               | Balsas                                    | Michoacan –<br>Guerrero               | G, I | 280                           |
| 35  | Josefa Ortiz de<br>Dominguez     | El Sabino       | 514                         | 44                                 | 1967               | Northern Pacific                          | Sinaloa                               | I    |                               |
| 36  | Cajon de Peña                    | Tomatlan        | 467                         | 68                                 | 1976               | Lerma-Santiago-<br>Pacific                | Jalisco                               | I    |                               |
| 37  | Chicayan                         | Paso de Piedras | 457                         | 30                                 | 1976               | Northern Gulf                             | Veracruz de<br>Ignacio de la<br>Llave | I    |                               |
| 38  | El Gallo                         | El Gallo        | 441                         | 30                                 | 1991               | Balsas                                    | Guerrero                              | G    | 60                            |
| 39  | Tepuxtepec                       | Tepuxtepec      | 425                         | 43                                 | 1972               | Lerma-Santiago-<br>Pacific                | Michoacan                             | G, I | 79.5                          |
| 40  | Valle de Bravo                   | Valle de Bravo  | 418                         | 56                                 | 1944               | Balsas <sup>b</sup>                       | State of Mexico                       | А    |                               |
| 41  | Aurelio Benassini<br>Vizcaino    | El Salto        | 415                         | 73                                 | 1986               | Northern Pacific                          | Sinaloa                               | I    |                               |
| 42  | Manuel M. Dieguez                | Santa Rosa      | 403                         | 114                                | 1964               | Lerma-Santiago-<br>Pacific                | Jalisco                               | G    | 61                            |
| 43  | Francisco Zarco                  | Las Tortolas    | 365                         | 40                                 | 1968               | Central Basins of the North               | Durango                               | C, I |                               |
| 44  | Luis L. Leon                     | El Granero      | 356                         | 62                                 | 1968               | Rio Bravo                                 | Chihuahua                             | I, C |                               |
| 45  | Plutarco Elias Calles            | Calles          | 350                         | 67                                 | 1931               | Lerma-Santiago-<br>Pacific                | Aguascalientes                        | I    |                               |
| 46  | Francisco I. Madero              | Las Virgenes    | 348                         | 57                                 | 1949               | Rio Bravo                                 | Chihuahua                             | I.   |                               |
| 47  | Manuel Avila Camacho             | Valsequillo     | 304                         | 85                                 | 1946               | Balsas                                    | Puebla                                | I    |                               |
| 48  | Guillermo Blake Aguilar          | El Sabinal      | 300                         | 81                                 | 1985               | Northern Pacific                          | Sinaloa                               | C. I |                               |
| 49  | Jose Lopez Portillo              | Cerro Prieto    | 300                         | 50                                 | 1984               | Rio Bravo                                 | Nuevo Leon                            | A, I |                               |
| 50  | Vicente Guerrero                 | Palos Altos     | 250                         | 67                                 | 1968               | Balsas                                    | Guerrero                              | I    |                               |
| 51  | General Ramon Corona<br>Madrigal | Trigomil        | 250                         | 107                                | 1993               | Lerma-Santiago-<br>Pacific                | Jalisco                               | I    |                               |
| 52  | Federalismo Mexicano             | San Gabriel     | 247                         | 44                                 | 1981               | Rio Bravo                                 | Durango                               | I, A |                               |

NOTES: <sup>a</sup> The total capacity is at the normal pool elevation.

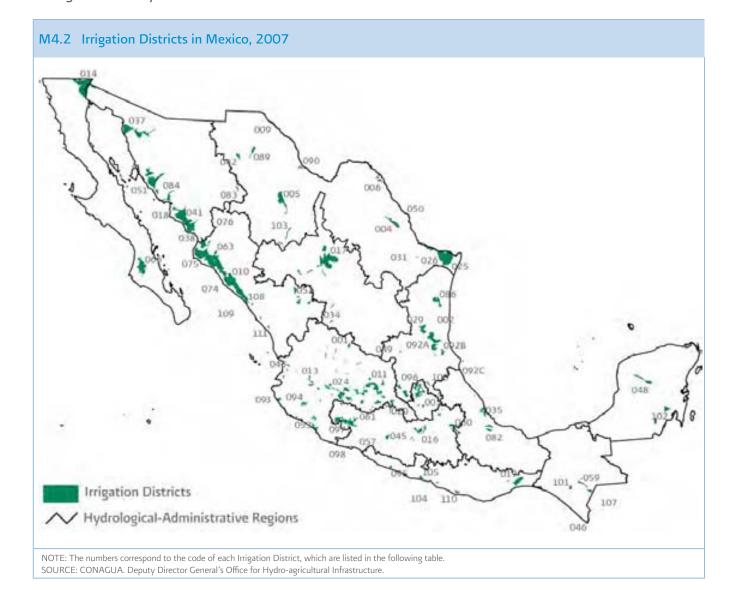
G: Generation of electricity

I: Irrigation

A: Public use

C: Flood control

<sup>b</sup> This dam is part of the Cutzamala System which is operated by the Waters of the Valley of Mexico River Basin Organization. SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.


## 4.3 Hydro-Agricultural Infrastructure

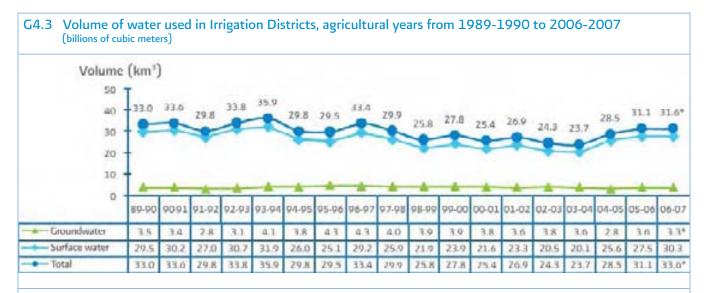
The area in Mexico under irrigation is 6.46 million hectares, of which 3.50 corresponds to 85 Irrigation Districts, and 2.96 to more than 39 000 Irrigation Units.

The Irrigation Districts and Units were designed according to the prevalent technology for the application of water to plots, by means of gravity. In many cases, only the main channel and drain networks were built, with the plot work remaining the responsibility of the users. This situation, along with the deterioration of the infrastructure, made worse over decades through the scarcity of economic resources destined to their conservation and improvement, brought about a decrease in the overall efficiency of water management.

## **Irrigation Districts**

Irrigation Districts are irrigation projects developed by the federal government since 1926, the year in which the National Irrigation Commission was created, and include various works, such as storage basins, direct diversions, pumping plants, wells, channels and pathways, among others.



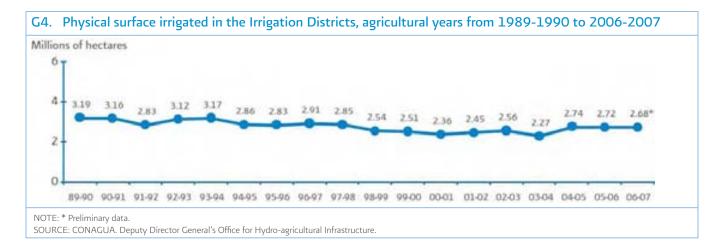

| T4.2 | Location | n and surface area of the | Irrigation Districts                |                                   |               |
|------|----------|---------------------------|-------------------------------------|-----------------------------------|---------------|
| No.  | Code     | Irrigation District       | Hydrological-Administrative         | State                             | Total surface |
|      |          |                           | Region                              |                                   | area          |
| -    | 001      |                           |                                     |                                   | (hectares)    |
| 1    | 001      | Pabellon                  | VIII Lerma-Santiago-Pacific         | Aguascalientes                    | 11 938        |
| Z    | 002      | Mante                     | IX Northern Gulf                    | Tamaulipas                        | 18 094        |
| 3    | 003      | Tula                      | XIII Waters of the Valley of Mexico | Hidalgo                           | 51 825        |
| 4    | 004      | Don Martin                | VI Rio Bravo                        | Coahuila de Zaragoza y Nuevo Leon | 29 605        |
| 5    | 005      | Delicias                  | VI Rio Bravo                        | Chihuahua                         | 82 324        |
| 6    | 006      | Palestina                 | VI Rio Bravo                        | Coahuila de Zaragoza              | 12 964        |
| 7    | 008      | Metztitlan                | IX Northern Gulf                    | Hidalgo                           | 4 876         |
| 8    | 009      | Juarez Valley             | VI Rio Bravo                        | Chihuahua                         | 24 492        |
| 9    | 010      | Culiacan-Humaya           | III Northern Pacific                | Sinaloa                           | 212 141       |
| 10   | 011      | Upper Lerma River         | VIII Lerma-Santiago-Pacific         | Guanajuato                        | 112 772       |
| 11   | 013      | State of Jalisco          | VIII Lerma-Santiago-Pacific         | Jalisco                           | 58 858        |
| 12   | 014      | Colorado River            | I Baja California Peninsula         | Baja California y Sonora          | 208 805       |
| 13   | 016      | State of Morelos          | IV Balsas                           | Morelos                           | 33 654        |
| 14   | 017      | Lagoon Region             | VII Central Basins of the North     | Coahuila de Zaragoza y Durango    | 116 577       |
| 15   | 018      | Colonias Yaquis           | II Northwest                        | Sonora                            | 22 794        |
| 16   | 019      | Tehuantepec               | V Southern Pacific                  | Оахаса                            | 44 074        |
| 17   | 020      | Morelia-Querendaro        | VIII Lerma-Santiago-Pacific         | Michoacan de Ocampo               | 20 665        |
| 18   | 023      | San Juan del Rio          | IX Northern Gulf                    | Queretaro Arteaga                 | 11048         |
| 19   | 024      | Chapala Marshes           | VIII Lerma-Santiago-Pacific         | Michoacan de Ocampo               | 45 176        |
| 20   | 025      | Lower Rio Grande          | VI Rio Bravo                        | Tamaulipas                        | 248 001       |
| 21   | 026      | Lower San Juan River      | VI Rio Bravo                        | Tamaulipas                        | 86 102        |
| 22   | 028      | Tulancingo                | IX Northern Gulf                    | Hidalgo                           | 753           |
| 23   | 029      | Xicotencatl               | IX Northern Gulf                    | Tamaulipas                        | 24 021        |
| 24   | 030      | Valsequillo               | IV Balsas                           | Puebla                            | 49 932        |
| 25   | 031      | Las Lajas                 | VI Rio Bravo                        | Nuevo Leon                        | 3 693         |
| 26   | 033      | State of Mexico           | VIII Lerma-Santiago-Pacific         | State of Mexico                   | 18 080        |
| 27   | 034      | State of Zacatecas        | VIII Lerma-Santiago-Pacific         | Zacatecas                         | 18 060        |
| Z8   | 035      | La Antigua                | X Central Gulf                      | Veracruz de Ignacio de la Llave   | 21 851        |
| 29   | 037      | Altar Pitiquito Caborca   | II Northwest                        | Sonora                            | 57 587        |
| 30   | 038      | Mayo River                | II Northwest                        | Sonora                            | 97 046        |
| 31   | 041      | ,<br>Yaqui River          | II Northwest                        | Sonora                            | 232 944       |
| 32   | 042      | Buenaventura              | VI Rio Bravo                        | Chihuahua                         | 7 718         |
| 33   | 043      | State of Nayarit          | VIII Lerma-Santiago-Pacific         | Nayarit                           | 47 253        |
| 34   | 044      | Jilotepec                 | IX Northern Gulf                    | State of Mexico                   | 5 507         |
| 35   | 045      | Tuxpan                    | IV Balsas                           | Michoacan de Ocampo               | 19 376        |
| 36   | 046      | Cacahoatan-Suchiate       | XI Southern Border                  | Chiapas                           | 8 473         |
| 37   | 048      | Ticul                     | XII Yucatan Peninsula               | Yucatan                           | 9 689         |
| 38   | 040      | Verde River               | IX Northern Gulf                    | San Luis Potosi                   | 3 507         |
| 39   | 049      | Acuña-Falcon              | VI Rio Bravo                        | Tamaulipas                        | 12 904        |
| 40   | 050      | Hermosillo Coast          | II Northwest                        | Sonora                            | 66 296        |
| 40   | 051      | State of Durango          | III Northern Pacific                | Durango                           | 29 306        |
| 41   | 052      | State of Colima           |                                     | Colima                            | 37 773        |
|      | 053      |                           | VIII Lerma-Santiago-Pacific         | Tlaxcala                          |               |
| 43   |          | Atoyac-Zahuapan           | IV Balsas                           |                                   | 4 247         |
| 44   | 057      | Amuco-Cutzamala           | IV Balsas                           | Guerrero                          | 34 515        |
| 45   | 059      | Blanco River              | XI Southern Border                  | Chiapas                           | 8 432         |
| 46   | 060      | El Higo (Panuco)          | IX Northern Gulf                    | Veracruz de Ignacio de la Llave   | 2 250         |
| 47   | 061      | Zamora                    | VIII Lerma-Santiago-Pacific         | Michoacan de Ocampo               | 17 982        |

(continues)

## (continued)

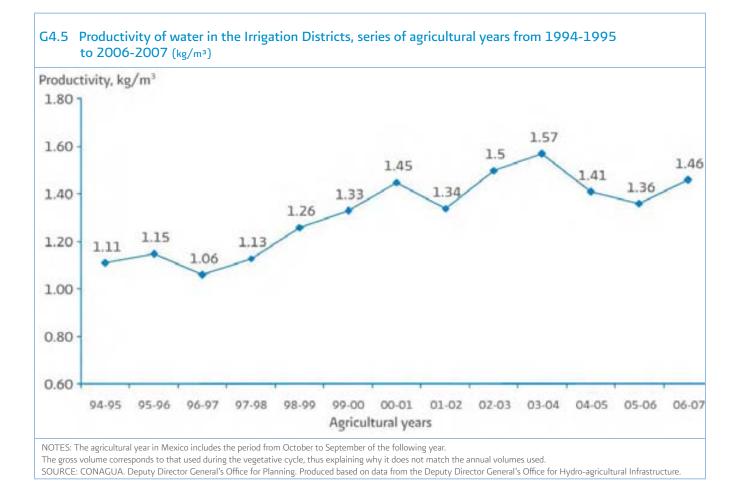
| No. | Code | Irrigation District                                  | Hydrological-Administrative<br>Region | State                           | Total surface<br>area<br>(hectares) |
|-----|------|------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------------|
| 48  | 063  | Guasave                                              | III Northern Pacific                  | Sinaloa                         | 100 125                             |
| 49  | 066  | Santo Domingo                                        | I Baja California Peninsula           | Baja California Sur             | 38 101                              |
| 50  | 068  | Tepecoacuilco-Quechultenango                         | IV Balsas                             | Guerrero                        | 1 991                               |
| 51  | 073  | La Concepcion                                        | XIII Waters of the Valley of Mexico   | State of Mexico                 | 964                                 |
| 52  | 074  | Mocorito                                             | III Northern Pacific                  | Sinaloa                         | 40 742                              |
| 53  | 075  | Fuerte River                                         | III Northern Pacific                  | Sinaloa                         | 227 518                             |
| 54  | 076  | El Carrizo Valley                                    | III Northern Pacific                  | Sinaloa                         | 51 681                              |
| 55  | 082  | ,<br>Blanco River                                    | X Golfo Centro                        | Veracruz de Ignacio de la Llave | 21 657                              |
| 56  | 083  | Papigochic                                           | II Northwest                          | Chihuahua                       | 8 947                               |
| 57  | 084  | Guaymas                                              | II Northwest                          | Sonora                          | 16 667                              |
| 58  | 085  | ,<br>La Begoña                                       | VIII Lerma-Santiago-Pacific           | Guanajuato                      | 10 823                              |
| 59  | 086  | Soto La Marina River                                 | IX Golfo Norte                        | Tamaulipas                      | 35 925                              |
| 60  | 087  | Rosario-Mezquite                                     | VIII Lerma-Santiago-Pacific           | Michoacan de Ocampo             | 63 144                              |
| 61  | 088  | Chiconautla                                          | XIII Waters of the Valley of Mexico   | State of Mexico                 | 4 498                               |
| 62  | 089  | El Carmen                                            | VI Rio Bravo                          | Chihuahua                       | 20 805                              |
| 63  | 090  | Lower Conchos River                                  | VI Rio Bravo                          | Chihuahua                       | 13 313                              |
| 64  | 092  | Panuco River, Las Animas                             | IX Northern Gulf                      | Tamaulipas                      | 44 483                              |
| 65  | 092  | Panuco River, Chicayan                               | IX Northern Gulf                      | Veracruz de Ignacio de la Llave | 54 882                              |
| 66  | 092  | Panuco River, Pujal Coy I                            | IX Northern Gulf                      | San Luis Potosi                 | 41 382                              |
| 67  | 093  | Tomatlan                                             | VIII Lerma-Santiago-Pacific           | Jalisco                         | 19 773                              |
| 68  | 094  | Southern Jalisco                                     | VIII Lerma-Santiago-Pacific           | Jalisco                         | 16 940                              |
| 69  | 095  | Atoyac                                               | V Southern Pacific                    | Guerrero                        | 5 016                               |
| 70  | 096  | ,<br>Arroyozarco                                     | IX Northern Gulf                      | State of Mexico                 | 18 866                              |
| 71  | 097  | ,<br>Lazaro Cardenas                                 | IV Balsas                             | Michoacan de Ocampo             | 71 593                              |
| 72  | 098  | Jose Maria Morelos                                   | IV Balsas                             | Michoacan de Ocampo             | 5 083                               |
| 73  | 099  | Quitupan-Magdalena                                   | IV Balsas                             | Michoacan de Ocampo             | 5 120                               |
| 74  | 100  | Alfajayucan                                          | XIII Waters of the Valley of Mexico   | Hidalgo                         | 39 21 1                             |
| 75  | 101  | Cuxtepeques                                          | XI Southern Border                    | Chiapas                         | 8 267                               |
| 76  | 102  | Hondo River                                          | XII Yucatan Peninsula                 | Quintana Roo                    | 27 182                              |
| 77  | 103  | Florido River                                        | VI Rio Bravo                          | Chihuahua                       | 8 964                               |
| 78  | 104  | Cuajinicuilapa (Ometepec)                            | V Southern Pacific                    | Guerrero                        | 6 720                               |
| 79  | 105  | Nexpa                                                | V Southern Pacific                    | Guerrero                        | 14 549                              |
| 80  | 107  | San Gregorio                                         | XI Southern Border                    | Chiapas                         | 11 227                              |
| 81  | 108  | Elota-Piaxtla                                        | III Northern Pacific                  | Sinaloa                         | 27 104                              |
| 8Z  | 109  | San Lorenzo River                                    | III Northern Pacific                  | Sinaloa                         | 69 399                              |
| 83  | 110  | Verde-Progreso River                                 | V Southern Pacific                    | Оахаса                          | 5 030                               |
| 84  | 111  | Presidio River                                       | III Northern Pacific                  | Sinaloa                         | 8 435                               |
| 85  | 112  | Ajacuba                                              | XIII Waters of the Valley of Mexico   | Hidalgo                         | 8 500                               |
|     |      | Irrigation Zone Labores<br>Viejas, Chihuahuaª        | VI Rio Bravo                          | Chihuahua                       | 3 712                               |
|     |      | Irrigation Zone Fuerte-Mayo,<br>Sinaloa <sup>b</sup> | III Northern Pacific                  | Sinaloa                         | 15 073                              |
|     |      | Irrigation Zone Fuerte-Mayo,<br>Sonora <sup>b</sup>  | III Northern Pacific                  | Sonora                          | 7 510                               |

NOTE: In 2005, the Irrigation District 081 State of Campeche became a Coordination of Irrigation Units. <sup>a</sup> The surface area of this irrigation zone depends operatively and administratively on the Irrigation District 005 Delicias, Chihuahua. <sup>b</sup> The surface area of this irrigation zone depends operatively and administratively on the Irrigation District 076 Carrizo Valley, Sinaloa. SOURCE: CONAGUA. Deputy Director General's Office for Hydro-agricultural Infrastructure.




NOTES: The agricultural year in Mexico includes the period from October to September of the following year

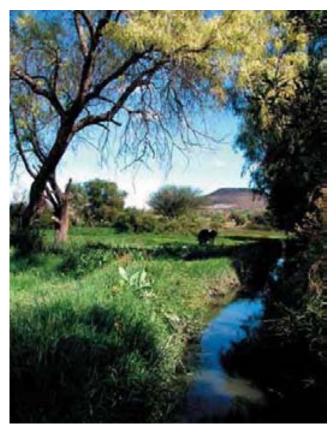
1 km³ = 1 000 hm³ = 1 billion m³.


\* Preliminary data.

SOURCE: CONAGUA. Deputy Director General's Office for Hydro-agricultural Infrastructure.

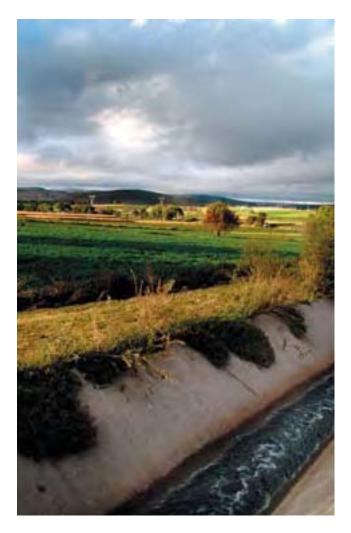


The productivity of water in the Irrigation Districts is a key indicator to evaluate the efficiency with which water is used for food production, and depends upon the efficiency with which water is piped to the plots and applied there. It should be added that this indicator may vary significantly according to the meteorological conditions.






With the creation of the CONAGUA in 1989 and the passing of the new National Water Law in 1992, the transfer of the Irrigation Districts to the users began, supported by a program of partial rehabilitation of the infrastructure that was assigned via irrigation modules to user associations.


Up to December 2007, 99% of the total surface of the Irrigation Districts had been transferred to the users. Up to that time, only three Districts had not been totally transferred to the users.

| T4.3 I                 | T4.3 Partially transferred Irrigation Districts, 2007<br>(Situation as of December 31 <sup>st</sup> ) |                    |                        |                           |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------|--------------------|------------------------|---------------------------|--|--|--|--|--|
| No.                    |                                                                                                       | Name               | State                  | Percentage<br>transferred |  |  |  |  |  |
| 003                    | Tul                                                                                                   | a                  | Hidalgo                | 53.87                     |  |  |  |  |  |
| 018                    | Col                                                                                                   | onias Yaquis       | Sonora                 | 83.39                     |  |  |  |  |  |
| 100                    | Alf                                                                                                   | ajayucan           | Hidalgo                | 98.16                     |  |  |  |  |  |
| SOURCE:<br>Infrastruct |                                                                                                       | A. Deputy Director | General's Office for H | ydro-agricultural         |  |  |  |  |  |



# **Irrigation Units**

The Irrigation Units (known as URDERALES in Spanish) are operated by small landholders, who in some cases are organized within the Units and in others not. As a result of their complexity, variety and generally reduced extension, no up-to-date and detailed information exists on the beneficiaries, areas, growth patterns, production statistics and volumes used in the Irrigation Units.



# T4.4 Number of Irrigation Units areas, by State, 1998

|      | State                           | Irrigation<br>Units<br>(number) | Total<br>irrigation<br>surface area<br>(ha) |
|------|---------------------------------|---------------------------------|---------------------------------------------|
| 1    | Aguascalientes                  | 1 203                           | 54 206                                      |
| Z    | Baja California                 | 1 800                           | 62 194                                      |
| 3    | Baja California Sur             | 130                             | 24 796                                      |
| 4    | Campeche                        | 316                             | 18 951                                      |
| 5    | Coahuila de Zaragoza            | 532                             | 149 313                                     |
| 6    | Colima                          | 2 399                           | 64 155                                      |
| 7    | Chiapas                         | 1 531                           | 56 080                                      |
| 8    | Chihuahua                       | 916                             | 185 087                                     |
| 9    | Federal District                | 17                              | 2 035                                       |
| 10   | Durango                         | 1 545                           | 106 055                                     |
| 11   | Guanajuato                      | 1 308                           | 291 606                                     |
| 12   | Guerrero                        | 5 160                           | 39 286                                      |
| 13   | Hidalgo                         | 495                             | 62 114                                      |
| 14   | Jalisco                         | 496                             | 161 633                                     |
| 15   | State of Mexico                 | 1880                            | 160 930                                     |
| 16   | Michoacan de Ocampo             | 2 360                           | 224 819                                     |
| 17   | Morelos                         | 253                             | 24 030                                      |
| 18   | Nayarit                         | 248                             | 55 417                                      |
| 19   | Nuevo Leon                      | 1 155                           | 143 012                                     |
| 20   | Oaxaca                          | 640                             | 52 635                                      |
| 21   | Puebla                          | 2 020                           | 122 290                                     |
| 22   | Queretaro Arteaga               | 564                             | 38 972                                      |
| 23   | Quintana Roo                    | 254                             | 10 946                                      |
| 24   | San Luis Potosi                 | 1 255                           | 101 306                                     |
| 25   | Sinaloa                         | 469                             | 45 013                                      |
| 26   | Sonora                          | 925                             | 128 027                                     |
| 27   | Tabasco                         | 186                             | 15 127                                      |
| 28   | Tamaulipas                      | 1148                            | 174 431                                     |
| 29   | Tlaxcala                        | 585                             | 29 710                                      |
| 30   | Veracruz de Ignacio de la Llave | 933                             | 96 373                                      |
| 31   | Yucatan                         | 1024                            | 35 732                                      |
| 32   | Zacatecas                       | 5 745                           | 219 751                                     |
| Tota | al                              | 39 492                          | 2 956 032                                   |
|      |                                 |                                 |                                             |

NOTE: Includes 974 units with a surface area of 102 000 ha, which corresponds to mixed Irrigation Units.

The data is from 2004, and there is no more up-to-date data.

SOURCE: CONAGUA. Deputy Director General's Office for Hydro-agricultural Infrastructure.

## **Technified Rainfed Districts**

In the tropical and subtropical plains of the country, which have an excess of humidity and constant floods, the federal government has created the Technified Rainfed Districts, in which hydraulic works have been built to remove the excess water.

Similarly to the Irrigation Districts, the Technified Rainfed Districts have gradually been transferred to organized users.

|    | Code | Technified Rainfed District | Hydrological-<br>Administrative Region | State                              | Surface<br>(thousands<br>of ha) | Users<br>(number) |
|----|------|-----------------------------|----------------------------------------|------------------------------------|---------------------------------|-------------------|
| 1  | 001  | La Sierra                   | XI Southern Border                     | Tabasco                            | 32.1                            | 1 178             |
| 2  | 002  | Zanapa Tonala               | XI Southern Border                     | Tabasco                            | 106.9                           | 6 9 1 9           |
| 3  | 003  | Tesechoacan                 | X Central Gulf                         | Veracruz de Ignacio<br>de la Llave | 18.0                            | 1 139             |
| 4  | 005  | Pujal Coy II                | IX Northern Gulf                       | San Luis Potosi and<br>Tamaulipas  | 220.0                           | 9 987             |
| 5  | 006  | Acapetahua                  | XI Southern Border                     | Chiapas                            | 103.9                           | 5 050             |
| 6  | 007  | Centro de Veracruz          | X Central Gulf                         | Veracruz de Ignacio<br>de la Llave | 75.0                            | 6 367             |
| 7  | 008  | Oriente de Yucatan          | XII Yucatan Peninsula                  | Yucatan                            | 667.0                           | 25 021            |
| 8  | 009  | El Bejuco                   | III Northern Pacific                   | Nayarit                            | 25.4                            | 2 261             |
| 9  | 010  | San Fernando                | IX Northern Gulf                       | Tamaulipas                         | 505.0                           | 13 975            |
| 10 | 011  | Margaritas-Comitan          | XI Southern Border                     | Chiapas                            | 48.0                            | 5 397             |
| 11 | 012  | La Chontalpa                | XI Southern Border                     | Tabasco                            | 91.0                            | 5 000             |
| 12 | 015  | Edzna-Yohaltuna             | XII Yucatan Peninsula                  | Campeche                           | 85.1                            | 1 120             |
| 13 | 016  | Sanes Huastecaa             | XI Southern Border                     | Tabasco                            | 26.4                            | 1 321             |
| 14 | 017  | Tapachula                   | XI Southern Border                     | Chiapas                            | 94.3                            | 5 852             |
| 15 | 018  | Huixtla                     | XI Southern Border                     | Chiapas                            | 107.6                           | 6 010             |
| 16 | 020  | Margaritas-Pijijiapan       | XI Southern Border                     | Chiapas                            | 68.0                            | 4 712             |
| 17 | 023  | Isla Rodriguez-Clara        | X Central Gulf                         | Veracruz de Ignacio<br>de la Llave | 13.7                            | 627               |
| 18 | 024  | Zona Sur de Yucatan         | XII Yucatan Peninsula                  | Yucatan                            | 67.3                            | 880               |
| 19 | 025  | Rio Verde                   | XII Yucatan Peninsula                  | Campeche                           | 134.9                           | 1984              |
| 20 | 026  | Valle de Ucum <sup>a</sup>  | XII Yucatan Peninsula                  | Quintana Roo                       | 104.8                           | 1739              |
| 21 | 027  | Frailesca <sup>a</sup>      | XI Southern Border                     | Chiapas                            | 56.8                            | 3 083             |
| 22 | 035  | Los Naranjosª               | X Central Gulf                         | Veracruz de Ignacio<br>de la Llave | 92.6                            | 6 045             |

# 4.4 Drinking Water and Sanitation Infrastructure

#### Drinking water coverage

The CONAGUA considers that drinking water coverage includes those who have tap water in their household; outside of their household, but within the grounds; from a public tap or from another household. Covered inhabitants do not necessarily dispose of water of drinking quality.

Bearing in mind this definition and the results of the Census on Population and Housing from 2005, up to October 17<sup>th</sup> that year, 89.2% of the population had drinking water coverage. The CONAGUA estimates that at the end of 2007, the drinking water coverage was 89.9%. The following table shows the evolution of the drinking water coverage to the population of Mexico.

# T4.6 Composition of the national drinking water coverage, series of Censual years from 1990 to 2005

| Date                             | With tap<br>water<br>in their<br>grounds <sup>a</sup><br>(%) | Other<br>forms of<br>supply <sup>b</sup><br>(%) | Total<br>(%) |
|----------------------------------|--------------------------------------------------------------|-------------------------------------------------|--------------|
| March 12 <sup>th</sup> , 1990    | 75.4                                                         | 3.0                                             | 78.4         |
| November 5 <sup>th</sup> , 1995  | 83.0                                                         | 1.60                                            | 84.6         |
| February 14 <sup>th</sup> , 2000 | 83.3                                                         | 4.5                                             | 87.8         |
| October 17 <sup>th</sup> , 2005  | 87.1                                                         | 2.1                                             | 89.Z         |

NOTE: <sup>a</sup> Refers to tap water within their household, and outside of the household but within their grounds.

 $^{\rm b}$  Refers to water obtained by transport, from a public tap or from another household.

 $\ensuremath{\mathsf{SOURCE}}$  : CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube.

Analysis of the Information on Water in the Censuses from 1990 to 2005. September 2007.

National Water Program 2007-2012. This is how we're doing... Progress 2007 and Targets for 2008.

INEGI. General Censuses of Population and Housing. INEGI. Information

published in various formats.

#### Sanitation coverage

On the other hand, the CONAGUA considers that sanitation coverage includes those connected to the sanitation network or a septic tank, overflow, ravine, crevice, lake or sea. It should be added that for the purpose of this document, sanitation and sewerage are considered as synonyms.

Bearing in mind this definition and the results of the 2005 Census on Population and Housing, up to October 17<sup>th</sup> of that year, 85.6% of the population had sanitation coverage. The CONAGUA estimates that at the end of 2007, the sanitation coverage was 86.1%. The following table shows the evolution of the national sanitation coverage:

## T4.7 Composition of the national sanitation coverage, series of Censual years from 1990 to 2005

| Date                             | Connected<br>to the<br>public<br>network<br>(%) | Connected<br>to a septic<br>tank<br>(%) | Others <sup>a</sup><br>(%) | Total<br>(%) |
|----------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------|--------------|
| March 12 <sup>th</sup> , 1990    | 50.1                                            | 8.6                                     | 2.8                        | 61.5         |
| November 5 <sup>th</sup> , 1995  | 57.5                                            | 11.7                                    | 3.2                        | 72.4         |
| February 14 <sup>th</sup> , 2000 | 61.5                                            | 11.4                                    | 3.3                        | 76.Z         |
| October 17 <sup>th</sup> , 2005  | 67.6                                            | 15.9                                    | 2.1                        | 85.6         |

NOTE: a Refers to an overflow, ravine, crevice, lake or sea


SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube.

Analysis of the Information on Water in the Censuses from 1990 to 2005. September 2007.

National Water Program 2007-2012. This is how we're doing... Progress 2007 and Targets for 2008.

INEGI. General Censuses of Population and Housing. INEGI. Information published in various formats.



| T4.8 | Co |
|------|----|
|      |    |

3 Coverage of the population with drinking water and sanitation coverage, in urban and rural zones in Mexico. series of Censual years from 1990 to 2005

| Mexico, series of Censual years from 1990 to 2005 |                                                     |                                                       |                                                        |                                                       |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| Population                                        | 1990 Census<br>March 12 <sup>th</sup> , 1990<br>(%) | 1995 Census<br>November 5 <sup>th</sup> , 1995<br>(%) | 2000 Census<br>February 14 <sup>th</sup> , 2000<br>(%) | 2005 Census<br>October 17 <sup>th</sup> , 2005<br>(%) |  |  |  |  |  |
|                                                   |                                                     | Drinking water                                        |                                                        |                                                       |  |  |  |  |  |
| Urban                                             | 89.4                                                | 93.0                                                  | 94.6                                                   | 95.0                                                  |  |  |  |  |  |
| Rural                                             | 51.2                                                | 61.2                                                  | 68.0                                                   | 70.7                                                  |  |  |  |  |  |
| Total                                             | 78.4                                                | 84.6                                                  | 87.8                                                   | 89.2                                                  |  |  |  |  |  |
|                                                   |                                                     | Sanitation                                            |                                                        |                                                       |  |  |  |  |  |
| Urban                                             | 79.0                                                | 87.8                                                  | 89.6                                                   | 94.5                                                  |  |  |  |  |  |
| Rural                                             | 18.1                                                | 29.6                                                  | 36.7                                                   | 57.5                                                  |  |  |  |  |  |
| Total                                             | 61.5                                                | 72.4                                                  | 76.2                                                   | 85.6                                                  |  |  |  |  |  |
|                                                   |                                                     |                                                       |                                                        |                                                       |  |  |  |  |  |

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube.

INEGI. General Censuses of Population and Housing. INEGI. Information published in various formats.

In the following table, the drinking water and sanitation coverage is indicated by Hydrological-Administrative Region. It may be observed that the greatest backlogs in both aspects are found in the regions V Southern Pacific, XI Southern Border and X Central Gulf.

# T4.9 Coverage of the population with drinking water and sanitation by Hydrological-Administrative Region, series of Censual years from 1990 to 2005

|       |                                   | ,                          | _,,,,,,,,                  |                            |                            |                            |                            |                            |                            |
|-------|-----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Hydro | ological-Administrative<br>Region |                            |                            | g water<br>%)              |                            | Sanitation<br>(%)          |                            |                            |                            |
|       |                                   | Mar. 12 <sup>th</sup> , 90 | Nov. 05 <sup>th</sup> , 95 | Feb. 14 <sup>th</sup> , 00 | Oct. 17 <sup>th</sup> , 05 | Mar. 12 <sup>th</sup> , 90 | Nov. 05 <sup>th</sup> , 95 | Feb. 14 <sup>th</sup> , 00 | Oct. 17 <sup>th</sup> , 05 |
| I     | Baja California Peninsula         | 81.3                       | 87.4                       | 92.0                       | 92.9                       | 65.Z                       | 75.8                       | 80.6                       | 89.0                       |
| П     | Northwest                         | 89.7                       | 93.Z                       | 95.2                       | 94.8                       | 62.6                       | 71.5                       | 76.5                       | 84.1                       |
| 111   | Northern Pacific                  | 78.7                       | 85.6                       | 88.8                       | 89.0                       | 51.7                       | 63.9                       | 69.9                       | 82.6                       |
| IV    | Balsas                            | 72.8                       | 81.1                       | 83.Z                       | 84.4                       | 48.8                       | 63.0                       | 67.5                       | 81.4                       |
| V     | Southern Pacific                  | 59.Z                       | 69.0                       | 73.2                       | 73.5                       | 33.3                       | 46.5                       | 47.4                       | 63.3                       |
| VI    | Rio Bravo                         | 91.8                       | 94.4                       | 96.1                       | 96.1                       | 73.9                       | 84.0                       | 88.Z                       | 93.8                       |
| VII   | Central Basins of the<br>North    | 83.Z                       | 87.9                       | 90.9                       | 93.3                       | 55.4                       | 65.3                       | 73.3                       | 85.6                       |
| VIII  | Lerma-Santiago-Pacific            | 84.Z                       | 90.3                       | 92.2                       | 93.4                       | 68.0                       | 79.8                       | 82.5                       | 90.1                       |
| IX    | Northern Gulf                     | 57.6                       | 67.8                       | 75.5                       | 80.9                       | 33.9                       | 42.2                       | 50.0                       | 65.3                       |
| Х     | Central Gulf                      | 58.8                       | 64.6                       | 71.9                       | 77.2                       | 45.9                       | 55.9                       | 60.1                       | 74.8                       |
| XI    | Southern Border                   | 56.7                       | 65.4                       | 73.3                       | 74.4                       | 45.5                       | 62.3                       | 67.7                       | 80.7                       |
| XII   | Yucatan Peninsula                 | 74.0                       | 84.9                       | 91.9                       | 94.1                       | 45.1                       | 57.5                       | 63.2                       | 76.3                       |
| XIII  | Waters of the Valley<br>of Mexico | 92.5                       | 96.3                       | 96.9                       | 96.5                       | 85.9                       | 93.1                       | 94.4                       | 97.2                       |
| Total |                                   | 78.4                       | 84.6                       | 87.8                       | 89.Z                       | 61.5                       | 72.4                       | 76.2                       | 85.6                       |

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube.

INEGI. General Censuses of Population and Housing.

The greatest backlogs in drinking water coverage are to be found in Guerrero, Oaxaca and Chiapas, whereas for sanitation, Oaxaca, Guerrero and Yucatan are the states with the lowest percentages of coverage.

| State |                                    | Drinking water<br>(%)      |                            |                            | Sanitation<br>(%)          |                            |                            |                            |                            |
|-------|------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|       |                                    | Mar. 12 <sup>th</sup> , 90 | Nov. 05 <sup>th</sup> , 95 | Feb. 14 <sup>th</sup> , 00 | Oct. 17 <sup>th</sup> , 05 | Mar. 12 <sup>th</sup> , 90 | Nov. 05 <sup>th</sup> , 95 | Feb. 14 <sup>th</sup> , 00 | Oct. 17 <sup>th</sup> , 05 |
| 1     | Aguascalientes                     | 95.5                       | 98.0                       | 97.9                       | 97.8                       | 85.Z                       | 93.7                       | 94.5                       | 96.9                       |
| Ζ     | Baja California                    | 79.8                       | 86.7                       | 91.9                       | 93.8                       | 65.4                       | 76.0                       | 80.7                       | 88.9                       |
| 3     | Baja California Sur                | 89.4                       | 90.9                       | 92.5                       | 87.7                       | 64.4                       | 74.6                       | 79.9                       | 89.7                       |
| 4     | Campeche                           | 69.8                       | 78.3                       | 84.7                       | 88.4                       | 44.2                       | 58.5                       | 60.8                       | 78.4                       |
| 5     | Coahuila de Zaragoza               | 91.9                       | 94.6                       | 97.0                       | 97.3                       | 67.3                       | 76.1                       | 83.3                       | 91.5                       |
| 6     | Colima                             | 93.0                       | 95.8                       | 97.1                       | 97.8                       | 81.8                       | 93.9                       | 93.1                       | 98.Z                       |
| 7     | Chiapas                            | 57.3                       | 65.6                       | 73.5                       | 73.5                       | 38.4                       | 52.6                       | 59.3                       | 74.7                       |
| 8     | Chihuahua                          | 87.6                       | 91.8                       | 93.1                       | 92.9                       | 65.8                       | 79.0                       | 84.3                       | 89.8                       |
| 9     | Federal District                   | 96.1                       | 97.7                       | 97.9                       | 97.6                       | 93.3                       | 97.7                       | 98.1                       | 98.6                       |
| 10    | Durango                            | 84.6                       | 89.6                       | 91.6                       | 90.9                       | 52.5                       | 64.7                       | 71.8                       | 82.6                       |
| 11    | Guanajuato                         | 82.4                       | 88.9                       | 92.0                       | 93.4                       | 58.0                       | 70.6                       | 75.3                       | 85.8                       |
| 12    | Guerrero                           | 55.1                       | 64.7                       | 69.1                       | 68.0                       | 34.8                       | 46.3                       | 49.7                       | 64.Z                       |
| 13    | Hidalgo                            | 69.4                       | 79.5                       | 83.9                       | 87.2                       | 41.6                       | 56.2                       | 64.0                       | 79.1                       |
| 14    | Jalisco                            | 85.7                       | 91.3                       | 92.4                       | 93.3                       | 80.3                       | 89.5                       | 91.2                       | 95.8                       |
| 15    | State of Mexico                    | 84.6                       | 91.5                       | 92.8                       | 93.Z                       | 72.5                       | 83.4                       | 84.9                       | 91.2                       |
| 16    | Michoacan de Ocampo                | 78.2                       | 86.4                       | 88.Z                       | 89.4                       | 55.5                       | 69.3                       | 72.9                       | 84.Z                       |
| 17    | Morelos                            | 88.3                       | 90.3                       | 91.6                       | 91.6                       | 67.0                       | 81.2                       | 83.6                       | 92.6                       |
| 18    | Nayarit                            | 83.4                       | 86.7                       | 89.6                       | 91.4                       | 59.1                       | 75.0                       | 78.8                       | 90.9                       |
| 19    | Nuevo Leon                         | 92.9                       | 94.5                       | 95.6                       | 95.6                       | 80.8                       | 88.6                       | 91.1                       | 95.3                       |
| 20    | Oaxaca                             | 57.2                       | 67.0                       | 72.0                       | 73.3                       | 28.5                       | 42.0                       | 42.9                       | 60.0                       |
| 21    | Puebla                             | 70.2                       | 78.6                       | 82.8                       | 85.4                       | 45.3                       | 56.5                       | 62.8                       | 79.0                       |
| 22    | Queretaro Arteaga                  | 82.8                       | 89.Z                       | 92.3                       | 93.7                       | 54.0                       | 67.2                       | 73.7                       | 85.6                       |
| 23    | Quintana Roo                       | 88.7                       | 89.1                       | 93.8                       | 94.5                       | 54.3                       | 76.1                       | 81.3                       | 89.5                       |
| 24    | San Luis Potosi                    | 65.5                       | 73.5                       | 78.2                       | 82.7                       | 46.Z                       | 53.5                       | 59.Z                       | 74.2                       |
| 25    | Sinaloa                            | 79.8                       | 88.0                       | 91.8                       | 93.1                       | 53.5                       | 67.3                       | 73.1                       | 86.4                       |
| 26    | Sonora                             | 91.0                       | 94.0                       | 95.7                       | 95.Z                       | 64.9                       | 73.5                       | 78.2                       | 85.4                       |
| 27    | Tabasco                            | 55.4                       | 65.1                       | 72.8                       | 76.4                       | 60.6                       | 82.0                       | 84.4                       | 93.4                       |
| 28    | Tamaulipas                         | 80.9                       | 88.9                       | 94.1                       | 94.7                       | 57.8                       | 65.6                       | 73.4                       | 82.4                       |
| 29    | Tlaxcala                           | 90.9                       | 95.6                       | 96.3                       | 97.3                       | 57.1                       | 75.5                       | 81.9                       | 90.6                       |
| 30    | Veracruz de Ignacio de<br>la Llave | 57.5                       | 62.2                       | 69.9                       | 76.3                       | 50.1                       | 60.4                       | 64.6                       | 77.7                       |
| 31    | Yucatan                            | 70.2                       | 85.5                       | 93.7                       | 96.1                       | 42.1                       | 48.8                       | 54.6                       | 68.Z                       |
| 32    | Zacatecas                          | 74.8                       | 82.7                       | 88.0                       | 92.8                       | 45.0                       | 58.0                       | 69.3                       | 84.Z                       |
| Tota  | ıl                                 | 78.4                       | 84.6                       | 87.8                       | 89.Z                       | 61.5                       | 72.4                       | 76.2                       | 85.6                       |

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on:

CONAGUA. Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube.

INEGI. General Censuses of Population and Housing.

# Aqueducts

There are more than 3 000 kilometers of aqueducts in Mexico that take water to various cities and rural communities around the country, with a total capacity of more than 112 cubic meters per second.

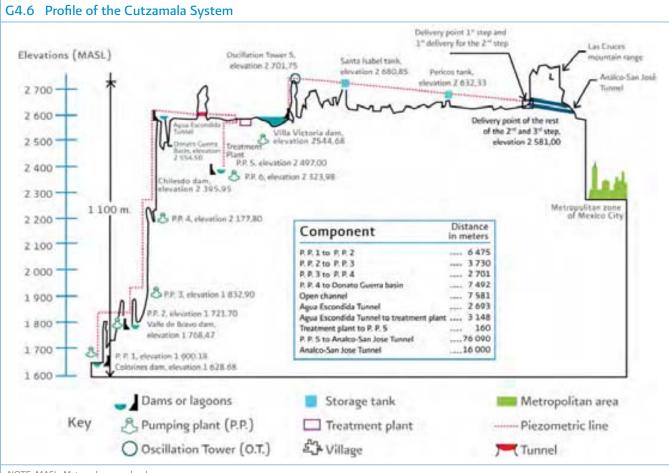
As regards their length and flow, the following stand out:

| No. | Aqueduct                                      | Hydrological-                                                                 | Length | Flow by         | Year of         | Supplies                                                                                                                                      | Operated by                                                                                     |
|-----|-----------------------------------------------|-------------------------------------------------------------------------------|--------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|     |                                               | Administrative<br>Region                                                      | (km)   | design<br>(L/s) | comple-<br>tion |                                                                                                                                               |                                                                                                 |
| 1   | Rio Colorado-<br>Tijuana                      | l Baja California<br>Peninsula                                                | 130    | 4 000           | 1982            | Cities of Tijuana and Tecate and<br>the village of La Rumorosa in<br>Baja California                                                          | Water Service Commission of<br>the State of Baja California<br>(COSAE)                          |
| Z   | Vizcaino-<br>Pacifico Norte                   | I Baja California<br>Peninsula                                                | 206    | 62              | 1990            | Localities of Bahia Asuncion,<br>Bahia Tortugas and the fishing<br>villages of Punta Abreojos in<br>Baja California                           | Water utility of the municipality<br>of Mulege, Baja California                                 |
| 3   | Cutzamala<br>System                           | IV Balsas and XIII<br>Waters of the Valley<br>of Mexico                       | 162    | 19 000          | 1993            | The Metropolitan Zone of the<br>Valley of Mexico with water from<br>the Valle de Bravo, Villa Victoria<br>and El Bosque dams, among<br>others | CONAGUA, Waters of the Valley<br>of Mexico River Basin Organi-<br>zation                        |
| 4   | Linares<br>Monterrey                          | VI Rio Bravo                                                                  | 133    | 5 000           | 1984            | The metropolitan area of the<br>city of Monterrey, Nuevo Leon,<br>with water from the Cerro<br>Prieto dam                                     | Water and Sanitation Services o<br>Monterrey, I. P. D.                                          |
| 5   | El Cuchillo-<br>Monterrey                     | VI Rio Bravo                                                                  | 91     | 5 000           | 1994            | The metropolitan area of the<br>city of Monterrey with water<br>from the El Cuchillo dam                                                      | Water and Sanitation Services of Monterrey. I. P. D                                             |
| 6   | Lerma                                         | VIII Lerma-Santiago-<br>Pacific and XIII<br>Waters of the Valley<br>of Mexico | 60     | 14 000          | 1975            | Mexico City with water from<br>the aquifers located in the upper<br>area of River Lerma                                                       | Water System of Mexico City<br>(SACM)                                                           |
| 7   | Armeria-<br>Manzanillo                        | VIII Lerma-Santiago-<br>Pacific                                               | 50     | 250             | 1987            | City of Manzanillo, Colima                                                                                                                    | Manzanillo Drinking Water,<br>Drainage and Sanitation Com-<br>mission, Colima                   |
| 8   | Chapala-<br>Guadalajara                       | VIII Lerma-Santiago-<br>Pacific                                               | 42     | 7 500           | 1991            | The metropolitan zone of the<br>city of Guadalajara with water<br>from Lake Chapala                                                           | Intermunicipal System for<br>Drinking Water and Sanitation<br>Services (SIAPA)                  |
| 9   | Presa Vicente<br>Guerrero-<br>Ciudad Victoria | IX Northern Gulf                                                              | 54     | 1000            | 1992            | Victoria City, Tamaulipas, with<br>water from the Vicente Guerrero<br>dam                                                                     | Municipal Drinking Water and<br>Sanitation Commission (COMA-<br>PA Victoria)                    |
| 10  | Uspanapa-<br>La Cangreja                      | X Central Gulf                                                                | 40     | 20 000          | 1985            | 22 industries located in the<br>southern part of the state of<br>Veracruz                                                                     | CONAGUA                                                                                         |
| 11  | Yurivia-<br>Coatzacoalcos<br>y Minatitlan     | X Central Gulf                                                                | 64     | 2 000           | 1987            | Cities of Coatzacoalcos and<br>Minatitlan, Veracruz with water<br>from the rivers Ocotal and<br>Tizizapa                                      | Coatzacoalcos Municipal Water<br>and Sanitation Commission, Ve-<br>racruz (CMAPS Coatzacoalcos) |
| 12  | Rio<br>Huitzilapan-<br>Xalapa                 | X Central Gulf                                                                | 55     | 1000            | 2000            | City of Xalapa de Enriquez, Ve-<br>racruz de Ignacio de la Llave                                                                              | Xalapa Municipal Water and<br>Sanitation Commission (CMAS)                                      |
| 13  | Chicbul-Ciudad<br>del Carmen                  | XII Yucatan Peninsula                                                         | 122    | 420             | 1975            | Localities of Sabancuy, Isla<br>Aguada and City of El Carmen,<br>Campeche                                                                     | Campeche Municipal Drinking<br>Water System City of El Car-<br>men, Campeche                    |

#### Cutzamala System

The Cutzamala System, which supplies 11 delegations of the Federal District and 11 municipalities of the State of Mexico, is one of the biggest drinking water supply systems in the world, not only for the quantity of water that it transports (approximately 480 million cubic meters every year), but also because of the difference in elevation (1 100 m) that it overcomes. The system is made up of 7 weirs and storage dams, 6 pumping stations and one water treatment plant with the characteristics that are shown in the following table.

The figure G4.6 shows the difference in elevation that has to be overcome from the lowest part of pumping plant No. 1 to deliver the water to Oscillation Tower No. 5 and then deliver it by gravity to the Metropolitan Zone of the Valley of Mexico.


| Element                   | Туре            | Capacity               | Elevation<br>(MALS) | Comments                                               |
|---------------------------|-----------------|------------------------|---------------------|--------------------------------------------------------|
| Tuxpan                    | Weir            | 5 hm³                  | 1 751               | Surcharge pool elevation height 1 763                  |
| El Bosque                 | Storage dam     | 202 hm³                | 1741                | Surcharge pool elevation height 1 743                  |
| xtapan del Oro            | Weir            | 0.5 hm³                | 1 650               | Surcharge pool elevation height 1 700                  |
| Colorines                 | Weir            | 1.5 hm³                | 1 629               | Surcharge pool elevation height 1 678                  |
| Valle de Bravo            | Storage dam     | 395 hm³                | 1768                | Surcharge pool elevation height 833                    |
| Villa Victoria            | Storage dam     | 186 hm³                | 2 545               | Surcharge pool elevation height 2 608                  |
| Chilesdo                  | Weir            | 1.5 hm³                | 2 396               | Surcharge pool elevation height 2 359                  |
| Pumping plant 1           | Pumps           | 20 m <sup>3</sup> /s   | 1 600               |                                                        |
| Pumping plant 2           | Pumps           | 24 m <sup>3</sup> /s   | 1 722               | Operates in conjunction with pumping plants 3 and 4    |
| Pumping plant 3           | Pumps           | 24 m <sup>3</sup> /s   | 1833                | Operates in conjunction with pumping plants 2 and 4    |
| Pumping plant 4           | Pumps           | 24 m <sup>3</sup> /s   | 2 179               | Operates in conjunction with pumping<br>plants 2 and 3 |
| Pumping plant 5           | Pumps           | 29.1 m <sup>3</sup> /s | 2 497               |                                                        |
| Pumping plant 6           | Pumps           | 5.1 m <sup>3</sup> /s  | 2 324               |                                                        |
| os Berros Treatment plant | Treatment plant | 20 m <sup>3</sup> /s   | 2 540               |                                                        |

# T4.12 Characteristics of the elements that make up the Cutzamala System

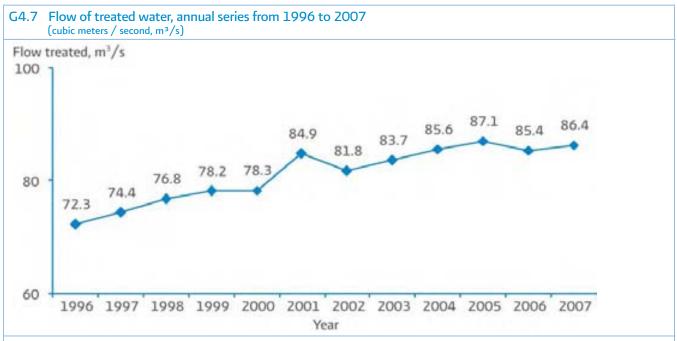
NOTE: MASL: Meters above sea level

SOURCE: CONAGUA. Waters of the Valley of Mexico River Basin Organization.





NOTE: MASL: Meters above sea level


SOURCE: CONAGUA. Waters of the Valley of Mexico River Basin Organization. Statistics from the Region XIII. 2007.

| Year | Delivery to the Federal District |                                  | Delivery to the      | State of Mexico                  | Total                |                     |
|------|----------------------------------|----------------------------------|----------------------|----------------------------------|----------------------|---------------------|
|      | Volume<br>(hm³/year)             | Average flow (m <sup>3</sup> /s) | Volume<br>(hm³/year) | Average flow (m <sup>3</sup> /s) | Volume<br>(hm³/year) | Average flow (m³/s) |
| 1991 | 238.92                           | 7.59                             | 78.11                | 2.49                             | 317.03               | 10.08               |
| 1992 | 224.89                           | 7.05                             | 89.66                | 2.81                             | 314.55               | 9.85                |
| 1993 | 251.79                           | 8.10                             | 90.44                | 2.91                             | 342.23               | 11.02               |
| 1994 | 304.34                           | 9.67                             | 106.31               | 3.38                             | 410.65               | 13.05               |
| 1995 | 309.12                           | 9.80                             | 121.39               | 3.85                             | 430.51               | 13.65               |
| 1996 | 305.63                           | 9.62                             | 145.66               | 4.57                             | 451.29               | 14.18               |
| 1997 | 320.71                           | 10.16                            | 159.17               | 5.05                             | 479.88               | 15.21               |
| 1998 | 313.07                           | 9.93                             | 141.64               | 4.49                             | 454.72               | 14.42               |
| 1999 | 319.30                           | 10.21                            | 159.45               | 5.10                             | 478.75               | 15.30               |
| 2000 | 306.70                           | 9.68                             | 176.55               | 5.57                             | 483.25               | 15.24               |
| 2001 | 303.14                           | 9.64                             | 173.35               | 5.51                             | 476.49               | 15.15               |
| 2002 | 303.66                           | 9.65                             | 175.99               | 5.60                             | 479.65               | 15.26               |
| 2003 | 310.70                           | 9.77                             | 185.23               | 5.83                             | 495.93               | 15.59               |
| 2004 | 310.67                           | 9.84                             | 177.73               | 5.64                             | 488.40               | 15.48               |
| 2005 | 310.39                           | 9.84                             | 182.80               | 5.64                             | 493.19               | 15.48               |
| 2006 | 303.53                           | 9.61                             | 177.26               | 5.61                             | 480.79               | 15.21               |
| 2007 | 303.90                           | 9.72                             | 174.56               | 5.58                             | 478.46               | 15.30               |

83

## **Treatment plants**

Water treatment plants condition the water quality of surface and/or groundwater sources for public urban use. In 2007, 86.4 m<sup>3</sup>/s were treated in the 541 plants in operation in the country.



SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from Deputy Director General's Office for Drinking Water, Sewerage, and Sanitation.

| T4.14 Treatment plants in operation, by Hydrological-Administrative Region, 2007 |                               |                              |                     |  |  |
|----------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------|--|--|
| Hydrological-Administrative Region                                               | Number of plants in operation | Capacity installed<br>(m³/s) | Flow treated (m³/s) |  |  |
| I Baja California Peninsula                                                      | 38                            | 11.17                        | 6.38                |  |  |
| II Northwest                                                                     | 20                            | 2.89                         | 1.58                |  |  |
| III Northern Pacific                                                             | 150                           | 9.08                         | 7.23                |  |  |
| IV Balsas                                                                        | 21                            | 23.18                        | 17.58               |  |  |
| V Southern Pacific                                                               | 8                             | 3.18                         | 2.59                |  |  |
| VI Rio Bravo                                                                     | 58                            | 25.96                        | 15.82               |  |  |
| VII Central Basins of the North                                                  | 48                            | 0.37                         | 0.25                |  |  |
| VIII Lerma-Santiago-Pacific                                                      | 73                            | 19.37                        | 12.11               |  |  |
| IX Northern Gulf                                                                 | 40                            | 6.59                         | 5.83                |  |  |
| X Central Gulf                                                                   | 7                             | 6.40                         | 4.58                |  |  |
| XI Southern Border                                                               | 40                            | 13.17                        | 8.22                |  |  |
| XII Yucatan Peninsula                                                            | 1                             | 0.01                         | 0.01                |  |  |
| XIII Waters of the Valley of Mexico                                              | 37                            | 5.12                         | 4.23                |  |  |
| Total                                                                            | 541                           | 126.49                       | 86.39               |  |  |

<sup>a</sup> Includes the Los Berros treatment plant, in the locality of the same name in the municipality of Villa de Allende, State of Mexico, which is part of the Cutzamala System and is operated by the Waters of the Valley of Mexico River Basin Organization.

SOURCE: CONAGUA. Deputy Director General's Office for Drinking Water, Sewerage, and Sanitation.

| State                              | Number of plants in operation | Capacity installed<br>(m³/s) | Flow treated (m³/s) |
|------------------------------------|-------------------------------|------------------------------|---------------------|
| 1 Aguascalientes                   | 2                             | 0.04                         | 0.02                |
| 2 Baja California                  | 26                            | 10.70                        | 6.02                |
| 3 Baja California Sur              | 12                            | 0.47                         | 0.36                |
| 4 Campeche                         | 2                             | 0.03                         | 0.02                |
| 5 Coahuila de Zaragoza             | 18                            | 2.13                         | 1.71                |
| 6 Colima                           | 25                            | 0.01                         | 0.01                |
| 7 Chiapas                          | 4                             | 4.50                         | 2.51                |
| 8 Chihuahua                        | 4                             | 0.65                         | 0.38                |
| 9 Federal District                 | 33                            | 3.66                         | 3.01                |
| O Durango                          | 30                            | 0.03                         | 0.02                |
| .1 Guanajuato                      | 9                             | 0.34                         | 0.28                |
| .2 Guerrero                        | 11                            | 3.28                         | 2.97                |
| .3 Hidalgo                         | 2                             | 0.13                         | 0.13                |
| 4 Jalisco                          | 24                            | 16.20                        | 9.49                |
| .5 State of Mexico                 | 10                            | 22.14                        | 16.72               |
| .6 Michoacan de Ocampo             | 6                             | 2.95                         | 2.50                |
| 7 Morelos                          | 0                             | 0.00                         | 0.00                |
| 8 Nayarit                          | 0                             | 0.00                         | 0.00                |
| .9 Nuevo Leon                      | 8                             | 14.40                        | 7.15                |
| 20 Oaxaca                          | 6                             | 1.29                         | 0.77                |
| 21 Puebla                          | 4                             | 0.72                         | 0.55                |
| 22 Queretaro Arteaga               | 6                             | 0.27                         | 0.21                |
| 23 Quintana Roo                    | 0                             | 0.00                         | 0.00                |
| 24 San Luis Potosi                 | 14                            | 1.13                         | 0.82                |
| 25 Sinaloa                         | 142                           | 9.07                         | 7.22                |
| 26 Sonora                          | 20                            | 2.89                         | 1.58                |
| 27 Tabasco                         | 35                            | 8.65                         | 5.70                |
| 28 Tamaulipas                      | 55                            | 14.22                        | 11.49               |
| 29 Tlaxcala                        | 0                             | 0.00                         | 0.00                |
| 30 Veracruz de Ignacio de la Llave | 8                             | 6.60                         | 4.76                |
| 31 Yucatan                         | 0                             | 0.00                         | 0.00                |
| 32 Zacatecas                       | 25                            | 0.005                        | 0.005               |
| Total                              | 541                           | 126.49                       | 86.39               |

SOURCE: CONAGUA. Deputy Director General's Office for Drinking Water, Sewerage, and Sanitation.

| T4.16 Mai | n treatment | processes | applied, 2007 |  |
|-----------|-------------|-----------|---------------|--|
|-----------|-------------|-----------|---------------|--|

| Central process               | Purpose                         | Pla | Plants |       | Flow treated |  |
|-------------------------------|---------------------------------|-----|--------|-------|--------------|--|
|                               |                                 | No. | %      | m³/s  | %            |  |
| Softening                     | Elimination of hardness         | 11  | 2.0    | 0.65  | 0.75         |  |
| Adsorption                    | Elimination of organic traces   | 13  | 2.4    | 1.27  | 1.47         |  |
| Conventional treatment        | Elimination of suspended solids | 184 | 34.0   | 58.25 | 67.43        |  |
| Patented treatment            | Elimination of suspended solids | 137 | 25.3   | 6.58  | 7.62         |  |
| Reversible electrodialysis    | Elimination of dissolved solids | 2   | 0.4    | 0.12  | 0.14         |  |
| Direct filtration             | Elimination of suspended solids | 58  | 10.7   | 14.58 | 16.87        |  |
| Slow filters                  | Elimination of suspended solids | 6   | 1.1    | 0.04  | 0.05         |  |
| Reverse osmosis               | Elimination of dissolved solids | 114 | 21.1   | 1.43  | 1.65         |  |
| Removal of iron and manganese |                                 | 16  | 3.0    | 3.48  | 4.02         |  |
| Total                         |                                 | 541 | 100.0  | 86.39 | 100.0        |  |

85

# 4.5 Water Treatment and Reuse

# Wastewater discharges

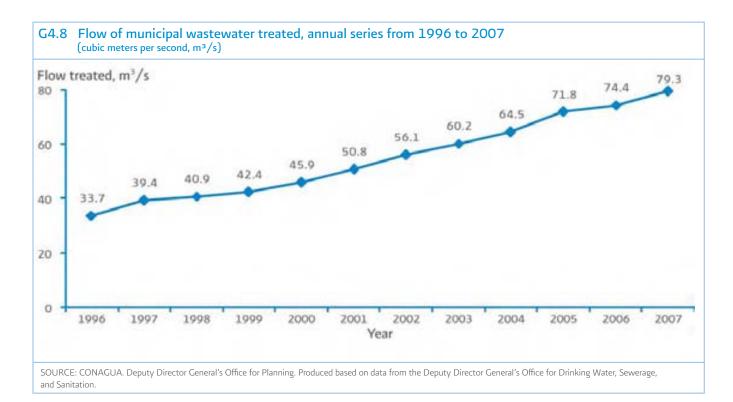
Wastewater discharges are classified as either municipal of industrial. The former correspond to those which are managed in the municipal urban and rural sewerage systems, whereas the latter are those that are discharged directly to national receiving water bodies, as is the case for self-supplying industry.

## Wastewater treatment

#### Municipal wastewater treatment plants

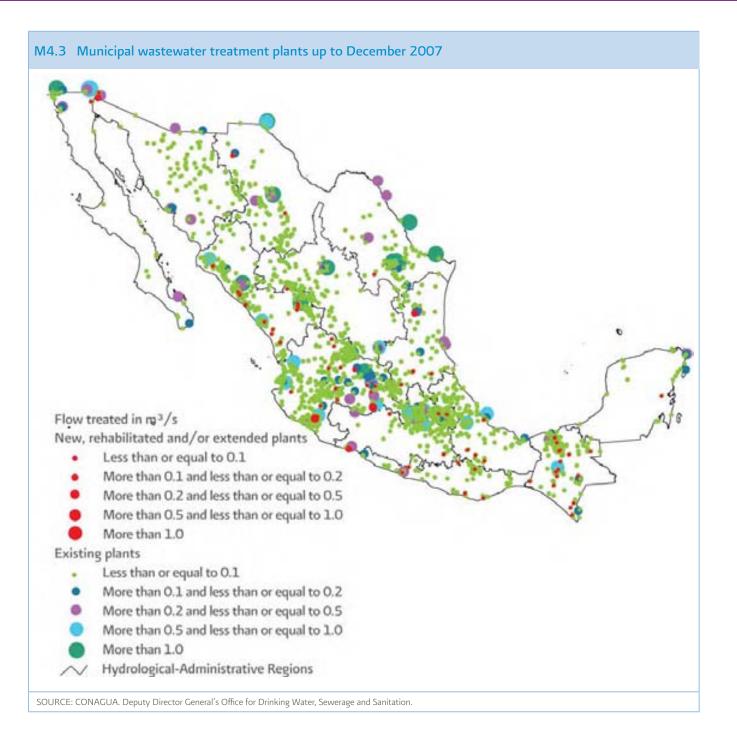
In 2007, the 1 710 plants in operation in Mexico treated 79.3 m<sup>3</sup>/s, or 38.3% of the 207 m<sup>3</sup>/s, collected in sewerage systems.

# T4.17 Municipal and non-municipal wastewater discharges, 2007


| Urban centers (municipal discharges) |            |                                        |  |  |  |  |
|--------------------------------------|------------|----------------------------------------|--|--|--|--|
| Wastewater                           | 7.66       | km³/year (243 m³/s)                    |  |  |  |  |
| Collected in sewerage                | 6.53       | km³/year (207 m³/s)                    |  |  |  |  |
| Treated                              | 2.50       | km³/year (79.3 m³/s)                   |  |  |  |  |
| Generated                            | 2.07       | Millions of tons of $BOD_5$ per year   |  |  |  |  |
| Collected in sewerage                | 1.76       | Millions of tons of $BOD_{5}$ per year |  |  |  |  |
| Removed from<br>treatment systems    | 0.53       | Millions of tons of $BOD_{5}$ per year |  |  |  |  |
| Industrial uses (non-n               | nunicipal) |                                        |  |  |  |  |
| Wastewater                           | 5.98       | km³/year (188.7 m³/s)                  |  |  |  |  |
| Treated                              | 0.94       | km³/year (29.9 m³/s)                   |  |  |  |  |
| Generated                            | 6.95       | Millions of tons of $BOD_{S}$ per year |  |  |  |  |
| Removed from<br>treatment systems    | 1.10       | Millions of tons of $BOD_{s}$ per year |  |  |  |  |

NOTE: BOD, Five-day Biochemical Oxygen Demand.

 $1 \text{ km}^3 = 1 \text{ 000 hm}^3 = 1 \text{ billion m}^3.$ 


SOURCE: CONAGUA. Deputy Director General's Office for Drinking Water, Sewerage, and Sanitation and Deputy Director General's Office for Technical Affairs.



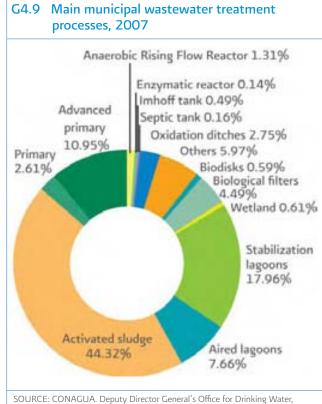


The following table indicates the wastewater treatment plants in operation by Hydrological-Administrative Region.

| Hydrological-Administrative Region  | Number of plants<br>in operation | Capacity installed<br>(m³/s) | Flow treated (m³/s) |
|-------------------------------------|----------------------------------|------------------------------|---------------------|
| I Baja California Peninsula         | 41                               | 7.71                         | 5.77                |
| II Northwest                        | 80                               | 4.28                         | 3.09                |
| III Northern Pacific                | 229                              | 8.08                         | 6.16                |
| IV Balsas                           | 138                              | 7.24                         | 5.13                |
| V Southern Pacific                  | 78                               | 2.55                         | 1.58                |
| VI Rio Bravo                        | 181                              | 25.53                        | 21.78               |
| VII Central Basins of the North     | 106                              | 5.15                         | 4.01                |
| VIII Lerma-Santiago-Pacific         | 421                              | 22.55                        | 17.27               |
| IX Northern Gulf                    | 84                               | 2.26                         | 1.96                |
| X Central Gulf                      | 122                              | 4.67                         | 2.64                |
| XI Southern Border                  | 95                               | 3.33                         | 2.50                |
| XII Yucatan Peninsula               | 52                               | 2.24                         | 1.72                |
| XIII Waters of the Valley of Mexico | 83                               | 10.70                        | 5.70                |
| Total                               | 1 710                            | 106.27                       | 79.29               |



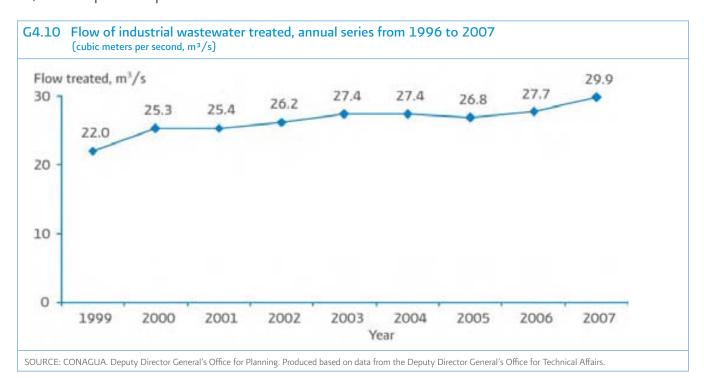
| Hydraulic Infrastru | icture 4 |
|---------------------|----------|
|---------------------|----------|


|    | State                              | State, 200<br>Number of | Capacity  | Flow    |
|----|------------------------------------|-------------------------|-----------|---------|
|    |                                    | plants in               | installed | treated |
|    |                                    | operation               | (m³/s)    | (m³∕s)  |
| 1  | Aguascalientes                     | 108                     | 3.91      | 3.03    |
| Ζ  | Baja California                    | 25                      | 6.52      | 4.93    |
| 3  | Baja California Sur                | 16                      | 1.20      | 0.84    |
| 4  | Campeche                           | 10                      | 0.08      | 0.05    |
| 5  | Coahuila de<br>Zaragoza            | 20                      | 3.77      | 2.97    |
| 6  | Colima                             | 50                      | 1.44      | 0.95    |
| 7  | Chiapas                            | 24                      | 1.51      | 1.18    |
| 8  | Chihuahua                          | 119                     | 8.72      | 6.31    |
| 9  | Federal District                   | 27                      | 6.48      | 2.81    |
| 10 | Durango                            | 165                     | 3.53      | 2.58    |
| 11 | Guanajuato                         | 36                      | 5.74      | 4.26    |
| 12 | Guerrero                           | 35                      | 1.94      | 1.07    |
| 13 | Hidalgo                            | 12                      | 0.22      | 0.21    |
| 14 | Jalisco                            | 96                      | 3.77      | 3.39    |
| 15 | State of Mexico                    | 75                      | 7.22      | 4.90    |
| 16 | Michoacan de<br>Ocampo             | 25                      | 3.52      | 2.47    |
| 17 | Morelos                            | 27                      | 1.33      | 1.06    |
| 18 | Nayarit                            | 60                      | 1.96      | 1.20    |
| 19 | Nuevo Leon                         | 61                      | 13.09     | 11.87   |
| 20 | Оахаса                             | 65                      | 0.91      | 0.69    |
| 21 | Puebla                             | 67                      | 3.02      | 2.42    |
| 22 | Queretaro Arteaga                  | 63                      | 1.11      | 0.71    |
| 23 | Quintana Roo                       | 29                      | 2.08      | 1.60    |
| 24 | San Luis Potosi                    | 19                      | 2.10      | 1.73    |
| 25 | Sinaloa                            | 120                     | 5.02      | 4.18    |
| 26 | Sonora                             | 66                      | 4.19      | 3.00    |
| 27 | Tabasco                            | 70                      | 1.81      | 1.32    |
| 28 | Tamaulipas                         | 33                      | 3.63      | 3.57    |
| 29 | Tlaxcala                           | 52                      | 1.23      | 0.87    |
| 30 | Veracruz de Ignacio<br>de la Llave | 87                      | 4.68      | 2.65    |
| 31 | Yucatan                            | 13                      | 0.08      | 0.07    |
| 32 | Zacatecas                          | 35                      | 0.48      | 0.42    |
|    | Total                              | 1 710                   | 106.27    | 79.29   |

| T4.20 | Main municipal wastewater treatment |
|-------|-------------------------------------|
|       | processes, 2007                     |

| processes, 2007       |        |                           |            |  |  |  |
|-----------------------|--------|---------------------------|------------|--|--|--|
| Process               | Number | Flow<br>treated<br>(m³/s) | Percentage |  |  |  |
| Biodisks              | 6      | 0.47                      | 0.59%      |  |  |  |
| Biological filters    | 74     | 3.56                      | 4.49%      |  |  |  |
| Stabilization lagoons | 646    | 14.24                     | 17.96%     |  |  |  |
| Aired lagoons         | 26     | 6.08                      | 7.66%      |  |  |  |
| Activated sludge      | 417    | 35.14                     | 44.32%     |  |  |  |
| Primary               | 13     | 2.07                      | 2.61%      |  |  |  |
| Advanced primary      | 14     | 8.68                      | 10.95%     |  |  |  |
| A.R.F.R.ª             | 111    | 1.04                      | 1.31%      |  |  |  |
| Enzymatic reactor     | 59     | 0.11                      | 0.14%      |  |  |  |
| Imhoff tank           | 59     | 0.39                      | 0.49%      |  |  |  |
| Septic tank           | 77     | 0.13                      | 0.16%      |  |  |  |
| Wetland               | 130    | 0.48                      | 0.61%      |  |  |  |
| Oxidation ditches     | 20     | 2.18                      | 2.75%      |  |  |  |
| Others                | 58     | 4.73                      | 5.97%      |  |  |  |
| Total                 | 1 710  | 79.29                     | 100.0%     |  |  |  |
|                       |        |                           |            |  |  |  |

NOTE: <sup>a</sup> Anaerobic Rising Flow Reactor.


SOURCE: CONAGUA. Deputy Director General's Office for Drinking Water, Sewerage and Sanitation.



SOURCE: CONAGUA. Deputy Director General's Office for Drinking Water, Sewerage and Sanitation.

## Industrial wastewater treatment plants

In 2007, industry treated 29.9  $m^3/s$  of wastewater, in 2 021 plants in operation nationwide.



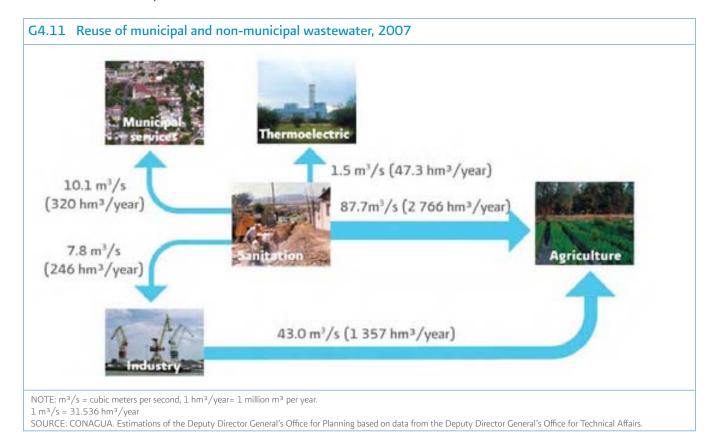
| т4.         | T4.21 Industrial wastewater treatment plants in operation, by State, 2007 |                                     |                                              |                                        |  |
|-------------|---------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------|--|
|             | State                                                                     | Number of<br>plants in<br>operation | Capacity<br>installed<br>(m <sup>3</sup> /s) | Flow<br>treated<br>(m <sup>3</sup> /s) |  |
| 1           | Aguascalientes                                                            | 46                                  | 0.23                                         | 0.11                                   |  |
| Z           | Baja California                                                           | 174                                 | 0.44                                         | 0.15                                   |  |
| 3           | Baja California Sur                                                       | 7                                   | 0.01                                         | 0.01                                   |  |
| 4           | Campeche                                                                  | 49                                  | 0.49                                         | 0.16                                   |  |
| 5           | Coahuila de<br>Zaragoza                                                   | 70                                  | 0.95                                         | 0.64                                   |  |
| 6           | Colima                                                                    | 8                                   | 0.44                                         | 0.31                                   |  |
| 7           | Chiapas                                                                   | 18                                  | 0.69                                         | 0.69                                   |  |
| 8           | Chihuahua                                                                 | 20                                  | 0.66                                         | 0.29                                   |  |
| 9           | Federal Distrit                                                           | 123                                 | 0.41                                         | 0.41                                   |  |
| 10          | Durango                                                                   | 33                                  | 0.68                                         | 0.34                                   |  |
| 11          | Guanajuato                                                                | 45                                  | 0.40                                         | 0.18                                   |  |
| 12          | Guerrero                                                                  | 7                                   | 0.05                                         | 0.04                                   |  |
| 13          | Hidalgo                                                                   | 41                                  | 1.65                                         | 0.98                                   |  |
| 14          | Jalisco                                                                   | 33                                  | 1.51                                         | 1.51                                   |  |
| 15          | State of Mexico                                                           | 292                                 | 3.75                                         | 2.75                                   |  |
| 16          | Michoacan de<br>Ocampo                                                    | 45                                  | 3.55                                         | 2.47                                   |  |
| (continues) |                                                                           |                                     |                                              |                                        |  |

(continued)

| т4.: | T4.21 Industrial wastewater treatment plants in operation, by State, 2007 |                                     |                                 |                           |  |
|------|---------------------------------------------------------------------------|-------------------------------------|---------------------------------|---------------------------|--|
|      | State                                                                     | Number of<br>plants in<br>operation | Capacity<br>installed<br>(m³/s) | Flow<br>treated<br>(m³/s) |  |
| 17   | Morelos                                                                   | 80                                  | 2.83                            | 2.72                      |  |
| 18   | Nayarit                                                                   | 4                                   | 0.16                            | 0.16                      |  |
| 19   | Nuevo Leon                                                                | 83                                  | 4.13                            | 3.00                      |  |
| 20   | Oaxaca                                                                    | 13                                  | 1.08                            | 0.76                      |  |
| 21   | Puebla                                                                    | 97                                  | 0.62                            | 0.43                      |  |
| 22   | Queretaro Arteaga                                                         | 128                                 | 1.11                            | 0.51                      |  |
| 23   | Quintana Roo                                                              | 2                                   | 0.01                            | 0.01                      |  |
| 24   | San Luis Potosi                                                           | 74                                  | 1.36                            | 0.63                      |  |
| 25   | Sinaloa                                                                   | 42                                  | 2.82                            | 0.46                      |  |
| 26   | Sonora                                                                    | 23                                  | 0.36                            | 0.16                      |  |
| 27   | Tabasco                                                                   | 108                                 | 0.61                            | 0.15                      |  |
| 28   | Tamaulipas                                                                | 46                                  | 1.60                            | 0.83                      |  |
| 29   | Tlaxcala                                                                  | 107                                 | 0.30                            | 0.26                      |  |
| 30   | Veracruz de<br>Ignacio de la Llave                                        | 160                                 | 11.63                           | 8.64                      |  |
| 31   | Yucatan                                                                   | 36                                  | 0.11                            | 0.07                      |  |
| 32   | Zacatecas                                                                 | 7                                   | 0.15                            | 0.04                      |  |
| Tota |                                                                           | 2 021                               | 44.79                           | 29.87                     |  |
| SOU  | RCE: CONAGUA. Deputy                                                      | Director General's                  | Office for Techr                | iical Affairs.            |  |

# 90

| T4.22 Types of industrial wast                                   | T4.22 Types of industrial wastewater treatment, 2007                                                                                       |                  |                |            |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------|--|--|--|--|--|--|--|--|
| Type of treatment                                                | Purpose                                                                                                                                    | No. of<br>plants | Flow<br>(m³/s) | Percentage |  |  |  |  |  |  |  |  |
| Primary                                                          | Adjusting the pH and removing organic material,<br>and/or inorganic materials in suspension with a size<br>equal to or greater than 0.1 mm | 589              | 10.63          | 35.6       |  |  |  |  |  |  |  |  |
| Inorganic in suspension with a size equal to or more than 0.1 mm |                                                                                                                                            |                  |                |            |  |  |  |  |  |  |  |  |
| Secondary                                                        | Removing colloidal and dissolved organic materials                                                                                         | 1119             | 15.09          | 50.5       |  |  |  |  |  |  |  |  |
| Tertiary                                                         | Removing dissolved materials that include gases,<br>natural and synthetic organic substances, ions,<br>bacteria and viruses                | 59               | 0.64           | 2.1        |  |  |  |  |  |  |  |  |
| Not specified                                                    |                                                                                                                                            | 254              | 3.51           | 11.8       |  |  |  |  |  |  |  |  |
| Total                                                            |                                                                                                                                            | 2 021            | 29.87          | 100.0      |  |  |  |  |  |  |  |  |
| SOURCE: CONAGUA. Deputy Director General's                       | Office for Technical Affairs.                                                                                                              |                  |                |            |  |  |  |  |  |  |  |  |

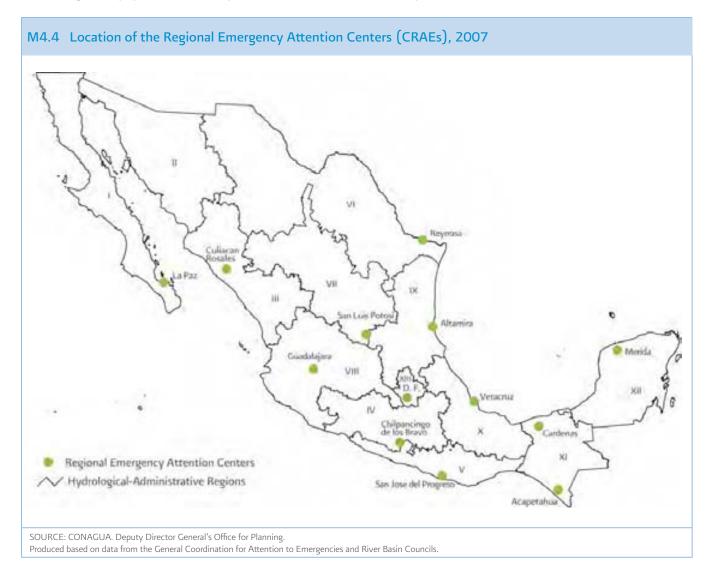

### Wastewater reuse

It is estimated that in Mexico in 2007, 4722 million cubic meters of water were reused (equivalent to a flow of  $150 \text{ m}^3/\text{s}$ ).

In the reuse of water of municipal origin, the transfer of wastewater collected in sewerage networks to agricultural crops stands out. To a lesser degree wastewater is also used in industry, as well as thermoelectric stations, as is the case in the Villa de Reyes thermoelectric station in San Luis Potosi.

In the reuse of industrial wastewater (non municipal), the wastewater used by the sugar industry in growing sugar cane in the state of Veracruz stands out.

In the following figure the different transfers of water between uses can be identified.




# 4.6 Emergency Attention

The CONAGUA has set up 13 Regional Emergency Attention Centers (CRAEs in Spanish) in various areas of the country, with the aim of supporting the states and municipalities in the supply of drinking water and sanitation in situations of risk.

Among the equipment at the disposal of the CRAEs

are mobile water treatment plants, pumping equipment, independent electricity plants, pipe trucks and transport equipment for the machinery. This emergency attention is carried out by the CONAGUA in coordination with the states, municipalities and federal dependences.



# Chapter 5







# Water Management Tools

In this chapter, the country's legal, normative, economic financial and consultation tools are presented, which aim to foster a responsible use of water and contribute to its preservation.

This chapter also indicates the investments and budgets in the drinking water, sanitation and sewerage sub-sector, applied by various stakeholders in water management in Mexico. New maps of availability of published groundwater and surface water are included, and on the subject of tariffs, a new section has been added.

Amongst the participation mechanisms, the River Basin Councils are fundamental, so a whole section has been included on them and their auxiliary bodies.

Finally, in several sections the relationship between the CONAGUA and other agencies and institutions is mentioned, as well as the evolution of its budget, among other issues.

# **5.1 Institutions Related with Water** in Mexico

The National Water Commission of Mexico (CONAGUA), an administrative, normative, technical, consultative and decentralized agency of the Ministry of the Environment and Natural Resources (SEMARNAT), has the following:

### Mission

To manage and preserve the nation's water and its inherent public goods to achieve a sustainable use of these resources, with the co-responsibility of the three levels of government and society-at-large.

## Vision

To be a technical authority and a promoter of the participation of society and governmental instances in Integrated Water Resources Management and its inherent public goods.

Up to December 2007, the CONAGUA had 14 592 employees, of which 3 965 occupied upper and middle management positions and 10 627 corresponded to staff of the basic and mid-level payroll. 84% of the staff was assigned to the River Basin Organizations and Local Offices and the remaining 16% to the central offices. It is worth adding that the institution's staff has been reduced significantly. In 1989, the year of creation of the CONAGUA, it had 38 188 members of staff whereas in 2000 it had 21 599. It was in this year that the Federal Government's Voluntary Retirement Program commenced, which contributed to the present reduction in staff numbers.

In order to carry out the functions assigned to it, the CONAGUA works in conjunction with various federal, state and municipal instances, as well as water user associations and companies and institutions of the private sector and civil society. The following table shows the main institutions with which it coordinates for the achievement of the goals of the 2007-2012 National Water Program.

According to article 115 of the Constitution of Mexico, municipalities are responsible for providing drinking water, sewerage and sanitation services.

To carry out these tasks, municipalities generally resort to drinking water, sewerage and sanitation utilities.

| Institution                           | Example of the coordination carried out                                                                                                                                                                                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ministry of Finance and Public Credit | Defining the annual budget assigned to the institutions related to the water<br>sector and the corresponding calendar of payments, contributing to favoring a<br>flexible and appropriate use of the assigned resources; if applicable, authorizing<br>multi-annual investment programs           |
| Congress of the Union                 | Agreeing on the policies and budget required for water resources, as well as evalu-<br>ating and if appropriate approving the requests for modification of the National<br>Water Law and its By-Laws.                                                                                             |
| States and municipalities             | Programs and actions to restore the country's watersheds, support the supply of drinking water and sanitation services to the population, stimulate the efficient use of water in productive activities, such as irrigation and industry, and actions for the attention of meteorological events. |
| Ministry of Health                    | Support the municipalities so that their inhabitants receive water suitable to be consumed and foster among the population the habits and customs associated with hygiene that will afford them a better standard of living.                                                                      |

# T5.1 Institutions and organizations with which the National Water Commission coordinates

(continues)

#### (continued)

#### T5.1 Institutions and organizations with which the National Water Commission coordinates Institution Example of the coordination carried out Ministry of Public Education Actions aimed at school children to promote the efficient use and preservation of water, including specific sections on taking care of water and the environment in text books. Ministry of Agriculture, Livestock, Actions to promote a more efficient use of water in agriculture and to increase the Rural Development, Fishing and Food productivity of agriculture based on the country's food requirements, the type of soil and the availability of water. Necessary programs and actions for the prevention and attention of droughts Ministry of the Interior and floods. Federal Commission for Electricity Build and operate dams which are used to generate electricity, water supply to cities, irrigation or flood protection. **Ministry of Foreign Affairs** Promote the technical and financial coordination with agencies and institutions of the United States of America to carry out programs associated with the management and preservation of water in the transboundary catchments and aquifers. Ministry of Tourism Actions to attain a better use and preservation of water in tourist sites and recreational areas. Ministry of the Economy Take part in the formulation of the official standards for the water sector. National Forestry Commission Soil and water conservation actions in the upstream parts of catchments, with the aim of decreasing the dragging of solids to riverbeds and dams. Attorney General's Office for Actions to monitor water quality in the country's rivers and lakes and applying **Environmental Protection** the corresponding sanctions. Mexican Institute for Carry out water-related research and technological actions. Water Technology Promote actions of good governance and institutional development, coordinate Ministry of Civil Service the actions associated with the certification of capacities in the federal civil service. **River Basin Councils and** Take part in the Integrated Water Resources Management of watersheds and aquifers, in such a way that social wellbeing, economic development and the their auxiliary bodies preservation of the environment are favored. Water Advisory Council Strategies for a better use and preservation of water. **Research and Technology Institutes** Research and technological development for the preservation of water. Ministry of Social Development Support rural communities for the development of drinking water, sewerage and sanitation infrastructure. SOURCE: CONAGUA, National Water Program 2007-2012, Mexico, 2007.

95

# 5.2 Legal Framework for the Use of the Nation's Water

The National Water Law establishes that the use of the nation's waters will be carried out through a concession granted by the Federal Executive Branch, through the CONAGUA, by means of the River Basin Councils, or directly by the CONAGUA when appropriate, according to the rules and conditions disposed within the National Water Law and its By-Laws. Similarly, for wastewater discharges, it is necessary to have a discharge permit issued by the CONAGUA. The concession and discharge permit deeds are recorded in the Public Registry of Water Rights (REPDA), which was established in 1992, with the issuing of the National Water Law.

# Deeds registered in the Public Registry of Water Rights

Up to December 2007, 354 238 national water deeds had been registered in the REPDA, corresponding to an assigned volume of 78 950 million cubic meters (hm<sup>3</sup>) for offstream uses and 161 239 hm<sup>3</sup>

for instream uses (hydroelectricity). The distribution of these deeds by their use is shown in the following table:

#### T5.2 Deeds registered in the REPDA

| Use                                   | Deeds registered in the REPDA |            |  |  |  |
|---------------------------------------|-------------------------------|------------|--|--|--|
|                                       | Number                        | Percentage |  |  |  |
| Agricultural <sup>a</sup>             | 208 569                       | 58.88      |  |  |  |
| Public supply <sup>ь</sup>            | 135 846                       | 38.34      |  |  |  |
| Self-supplying industryc <sup>c</sup> | 9 720                         | 2.75       |  |  |  |
| Total offstream uses                  | 354 135                       | 99.97      |  |  |  |
| Instream uses<br>(Hydroelectric)      | 103                           | 0.03       |  |  |  |
| Total                                 | 354 238                       | 100.00     |  |  |  |

NOTE: One concession deed may cover one or more uses or permits.

<sup>a</sup> Includes the agricultural, livestock, aquaculture, multiple and other headings of the REPDA classification.

<sup>b</sup> Includes the public urban and domestic headings of the REPDA classification.
<sup>c</sup> Includes the industrial, agro-industrial, services and trade headings of the REPDA classification

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

| T5.3 | Deeds registered in the REPDA, by Hydrological-Administrative Region, 2007 |
|------|----------------------------------------------------------------------------|
|      | (number of deeds)                                                          |

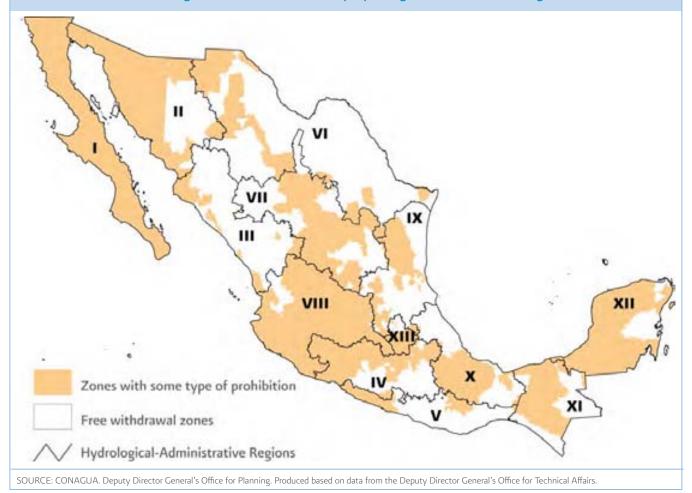
| Hydrological-Administrative Region  | Concessions an | d/or allocations <sup>a</sup> | Discharge | Federal zone | Material   |
|-------------------------------------|----------------|-------------------------------|-----------|--------------|------------|
|                                     | Surface water  | Groundwater                   | permits   | permits      | withdrawal |
| I Baja California Peninsula         | 2 331          | 9 565                         | 615       | 1 447        | 347        |
| II Northwest                        | 4 593          | 18 768                        | 644       | 2 936        | 66         |
| III Northern Pacific                | 12 365         | 12 508                        | 547       | 8 699        | 352        |
| IV Balsas                           | 15 256         | 12 414                        | 1 524     | 8 086        | 277        |
| V Southern Pacific                  | 8 472          | 16 389                        | 322       | 8 012        | 225        |
| VI Rio Bravo                        | 6 467          | 36 389                        | 573       | 5 772        | 52         |
| VII Central Basins of the North     | 3 556          | 26 668                        | 921       | 3 312        | 48         |
| VIII Lerma-Santiago-Pacific         | 18 443         | 45 205                        | 2 172     | 19 233       | 549        |
| IX Northern Gulf                    | 7 472          | 12 557                        | 731       | 10 277       | 174        |
| X Central Gulf                      | 12 100         | 16 468                        | 1 481     | 17 643       | 573        |
| XI Southern Border                  | 24 249         | 7 440                         | 638       | 11 406       | 152        |
| XII Yucatan Peninsula               | 168            | 21 159                        | 2 699     | 74           | 3          |
| XIII Waters of the Valley of Mexico | 1 095          | 2 141                         | 574       | 1 571        | 0          |
| Total                               | 116 567        | 237 671                       | 13 441    | 98 468       | 2 818      |

NOTE: <sup>a</sup> One concession deed may cover one or more uses or permits.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

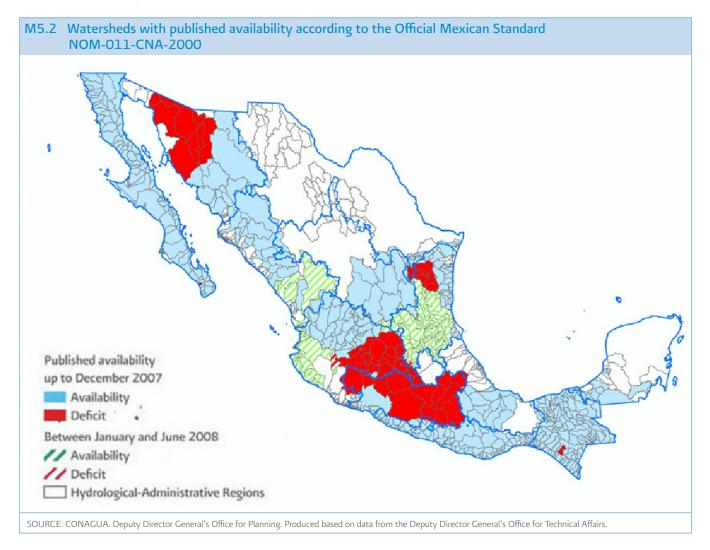
## **Prohibition zones**

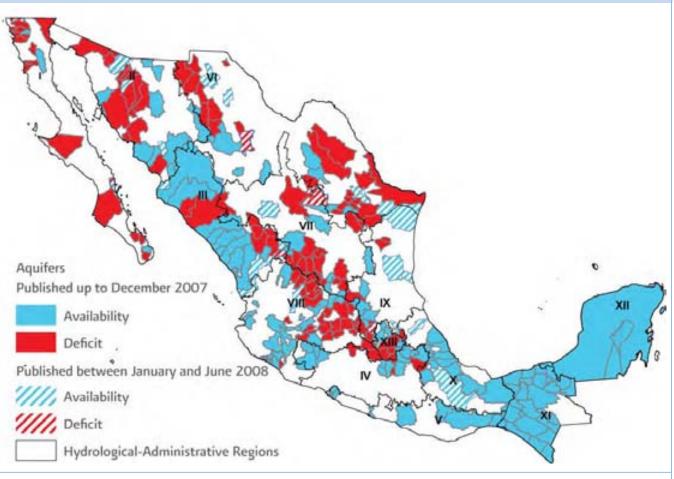
With the aim of diminishing the overexploitation of the country's aquifers and watersheds, the federal government has issued prohibitions to restrict water withdrawals in various areas.


In the case of groundwater, 145 prohibition zones are currently valid, published between 1943 and 2007. In the following figure, the areas of the country with some type of prohibition to restrict groundwater withdrawal are shown.

In the case of surface water, the existing prohibitions are from the years 1929 to 1975.

### Publication of mean annual water availabilities


The National Water Law establishes that, in order to grant the concession deeds, the mean annual availability of the watershed or aquifer in which the water will be used will be taken into account. The CONAGUA is bound to publish this availability, and for this purpose the Official Mexican Standard NOM-O11-CNA-2000 has been created, "Conservation of water resources – which establishes the specifications and the method to determine the mean annual availability of the nation's waters", in which the methodology to do so is indicated.





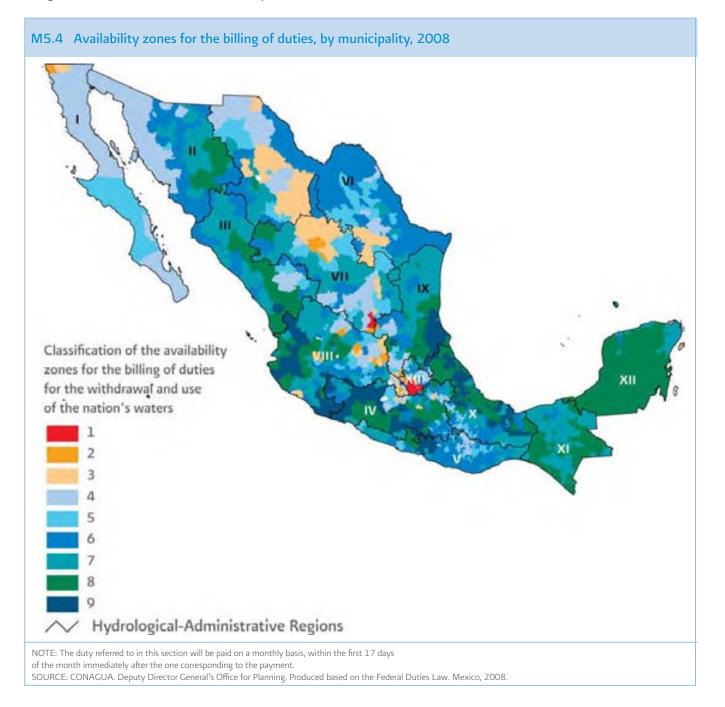

Up to December 31<sup>st</sup>, 2007, the availability of 252 hydrogeological units or aquifers, from which 75% of the country's groundwater is withdrawn, had been published in the Official Government Gazette, as well as that of 480 watersheds. Furthermore, between January 1<sup>st</sup> and June 30<sup>th</sup>, 2008, the mean availability of 30 additional aquifers and 113 watersheds was published, bringing the total number of aquifers and watersheds with published availability to 282 and 593 respectively.

The following maps show the location of the country's watersheds and aquifers with their availability published in the Official Government Gazette up to June 30<sup>th</sup>, 2008.





M5.3 Aquifers with published availability according to the Official Mexican Standard NOM-011-CNA-2000


SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the Deputy Director General's Office for Technical Affairs



# 5.3 Economy and Water Finances

## Duties for the use of the nation's waters

In order to charge duties for the use of water, Mexico has been divided into nine availability zones. The list of the municipalities that belong to each availability zone may be found in article 231 of the 2008 Federal Duties Law. In general the cost per cubic meter is higher in the zones of lesser availability



# T5.4. Duties for the use of the nation's waters, by availability zone, 2008 (Mexican person cents per cubic meter)

| (Mexican pesos cents per cubic meter)                                        |         |                   |         |        |        |        |        |        |        |  |  |  |
|------------------------------------------------------------------------------|---------|-------------------|---------|--------|--------|--------|--------|--------|--------|--|--|--|
| Use                                                                          |         | Availability zone |         |        |        |        |        |        |        |  |  |  |
|                                                                              | 1       | 2                 | 3       | 4      | 5      | 6      | 7      | 8      | 9      |  |  |  |
| General Regime <sup>a</sup>                                                  | 1656.65 | 1325.27           | 1104.38 | 911.13 | 717.83 | 648.76 | 488.31 | 173.49 | 130.02 |  |  |  |
| Drinking water, consumption<br>more than 300 L/inhabitant/day                | 65.64   | 65.64             | 65.64   | 65.64  | 65.64  | 65.64  | 30.56  | 15.26  | 7.60   |  |  |  |
| Drinking water, consumption<br>equal to or less than<br>300 L/inhabitant/day | 32.82   | 32.82             | 32.82   | 32.82  | 32.82  | 32.82  | 15.28  | 7.63   | 3.80   |  |  |  |
| Agricultural, without exceeding the assigned volume                          | 0.00    | 0.00              | 0.00    | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |  |  |  |
| Agricultural, for every m <sup>3</sup> that it exceeds the assigned volume   | 11.73   | 11.73             | 11.73   | 11.73  | 11.73  | 11.73  | 11.73  | 11.73  | 11.73  |  |  |  |
| Spas and recreational centers                                                | 0.94    | 0.94              | 0.94    | 0.94   | 0.94   | 0.94   | 0.46   | 0.22   | 0.10   |  |  |  |
| Generation of hydropower                                                     | 0.35    | 0.35              | 0.35    | 0.35   | 0.35   | 0.35   | 0.35   | 0.35   | 0.35   |  |  |  |
| Aquaculture                                                                  | 0.27    | 0.27              | 0.27    | 0.27   | 0.27   | 0.27   | 0.13   | 0.06   | 0.03   |  |  |  |

NOTE: No payment is made for the withdrawal of seawater, or for brackish water with concentrations of more than 2 500 mg/L of total dissolved solids (when certified by the CONAGUA). The duty referred to in this section will be paid on a monthly basis, within the first 17 days of the month immediately after the one corresponding to the payment. <sup>a</sup> Refers to any use other than those mentioned.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on the Federal Duties Law. Mexico, 2008.

| T5.5 Duties for material withdrawal, 2008<br>(Mexican pesos per cubic meter)      |       |       |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-------|-------|--|--|--|--|--|--|--|--|
| Material Zone 1 Zone 2                                                            |       |       |  |  |  |  |  |  |  |  |
| Gravel                                                                            | 15.81 | 10.16 |  |  |  |  |  |  |  |  |
| Sand                                                                              | 15.81 |       |  |  |  |  |  |  |  |  |
| Clay and mud                                                                      | 12.42 | 7.91  |  |  |  |  |  |  |  |  |
| Raw material                                                                      | 12.42 | 7.91  |  |  |  |  |  |  |  |  |
| Stone                                                                             | 13.55 | 9.03  |  |  |  |  |  |  |  |  |
| Others 5.65 3.39                                                                  |       |       |  |  |  |  |  |  |  |  |
| NOTE: Zone 1 includes the states of Baja California, Guanajuato, Sinaloa, Sonora, |       |       |  |  |  |  |  |  |  |  |

Tabasco, Veracruz de Ignacio de la Llave and Zacatecas. Zone 2 includes the states not included in zone 1 and the Federal District.

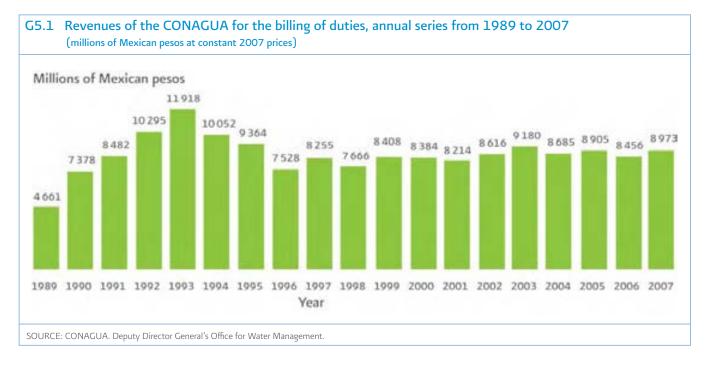
SOURCE: CONAGUA. Federal Duties Law. Mexico, 2008.

For the billing of duties for wastewater discharges, the receiver bodies (rivers, lakes, lagoons, etc.) are classified into three types: A, B or C, according to the effects caused by the pollution, the C-type receiver bodies being those in which the pollution has the strongest effects. The list of the receiver bodies that belong to each category can be found in the Federal Duties Law for water resources.

The wastewater discharge duties are related to the volume of the discharge and the load of the pollutants and may be consulted in article 278C of the Federal Duties Law.

#### Revenues of the CONAGUA

In the following figure, we may observe the CONAGUA's revenues for the billing of duties, which includes the following concepts: use of the nation's waters; use of receiver bodies; material withdrawal; block water supply to urban and industrial centers; irrigation services; use of federal zones; and various, such as transaction services, VAT and fines, among others.


|                                                                | F5.6 Revenues of the CONAGUA for the billing of duties by concept, annual series from 1999 to 2007<br>(millions of Mexican pesos at constant 2007 prices) |         |         |         |         |         |         |         |         |  |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|--|
| Concept                                                        | 1999                                                                                                                                                      | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    |  |  |  |  |  |
| Use of the nation's waters                                     | 6 326.0                                                                                                                                                   | 6 634.4 | 6 434.2 | 6 907.1 | 7 436.2 | 7 043.3 | 7 059.5 | 6 673.2 | 7 114.3 |  |  |  |  |  |
| Block water supply to urban and industrial centers             | 1 395.6                                                                                                                                                   | 1 185.0 | 1 204.1 | 1 167.9 | 1 331.5 | 1 250.2 | 1 476.7 | 1 369.9 | 1 446.8 |  |  |  |  |  |
| Irrigation                                                     | 153.7                                                                                                                                                     | 151.8   | 173.9   | 174.6   | 159.2   | 162.3   | 166.5   | 159.4   | 189.9   |  |  |  |  |  |
| Material withdrawal                                            | 40.6                                                                                                                                                      | 41.9    | 45.3    | 35.0    | 31.5    | 40.0    | 36.7    | 54.3    | 36.3    |  |  |  |  |  |
| Wastewater discharges                                          | 49.0                                                                                                                                                      | 46.1    | 82.4    | 64.1    | 74.1    | 73.0    | 55.5    | 50.3    | 57.2    |  |  |  |  |  |
| Use of federal zones                                           | 21.4                                                                                                                                                      | 26.5    | 25.6    | 25.6    | 27.3    | 34.9    | 29.3    | 27.6    | 34.3    |  |  |  |  |  |
| Various (transaction services,<br>VAT and fines, among others) | 422.1                                                                                                                                                     | 298.4   | 248.9   | 241.7   | 120.2   | 81.1    | 81.2    | 121.1   | 93.8    |  |  |  |  |  |
| Total                                                          | 8 408.4                                                                                                                                                   | 8 384.1 | 8 214.4 | 8 616.0 | 9 180.0 | 8 684.8 | 8 905.4 | 8 455.8 | 8 972.6 |  |  |  |  |  |

NOTES: The sums may not add up precisely due to the rounding up or down of figures.

The conversion of pesos at current prices to constant 2007 prices was carried out based on the average National Consumer Price Index for each year.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

It is worth mentioning that the payment of duties for wastewater discharges (use of receiver bodies) is the equivalent of 0.6% of the total revenues, even though the level of treatment is still very low.



|                                        |                                  |                                                                | Co         | ncept                  |                          |                            |                                                                         |         |
|----------------------------------------|----------------------------------|----------------------------------------------------------------|------------|------------------------|--------------------------|----------------------------|-------------------------------------------------------------------------|---------|
| Hydrological-<br>Administrative Region | Use of the<br>nation's<br>waters | Block water<br>supply to<br>urban and<br>industrial<br>centers | Irrigation | Material<br>withdrawal | Wastewater<br>discharges | Use of<br>federal<br>zones | Various<br>(transaction<br>services, VAT<br>and fines,<br>among others) | Total   |
| I Baja California<br>Peninsula         | 125.8                            | 0.0                                                            | 51.3       | 9.9                    | 1.1                      | 3.6                        | 4.8                                                                     | 196.5   |
| II Northwest                           | 443.0                            | 0.0                                                            | 26.8       | 1.4                    | 1.3                      | 0.5                        | 2.8                                                                     | 475.8   |
| III Northern Pacific                   | 182.7                            | 0.0                                                            | 48.5       | 8.4                    | 1.0                      | 2.0                        | 2.7                                                                     | 245.3   |
| IV Balsas                              | 512.3                            | 1.0                                                            | 3.6        | 0.5                    | 1.3                      | 2.1                        | 4.3                                                                     | 525.1   |
| V Southern Pacific                     | 156.6                            | 0.0                                                            | 1.3        | 2.2                    | 0.2                      | 0.6                        | 2.0                                                                     | 162.9   |
| VI Rio Bravo                           | 1 034.9                          | 0.0                                                            | 15.6       | 0.4                    | 4.7                      | 6.6                        | 4.9                                                                     | 1067.1  |
| VII Central Basins of the<br>North     | 499.4                            | 0.0                                                            | 13.3       | 2.4                    | 1.6                      | 1.0                        | 2.0                                                                     | 519.7   |
| VIII Lerma-Santiago-<br>Pacific        | 1 604.3                          | 0.0                                                            | 10.4       | 4.0                    | 29.2                     | 5.9                        | 20.9                                                                    | 1 674.7 |
| IX Northern Gulf                       | 335.9                            | 0.0                                                            | 8.1        | 0.4                    | 2.4                      | 3.9                        | 7.9                                                                     | 358.6   |
| X Central Gulf                         | 392.6                            | 47.7                                                           | 2.9        | 0.6                    | 5.6                      | 0.7                        | 13.8                                                                    | 463.9   |
| XI Southern Border                     | 232.5                            | 0.0                                                            | 0.2        | 6.0                    | 2.4                      | 1.0                        | 1.8                                                                     | 243.9   |
| XII Yucatan Peninsula                  | 131.9                            | 0.0                                                            | 0.0        | 0.0                    | 5.8                      | 0.2                        | 4.8                                                                     | 142.7   |
| XIII Waters of the Valley<br>of Mexico | 1 462.4                          | 1 398.1                                                        | 7.9        | 0.0                    | 0.7                      | 6.2                        | 21.1                                                                    | 2 896.4 |
| Total                                  | 7 114.3                          | 1 446.8                                                        | 189.9      | 36.2                   | 57.3                     | 34.3                       | 93.8                                                                    | 8 972.6 |

# T5.7 Revenues of the CONAGUA, by Hydrological-Administrative Region, 2007 (millions of Mexican pesos at constant 2007 prices)

NOTE: The sums may not add up precisely due to the rounding up or down of figures. SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

Nearly 80% of the CONAGUA's revenues correspond to the withdrawal and use of the nation's waters. The following table shows the revenues corresponding to each of the uses indicated in article 223 of the Federal Duties Law for water resources.



| T5.8 Revenues for the withdrawal and use of the nation's waters, annual series from 2000 to 2007<br>(millions of Mexican pesos at constant 2007 prices) |                     |                  |              |         |         |         |         |         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--------------|---------|---------|---------|---------|---------|--|--|--|--|--|
| Use                                                                                                                                                     | 2000                | 2001             | 2002         | 2003    | 2004    | 2005    | 2006    | 2007    |  |  |  |  |  |
| General Regime <sup>a</sup>                                                                                                                             | 5 565.0             | 5 497.8          | 5 261.8      | 5 362.5 | 4 952.4 | 4 847.5 | 4 609.0 | 4 948.9 |  |  |  |  |  |
| Urban public                                                                                                                                            | 486.3               | 459.4            | 1 205.9      | 1722.1  | 1 683.8 | 1 802.6 | 1 589.8 | 1 710.2 |  |  |  |  |  |
| Hydroelectric                                                                                                                                           | 558.3               | 451.1            | 415.0        | 349.6   | 386.7   | 388.4   | 453.6   | 435.2   |  |  |  |  |  |
| Spas and recreational centers                                                                                                                           | 24.6                | 25.5             | 24.1         | 1.1     | 19.8    | 20.4    | 20.3    | 19.5    |  |  |  |  |  |
| Aquaculture                                                                                                                                             | 0.2                 | 0.5              | 0.4          | 0.9     | 0.6     | 0.5     | 0.3     | 0.5     |  |  |  |  |  |
| Total                                                                                                                                                   | 6 634.4             | 6 434.3          | 6 907.Z      | 7 436.2 | 7 043.3 | 7 059.4 | 6 673.0 | 7 114.3 |  |  |  |  |  |
| NOTES: The sums may not add up precis                                                                                                                   | selv due to the rou | Inding up or dow | n of figures |         |         |         |         |         |  |  |  |  |  |

NOTES: The sums may not add up precisely due to the rounding up or down of figures. <sup>a</sup> Refers to any use other than those mentioned.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

The volumes declared, meaning the volumes that the users of the nation's waters reported for the period 1999 – 2007, are the following:

| T5.9 Volumes declared for the payment of duties, annual series from 2000 to 2007<br>(millions of cubic meters, hm <sup>3</sup> ) |                                                                                 |                                                                                                   |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 2000                                                                                                                             | 2001                                                                            | 2002                                                                                              | 2003                                                                                                                                                                                                                                                                            | 2004                                                                                                                                                                                                                                                                                                                                                                     | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 1 392.2                                                                                                                          | 1079.1                                                                          | 1 117.7                                                                                           | 1 222.6                                                                                                                                                                                                                                                                         | 1 369.3                                                                                                                                                                                                                                                                                                                                                                  | 1 265.2                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 306.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 763.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 661.5                                                                                                                            | 1 682.1                                                                         | 4 182.5                                                                                           | 6 549.6                                                                                                                                                                                                                                                                         | 6 397.5                                                                                                                                                                                                                                                                                                                                                                  | 7 082.6                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 240.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 584.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 165 842.5                                                                                                                        | 128 848.9                                                                       | 120 982.0                                                                                         | 96 163.5                                                                                                                                                                                                                                                                        | 110 581.1                                                                                                                                                                                                                                                                                                                                                                | 115 385.8                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140 294.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122 831.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 164.4                                                                                                                            | 128.1                                                                           | 115.5                                                                                             | 32.0                                                                                                                                                                                                                                                                            | 80.5                                                                                                                                                                                                                                                                                                                                                                     | 93.8                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 92.2                                                                                                                             | 192.0                                                                           | 176.5                                                                                             | 211.0                                                                                                                                                                                                                                                                           | 285.0                                                                                                                                                                                                                                                                                                                                                                    | 397.1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 159.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 307.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 168 152.8                                                                                                                        | 131 930.2                                                                       | 126 574.2                                                                                         | 104 178.7                                                                                                                                                                                                                                                                       | 118 713.4                                                                                                                                                                                                                                                                                                                                                                | 124 224.5                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 115.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132 571.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                                                                                                                  | rs, hm <sup>3</sup> )<br>2000<br>1 392.2<br>661.5<br>165 842.5<br>164.4<br>92.2 | 2000 2001<br>1 392.2 1 079.1<br>661.5 1 682.1<br>165 842.5 128 848.9<br>164.4 128.1<br>92.2 192.0 | 2000         2001         2002           1 392.2         1 079.1         1 117.7           661.5         1 682.1         4 182.5           165 842.5         128 848.9         120 982.0           164.4         128.1         115.5           92.2         192.0         176.5 | 2000         2001         2002         2003           1 392.2         1 079.1         1 117.7         1 222.6           661.5         1 682.1         4 182.5         6 549.6           165 842.5         128 848.9         120 982.0         96 163.5           164.4         128.1         115.5         32.0           92.2         192.0         176.5         211.0 | 2000         2001         2002         2003         2004           1 392.2         1 079.1         1 117.7         1 222.6         1 369.3           661.5         1 682.1         4 182.5         6 549.6         6 397.5           165 842.5         128 848.9         120 982.0         96 163.5         110 581.1           164.4         128.1         115.5         32.0         80.5           92.2         192.0         176.5         211.0         285.0 | 2000         2001         2002         2003         2004         2005           1 392.2         1 079.1         1 117.7         1 222.6         1 369.3         1 265.2           661.5         1 682.1         4 182.5         6 549.6         6 397.5         7 082.6           165 842.5         128 848.9         120 982.0         96 163.5         110 581.1         115 385.8           164.4         128.1         115.5         32.0         80.5         93.8           92.2         192.0         176.5         211.0         285.0         397.1 | S, hm3)       Z000       Z001       Z002       Z003       Z004       Z005       Z006         1 392.2       1 079.1       1 117.7       1 222.6       1 369.3       1 265.2       1 306.3         661.5       1 682.1       4 182.5       6 549.6       6 397.5       7 082.6       8 240.1         165 842.5       128 848.9       120 982.0       96 163.5       110 581.1       115 385.8       140 294.9         164.4       128.1       115.5       32.0       80.5       93.8       115.0         92.2       192.0       176.5       211.0       285.0       397.1       159.0 |  |  |  |  |  |  |

NOTES: The sums may not add up precisely due to the rounding up or down of figures.

<sup>a</sup> Refers to any use other than those mentioned.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

| Use                                   |                    |              |               |                                     |             |         |  |  |  |  |  |  |  |
|---------------------------------------|--------------------|--------------|---------------|-------------------------------------|-------------|---------|--|--|--|--|--|--|--|
| Hydrological-Administrative<br>Region | General<br>Regimeª | Urban public | Hydroelectric | Spas and<br>recreational<br>centers | Aquaculture | Total   |  |  |  |  |  |  |  |
| I Baja California Peninsula           | 55.0               | 70.8         | 0.0           | 0.0                                 | 0.0         | 125.8   |  |  |  |  |  |  |  |
| II Northwest                          | 333.Z              | 98.4         | 11.3          | 0.0                                 | 0.0         | 442.9   |  |  |  |  |  |  |  |
| III Northern Pacific                  | 78.6               | 65.9         | 37.9          | 0.1                                 | 0.1         | 182.6   |  |  |  |  |  |  |  |
| IV Balsas                             | 291.6              | 112.5        | 105.6         | 2.3                                 | 0.3         | 512.3   |  |  |  |  |  |  |  |
| V Southern Pacific                    | 102.6              | 46.9         | 7.2           | 0.0                                 | 0.0         | 156.7   |  |  |  |  |  |  |  |
| VI Rio Bravo                          | 719.1              | 288.9        | 26.6          | 0.3                                 | 0.0         | 1 034.9 |  |  |  |  |  |  |  |
| VII Central Basins of the<br>North    | 424.7              | 74.6         | 0.0           | 0.1                                 | 0.0         | 499.4   |  |  |  |  |  |  |  |
| VIII Lerma-Santiago-Pacific           | 1 227.2            | 334.2        | 36.1          | 6.8                                 | 0.0         | 1 604.3 |  |  |  |  |  |  |  |
| IX Northern Gulf                      | 290.3              | 40.4         | 5.1           | 0.1                                 | 0.0         | 335.9   |  |  |  |  |  |  |  |
| X Central Gulf                        | 305.9              | 37.9         | 48.7          | 0.1                                 | 0.0         | 392.6   |  |  |  |  |  |  |  |
| XI Southern Border                    | 67.0               | 8.9          | 156.5         | 0.1                                 | 0.0         | 232.5   |  |  |  |  |  |  |  |
| XII Yucatan Peninsula                 | 106.7              | 25.2         | 0.0           | 0.0                                 | 0.0         | 131.9   |  |  |  |  |  |  |  |
| XIII Waters of the Valley of Mexico   | 946.9              | 505.6        | 0.1           | 9.7                                 | 0.1         | 1 462.4 |  |  |  |  |  |  |  |
| Total                                 | 4 948.8            | 1 710.2      | 435.1         | 19.6                                | 0.5         | 7 114.2 |  |  |  |  |  |  |  |

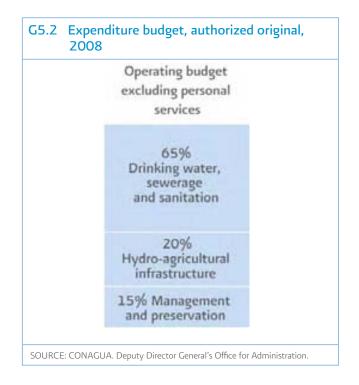
T5 10 Revenues for the withdrawal or use of the nation's waters by Hydrological-Administrative Region 7007

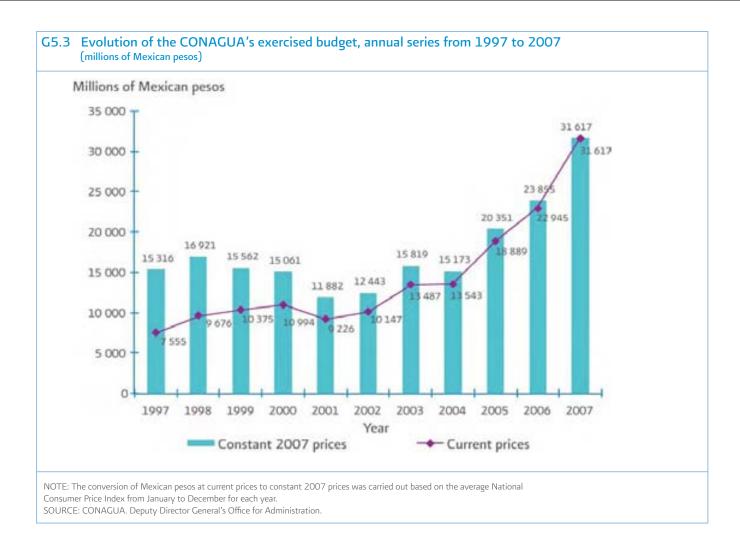
NOTES: The sums may not add up precisely due to the rounding up or down of figures. <sup>a</sup> Refers to any use other than those mentioned. SOURCE: CONAGUA. Deputy Director General's Office for Water Management.



## T5.11 Volumes declared for the payment of duties for withdrawal or use of the nation's waters, by Hydrological-Administrative Region, 2007 (millions of cubic meters, hm<sup>3</sup>)

| Hydrological-Administrative<br>Region | Use                |              |               |                                     |             |           |  |
|---------------------------------------|--------------------|--------------|---------------|-------------------------------------|-------------|-----------|--|
|                                       | General<br>Regimeª | Urban public | Hydroelectric | Spas and<br>recreational<br>centers | Aquaculture | Total     |  |
| I Baja California Peninsula           | 35.0               | 429.9        | 0.0           | 1.5                                 | 2.5         | 468.9     |  |
| II Northwest                          | 141.3              | 408.7        | 3 350.7       | 0.3                                 | 0.1         | 3 901.1   |  |
| III Northern Pacific                  | 27.7               | 381.4        | 11 183.9      | 3.0                                 | 19.0        | 11 615.0  |  |
| IV Rio Bravo                          | 127.4              | 724.4        | 31 099.4      | 25.2                                | 127.3       | 32 103.7  |  |
| V Southern Pacific                    | 20.1               | 164.5        | 2 139.6       | 0.0                                 | 0.3         | 2 324.5   |  |
| VI Rio Bravo                          | 140.4              | 832.3        | 2 889.6       | 6.1                                 | 0.8         | 3 869.2   |  |
| VII Central Basins of the North       | 73.8               | 342.2        | 0.0           | 1.1                                 | 2.9         | 420.0     |  |
| VIII Lerma-Santiago-Pacific           | 226.6              | 1 581.4      | 10 516.6      | 30.1                                | 35.9        | 12 390.6  |  |
| IX Northern Gulf                      | 153.2              | 223.7        | 1 105.3       | 5.1                                 | 51.3        | 1 538.6   |  |
| X Central Gulf                        | 411.5              | 372.9        | 14 279.1      | 4.7                                 | 51.4        | 15 119.6  |  |
| XI Southern Border                    | 74.0               | 234.8        | 46 256.8      | 0.1                                 | 4.2         | 46 569.9  |  |
| XII Yucatan Peninsula                 | 185.1              | 198.5        | 0.0           | 0.1                                 | 0.0         | 383.7     |  |
| XIII Waters of the Valley of Mexico   | 147.8              | 1 689.7      | 10.6          | 6.2                                 | 12.2        | 1 866.5   |  |
| Total                                 | 1 763.9            | 7 584.4      | 122 831.6     | 83.5                                | 307.9       | 132 571.3 |  |


NOTES: The sums may not add up precisely due to the rounding up or down of figures.


<sup>a</sup> Refers to any use other than those mentioned.

SOURCE: CONAGUA. Deputy Director General's Office for Water Management.

## **Budget of the CONAGUA**

The budget authorized to the CONAGUA by the Chamber of Deputies for 2008 was 29 442 million Mexican pesos, of which 3 243 million pesos corresponds to staff services and 26 199 million pesos to the concepts of material and supplies, services, real estate, compensation, public works and related services.





# T5.12 Investments by heading in the drinking water, sewerage and sanitation sub-sector (millions of Mexican pesos at constant 2006 prices)

| Year | Drinking water | Sewerage | Sanitation | Improving<br>efficiency | Others <sup>a</sup> | Total  |  |
|------|----------------|----------|------------|-------------------------|---------------------|--------|--|
| 2002 | 4 747          | 5 378    | 2 038      | 1 592                   | 109                 | 13 864 |  |
| 2003 | 6 298          | 5 997    | 1 470      | 1 137                   | 214                 | 15 116 |  |
| 2004 | 5 978          | 6 078    | 1 595      | 1 211                   | 79                  | 14 941 |  |
| 2005 | 8 697          | 8 537    | 3 385      | 1 651                   | 122                 | 22 392 |  |
| 2006 | 5 445          | 5 823    | 1 821      | 2 393                   | 246                 | 15 728 |  |
|      |                |          |            |                         |                     |        |  |

NOTE: <sup>a</sup> Others: studies, projects and supervision.

SOURCE: CONAGUA. Deputy Director General's Office for Drinking water, Sewerage and Sanitation.

# T5.13 Investment by program and origin of the resources, 2006

(millions of Mexican peso

| (millions of Mexican pesos)                  |         |         |           |                                         |          |  |
|----------------------------------------------|---------|---------|-----------|-----------------------------------------|----------|--|
| Concept / Source                             | Federal | State   | Municipal | Credit/Private<br>initiative/<br>others | Total    |  |
| The CONAGUA's Investments                    | 5 152.7 | 2 514.0 | 2 542.7   | 916.4                                   | 11 125.8 |  |
| Drinking Water and Sanitation in Urban Zones | 2 208.3 | 2 016.1 | 1 002.3   | 498.9                                   | 5 725.6  |  |
| Valley of Mexico <sup>a</sup>                | 418.9   | 0.0     | 0.0       | 0.0                                     | 418.9    |  |
| Duty Returns                                 | 1 495.8 | 0.0     | 1 495.8   | 0.0                                     | 2 991.6  |  |
| Clean Water                                  | 29.0    | 35.0    | 0.0       | 0.0                                     | 64.0     |  |
| PROSSAPYS <sup>b</sup>                       | 822.0   | 462.9   | 19.1      | 0.0                                     | 1 303.9  |  |
| PROMAGUA <sup>b</sup>                        | 178.7   | 0.0     | 25.5      | 417.5                                   | 621.7    |  |
| Other agencies                               | 618.6   | 185.3   | 274.7     | 3 524.2                                 | 4 602.8  |  |
| SEDESOL                                      | 346.9   | 131.4   | 224.2     | 27.4                                    | 729.9    |  |
| CONAVI                                       | 0.0     | 0.0     | 0.0       | 3 496.7                                 | 5 691.0  |  |
| CDI                                          | 271.7   | 53.9    | 50.5      | 0.1                                     | 564.0    |  |
| Total                                        | 5 771.3 | 2 699.3 | 2 817.4   | 4 440.6                                 | 15 728.6 |  |
|                                              |         |         |           |                                         |          |  |

NOTES: The sums may not add up precisely due to the rounding up or down of figures.

<sup>a</sup> Resources of the 1928 Fund, with contributions from the Government of the Federal District and on behalf of the state of Mexico.

<sup>b</sup> The state investment includes the municipal resources.

SOURCE: CONAGUA. Deputy Director General's Office for Drinking water, Sewerage and Sanitation.

Contributions from other agencies: SEDESOL, BANOBRAS, CONAVI, CDI and service providers.

#### Water tariffs

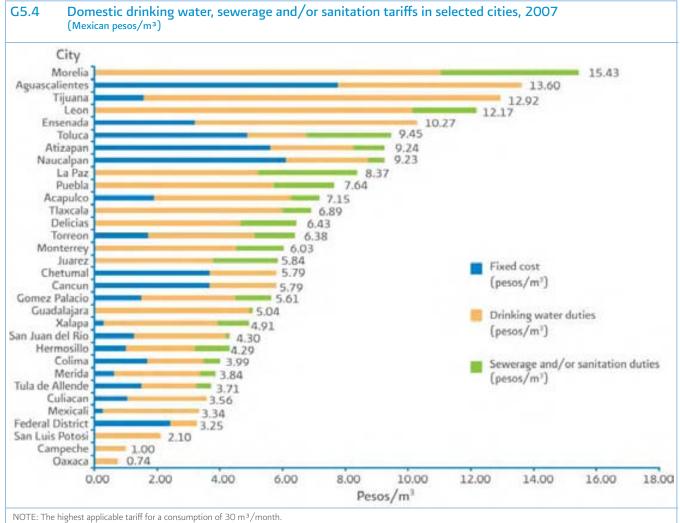
Drinking water tariffs are set differently for each municipality, depending on the provisions of each state's legislation. In some states, the tariffs are



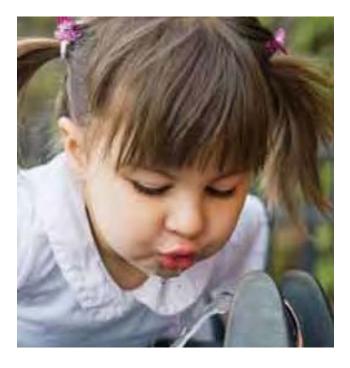
approved by the local State Congress, whereas in others they are approved by the government body or Board of Governors of the municipality's or locality's drinking water utility or the State Water Commission.

In general the tariffs are different for domestic users and companies or industries and are generally based on progressive tariff blocks, meaning that the price per cubic meter is higher for greater water consumption.

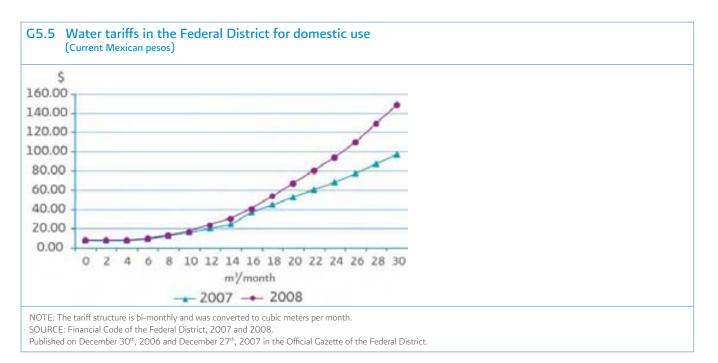
Water tariffs generally include:


• Fixed costs, independent from the volume used,

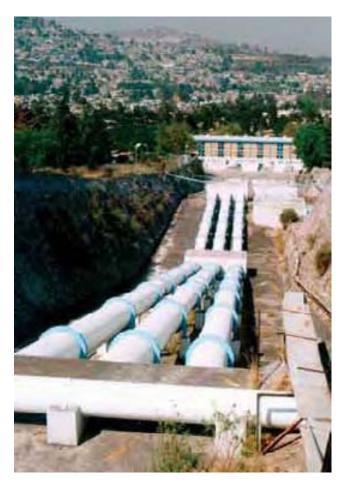
• Costs for the water supplied, associated with the volume used,

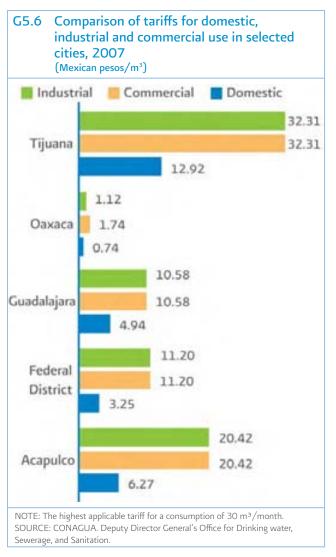

• Costs for sewerage and wastewater treatment, generally applied as a percentage of the costs for water supply,

• Taxes (non-existent in the case of State of Mexico)


The following figure shows the drinking water, sewerage and/or sanitation tariffs per cubic meter for some cities in Mexico, for domestic use with a consumption of  $30 \text{ m}^3$ /month and with the highest applicable tariff.




SOURCE: CONAGUA. Deputy Director General's Office for Drinking water, Sewerage and Sanitation.




The following figure shows the tariff structure for domestic use in the Federal District. As may be observed, the tariff per cubic meter is higher when the consumption is higher. Similarly, the tariff increases for 2008 were higher for the upper levels.



In the figure G5.6, the tariffs for domestic, industrial and commercial use are shown, in several localities in Mexico, assuming a consumption of  $30 \text{ m}^3/\text{month}$ .





#### 5.4 Participation Mechanisms

#### **River Basin Councils and auxiliary bodies**

The National Water Law establishes that the River Basin Councils are collegiate entities of mixed membership, and will be coordination bodies providing support, consultation and advice, between the CONAGUA, including the corresponding River Basin Organization, and the dependencies and entities of the federal, state or municipal instances and the representatives of the waters users and of civil society organizations, from the respective watershed or hydrological region.

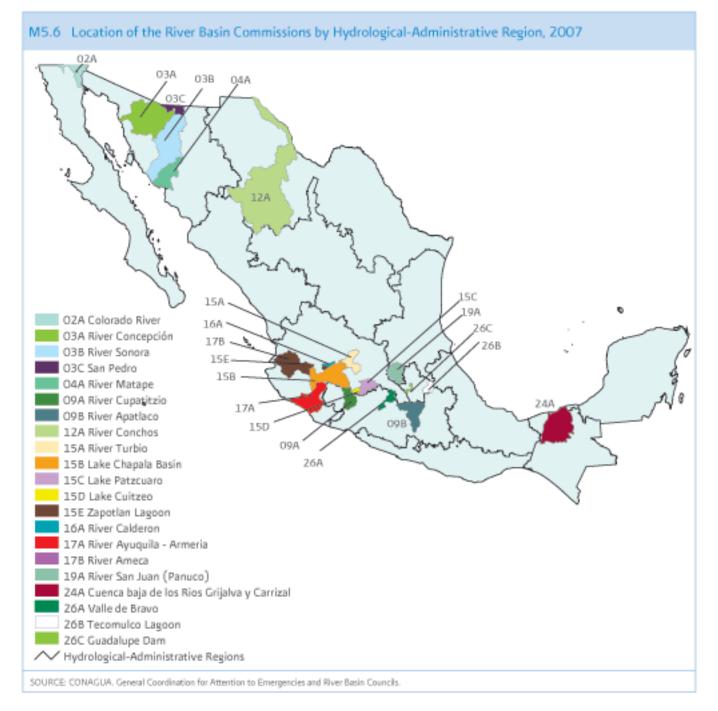
Up to December 31<sup>st</sup>, 2007, 25 River Basin Councils had been established, with the Council referred to as Central Pacific Coast yet to be established. The location of these River Basin Councils is shown in the following figure:



SOURCE: CONAGUA. Deputy Director General's Office for Planning.

Produced based on data from the General Coordination for Attention to Emergencies and River Basin Councils.

| No. | Code | River Basin Council                | Date of establishment     | ⊢ ⊦  | Hydrological-Administrative Region |
|-----|------|------------------------------------|---------------------------|------|------------------------------------|
| 1   | 01   | Baja California Sur                | Mar O3 <sup>rd</sup> , OO | I    | Baja California Peninsula          |
| Z   | 02   | Baja California                    | Dec 07 <sup>th</sup> , 99 | I    | Baja California Peninsula          |
| 3   | 03   | Upper Northwest                    | Mar 19 <sup>th</sup> , 99 | II   | Northwest                          |
| 4   | 04   | Rivers Yaqui and Matape            | Aug 30 <sup>th</sup> , 00 | II   | Northwest                          |
| 5   | 05   | River Mayo                         | Aug 30 <sup>th</sup> , 00 | II   | Northwest                          |
| 6   | 06   | Rivers Fuerte and Sinaloa          | Dec 10 <sup>th</sup> , 99 |      | Northern Pacific                   |
| 7   | 07   | Rivers Mocorito to Quelita         | Dec 10 <sup>th</sup> , 99 |      | Northern Pacific                   |
| 8   | 08   | Rivers Presidio to San Pedro       | Jun 15 <sup>th</sup> , 00 |      | Northern Pacific                   |
| 9   | 09   | River Balsas                       | Mar 26 <sup>th</sup> , 99 | IV   | Balsas                             |
| 10  | 10   | Guerrero Coast                     | Mar 29 <sup>th</sup> , 00 | V    | Southern Pacific                   |
| 11  | 11   | Oaxaca Coast                       | Apr 07 <sup>th</sup> , 99 | V    | Southern Pacific                   |
| 12  | 12   | Rio Bravo                          | Jan 21 <sup>st</sup> , 99 | VI   | Rio Bravo                          |
| 13  | 13   | Nazas-Aguanaval                    | Dec 01 <sup>st</sup> , 98 | VII  | Central Basins of the North        |
| 14  | 14   | Altiplano                          | Nov 23 <sup>th</sup> , 99 | VII  | Central Basins of the North        |
| 15  | 15   | Lerma-Chapala                      | Jan 28 <sup>th</sup> , 93 | VIII | Lerma-Santiago-Pacific             |
| 16  | 16   | Santiago River                     | Jul 14 <sup>th</sup> , 99 | VIII | Lerma-Santiago-Pacific             |
| 17  | 18   | Rivers San Fernando-Soto La Marina | Aug 26 <sup>th</sup> , 99 | IX   | Northern Gulf                      |
| 18  | 19   | River Panuco                       | Aug 26 <sup>th</sup> , 99 | IX   | Northern Gulf                      |
| 19  | 20   | Rivers Tuxpan to Jamapa            | Sep 12 <sup>th</sup> , 00 | Х    | Central Gulf                       |
| 20  | 21   | River Papaloapan                   | Jun 16 <sup>th</sup> , 00 | Х    | Central Gulf                       |
| 21  | 22   | River Coatzacoalcos                | Jun 16 <sup>th</sup> , 00 | Х    | Central Gulf                       |
| 22  | 23   | Chiapas Coast                      | Jan 26 <sup>th</sup> , 00 | XI   | Southern Border                    |
| 23  | 24   | Rivers Grijalva and Usumacinta     | Aug 11 <sup>th</sup> , OO | XI   | Southern Border                    |
| 24  | 25   | Yucatan Peninsula                  | Dec 14 <sup>th</sup> , 99 | XII  | Yucatan Peninsula                  |
| 25  | 26   | Valley of Mexico                   | Nov 11 <sup>th</sup> , 96 | XIII | Waters of the Valley of Mexico     |

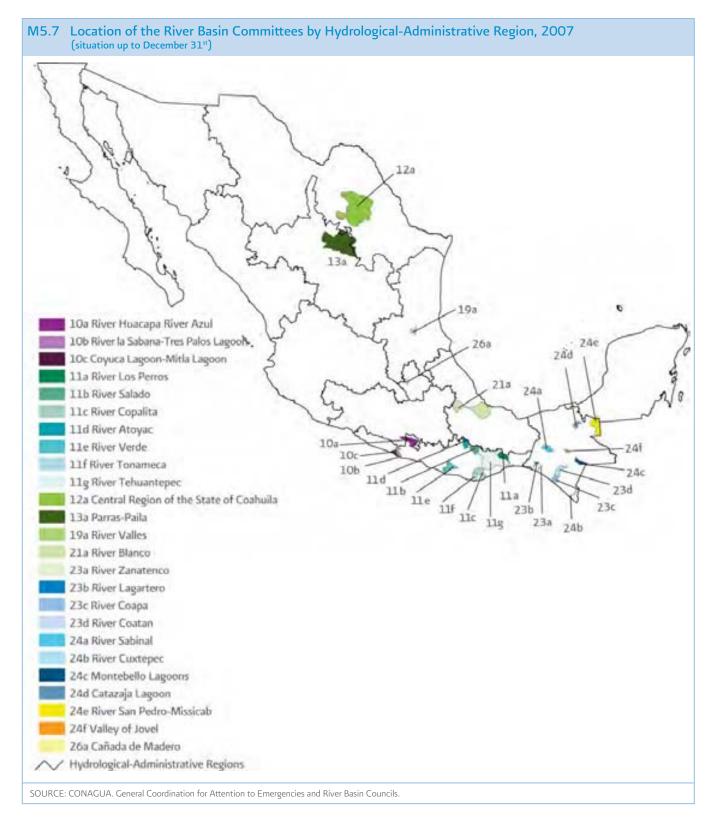

#### T5.14 Characteristics of the River Basin Councils, 2007

SOURCE: CONAGUA. General Coordination for Attention to Emergencies and River Basin Councils.



In the process of consolidation of the River Basin Councils, it was necessary to attend very specific problems in more localized geographic zones, as a result of which River Basin Commissions were created to attend sub-basins, River Basin Committees for micro-basins, Technical Groundwater Committees for aquifers and Clean Beach Committees in the country's coastal zones.






| T5.15 | Characte | eristics of the River Basin Commission             | ons, 2007                 |                                     |
|-------|----------|----------------------------------------------------|---------------------------|-------------------------------------|
| No.   | Code     | River Basin Commission                             | Date of establishment     | Hydrological-Administrative Region  |
| 1     | 02A      | Colorado River                                     | Dec 07 <sup>th</sup> , 99 | I Baja California Peninsula         |
| Z     | 03A      | River Concepción                                   | Sep 29 <sup>th</sup> , 04 | II Northwest                        |
| 3     | 03B      | River Sonora                                       | Dec 14 <sup>th</sup> , 04 | II Northwest                        |
| 4     | 03C      | San Pedro                                          | Oct 24 <sup>th</sup> , 07 | II Northwest                        |
| 5     | 04A      | River Matape                                       | Feb 17 <sup>th</sup> , 04 | II Northwest                        |
| 6     | 09A      | River Cupatitzio                                   | Aug 04 <sup>th</sup> , 04 | IV Balsas                           |
| 7     | 09B      | River Apatlaco                                     | Sep 12 <sup>th</sup> ,07  | IV Balsas                           |
| 8     | 12A      | River Conchos                                      | Jan 21 <sup>st</sup> , 99 | VI Rio Bravo                        |
| 9     | 15A      | River Turbio                                       | Jun 15 <sup>th</sup> , 07 | VIII Lerma-Santiago-Pacific         |
| 10    | 15B      | Lake Chapala Basin                                 | Sep OZ <sup>nd</sup> , 98 | VIII Lerma-Santiago-Pacific         |
| 11    | 15C      | Lake Patzcuaro                                     | May 18 <sup>th</sup> , 04 | VIII Lerma-Santiago-Pacific         |
| 12    | 15D      | Lake Cuitzeo                                       | Aug 18 <sup>th</sup> , 06 | VIII Lerma-Santiago-Pacific         |
| 13    | 15E      | Zapotlan Lagoon                                    | May 30 <sup>th</sup> , 07 | VIII Lerma-Santiago-Pacific         |
| 14    | 16A      | River Calderon                                     | Feb 28 <sup>th</sup> , 06 | VIII Lerma-Santiago-Pacific         |
| 15    | 17A      | Ayuquila-Armería                                   | Oct 15 <sup>th</sup> , 98 | VIII Lerma-Santiago-Pacific         |
| 16    | 17B      | River Ameca                                        | Aug 09 <sup>th</sup> , 04 | VIII Lerma-Santiago-Pacific         |
| 17    | 19A      | River San Juan (Panuco)                            | Aug O1 <sup>st</sup> , 97 | IX Northern Gulf                    |
| 18    | 24A      | Lower Basin of the Rivers Grijalva and<br>Carrizal | Oct 26 <sup>th</sup> , 07 | XI Southern Border                  |
| 19    | 26A      | Valle de Bravo                                     | Oct 16 <sup>th</sup> , 03 | XIII Waters of the Valley of Mexico |
| 20    | 26B      | Tecocomulco Lagoon                                 | Jul 14 <sup>th</sup> , 05 | XIII Waters of the Valley of Mexico |
| 21    | 26C      | Guadalupe Dam                                      | Jan 11 <sup>th</sup> , 06 | XIII Waters of the Valley of Mexico |

SOURCE: CONAGUA. General Coordination for Attention to Emergencies and River Basin Councils.



In the following figure and table, the location of the 25 River Basin Committees established nationwide is shown:



| No.  | Code | River Basin Committee                   | Date of                   | State                           | Understandiges Advertisiestersting    |
|------|------|-----------------------------------------|---------------------------|---------------------------------|---------------------------------------|
| INO. | Code | Kiver basin Committee                   | establishment             | State                           | Hydrological-Administrative<br>Region |
| 1    | 10a  | River Huacapa-River Azul                | Aug 01 <sup>st</sup> , 03 | Guerrero                        | V Southern Pacific                    |
| Ζ    | 10b  | River la Sabana-Tres Palos Lagoon       | Dec 11 <sup>th</sup> , 03 | Guerrero                        | V Southern Pacific                    |
| 3    | 10c  | Coyuca Lagoon-Mitla Lagoon              | Sep 27 <sup>th</sup> , 07 | Guerrero                        | V Southern Pacific                    |
| 4    | lla  | River Los Perros                        | Nov 18 <sup>th</sup> , 99 | Oaxaca                          | V Southern Pacific                    |
| 5    | 11b  | River Salado                            | May 18 <sup>th</sup> , 01 | Oaxaca                          | V Southern Pacific                    |
| 6    | llc  | River Copalita                          | Apr 19 <sup>th</sup> , 02 | Oaxaca                          | V Southern Pacific                    |
| 7    | lld  | River Atoyac                            | Aug 07 <sup>th</sup> , 02 | Oaxaca                          | V Southern Pacific                    |
| 8    | lle  | River Verde                             | Jun 10 <sup>th</sup> , 04 | Oaxaca                          | V Southern Pacific                    |
| 9    | 11f  | River Tonameca                          | Aug 20 <sup>th</sup> , 04 | Oaxaca                          | V Southern Pacific                    |
| 10   | llg  | River Tehuantepec                       | Dec 06 <sup>th</sup> , 05 | Oaxaca                          | V Southern Pacific                    |
| 11   | 12a  | Central Region of the State of Coahuila | Nov 22 <sup>nd</sup> , 05 | Coahuila de Zaragoza            | VI Rio Bravo                          |
| 12   | 13a  | Parras-Paila                            | Jun 27 <sup>th</sup> , 07 | Coahuila de Zaragoza            | VII Central Basins of the North       |
| 13   | 19a  | River Valles                            | Dec 10 <sup>th</sup> , 02 | San Luis Potosi                 | IX Northern Gulf                      |
| 14   | Zla  | River Blanco                            | Jun 16 <sup>th</sup> , 00 | Veracruz de Ignacio de la Llave | X Central Gulf                        |
| 15   | 23a  | River Zanatenco                         | Aug 23 <sup>th</sup> , 02 | Chiapas                         | XI Southern Border                    |
| 16   | 23b  | River Lagartero                         | Sep 11 <sup>th</sup> , 03 | Chiapas                         | XI Southern Border                    |
| 17   | 23c  | River Coapa                             | Oct 15 <sup>th</sup> , 03 | Chiapas                         | XI Southern Border                    |
| 18   | 23d  | River Coatan                            | Aug 31 <sup>st</sup> , 05 | Chiapas                         | XI Southern Border                    |
| 19   | 24a  | River Sabinal                           | Mar 22 <sup>nd</sup> , 03 | Chiapas                         | XI Southern Border                    |
| 20   | 24b  | River Cuxtepec                          | May 02 <sup>nd</sup> , 03 | Chiapas                         | XI Southern Border                    |
| 21   | 24c  | Montebello Lagoons                      | Apr 20 <sup>th</sup> , 06 | Chiapas                         | XI Southern Border                    |
| 22   | Z4d  | Catazaja Lagoon                         | Jun 05 <sup>th</sup> , 06 | Chiapas                         | XI Southern Border                    |
| 23   | Z4e  | River San Pedro-Missicab                | Nov 17 <sup>th</sup> , 06 | Tabasco                         | XI Southern Border                    |
| 24   | 24f  | Valley of Jovel                         | Jun 05 <sup>th</sup> , 07 | Chiapas                         | XI Southern Border                    |
| 25   | 26a  | Cañada de Madero                        | Jun 30 <sup>th</sup> , 00 | Hidalgo                         | XIII Waters of the Valley of Mexico   |

SOURCE: CONAGUA. General Coordination for Attention to Emergencies and River Basin Councils.

#### Technical Groundwater Committees (COTAS)

With the aim of achieving a sustainable use of water in the aquifers of the country, Technical Groundwater Committees (COTAS in Spanish) have been created. Up to December 31<sup>st</sup>, 2007, 78 COTAS had been created.

A summary of the number of COTAS in each Hydrological-Administrative Region is shown in the table T5.17, as well as a complete list in annex.

#### T5.17 Technical Groundwater Committees

| Нус   | drological-Administrative Region           | Number of COTAS         |
|-------|--------------------------------------------|-------------------------|
| I     | Baja California Peninsula                  | 19                      |
| II    | Northwest                                  | 5                       |
| 111   | Northern Pacific                           | 5                       |
| IV    | Balsas                                     | 3                       |
| V     | Southern Pacific                           | 1                       |
| VI    | Rio Bravo                                  | 10                      |
| VII   | Central Basins of the North                | 9                       |
| VIII  | Lerma-Santiago-Pacific                     | 17                      |
| IX    | Northern Gulf                              | 6                       |
| Х     | Central Gulf                               | 2                       |
| XIII  | Waters of the Valley of Mexico             | 1                       |
| Total |                                            | 78                      |
| SOLIR | F: CONACIJA Ceneral Coordination for Atten | tion to Emergencies and |

SOURCE: CONAGUA. General Coordination for Attention to Emergencies and River Basin Councils.

#### **Clean Beach Committees**

The Clean Beach Committees are auxiliary entities of the River Basin Councils, with the aim of promoting the sanitation of beaches and the watersheds and aquifers associated with them, as well as preventing and rectifying pollution to protect and preserve Mexico's beaches, respecting the native ecology and raising the quality and the standard of living of the local population, of tourism and the competitivity of the beaches. Up to December  $31^{st}$ , 2007, 31 Committees had been set up.

| No. | Name                                                                                                              | Date of                    | State                              | River Basin Council                  |      | Hydrological-             |
|-----|-------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|--------------------------------------|------|---------------------------|
| NO. | Name                                                                                                              | establishment              | State                              |                                      | А    | dministrative Region      |
| 1   | Ensenada                                                                                                          | Jul 22 <sup>nd</sup> , 05  | Baja California                    | Baja California                      |      | Baja California Peninsula |
| Z   | Tijuana                                                                                                           | May 27 <sup>th</sup> , 04  | Baja California                    | Baja California                      | I    | Baja California Peninsula |
| 3   | Rosarito                                                                                                          | Mar 12 <sup>th</sup> , 04  | Baja California                    | Baja California                      | I    | Baja California Peninsula |
| 4   | La Paz                                                                                                            | Jul 22 <sup>nd</sup> , 03  | Baja California Sur                | Baja California Sur                  | 1    | Baja California Peninsul  |
| 5   | Los Cabos                                                                                                         | Oct 17 <sup>th</sup> , 03  | Baja California Sur                | Baja California Sur                  | I    | Baja California Peninsul  |
| 6   | State of Sonora                                                                                                   | Nov 18 <sup>th</sup> , 03  | Sonora                             | Upper Northwest and Yaqui–<br>Matape | П    | Northwest                 |
| 7   | Municipal Clean Beaches of Puerto<br>Peñasco, Sonora                                                              | Mar 03 <sup>rd</sup> , 06  | Sonora                             | Upper Northwest                      | II   | Northwest                 |
| 8   | Municipal Clean Beaches of<br>Huatabambo                                                                          | Mar 02 <sup>nd</sup> , 07  | Sonora                             | River Mayo                           | II   | Northwest                 |
| 9   | Bahia de Altata                                                                                                   | Feb 27 <sup>th</sup> , 06  | Sinaloa                            | River Mocorito to Quelita            | 111  | Northern Pacific          |
| 10  | Mazatlan City                                                                                                     | Jun 27 <sup>th</sup> , 03  | Sinaloa                            | Rivers Presidio to San Pedro         | 111  | Northern Pacific          |
| 11  | Municipality of Lazaro Cardenas<br>Michoacan                                                                      | Jul 21 <sup>st</sup> , 05  | Michoacán de<br>Ocampo             | River Balsas                         | IV   | Balsas                    |
| 12  | Municipality of Santa Maria<br>Huatulco                                                                           | Oct 15 <sup>th</sup> , 03  | Oaxaca                             | Oaxaca Coast                         | V    | Southern Pacific          |
| 13  | Puerto Escondido Municipality<br>of San Pedro Mixtepec and<br>Lagoon Complex of Manialtepec<br>Tututepec, Juquila | Mar 26 <sup>th</sup> , 04  | Oaxaca                             | Oaxaca Coast                         | V    | Southern Pacific          |
| 14  | Puerto Angel and Zipolite and<br>Municipality of San Pedro Pochutla                                               | May 24 <sup>th</sup> , 05  | Oaxaca                             | Oaxaca Coast                         | V    | Southern Pacific          |
| 15  | IIxtapa – Zihuatanejo, Municipality<br>of Jose Azueta, Guerrero                                                   | Mar 14 <sup>th</sup> , 06  | Guerrero                           | Guerrero Coast                       | V    | Southern Pacific          |
| 16  | Acapulco                                                                                                          | Apr 07 <sup>th</sup> , 06  | Guerrero                           | Guerrero Coast                       | V    | Southern Pacific          |
| 17  | Technical Clean Beach Committee of the States of Jalisco and Nayarit                                              | Aug 04 <sup>th</sup> , 03  | Jalisco and Nayarit                | Central Pacific Coast                | VIII | Lerma Santiago Pacific    |
| 18  | Manzanillo, Colima                                                                                                | Jul 11 <sup>th</sup> , 03  | Colima                             | Central Pacific Coast                | VIII | Lerma Santiago Pacific    |
| 19  | Panuco in the State of Tamaulipas                                                                                 | Sep 11 <sup>th</sup> , 03  | Tamaulipas                         | River Panuco                         | IX   | Northern Gulf             |
| 20  | Veracruz – Boca del Rio                                                                                           | May 13 <sup>th</sup> , 04  | Veracruz de Ignacio<br>de la Llave | Rivers Tuxpan to Jamapa              | Х    | Central Gulf              |
| 21  | Tapachula                                                                                                         | Mar 31 <sup>st</sup> , 05  | Chiapas                            | Chiapas Coast                        | XI   | Southern Border           |
| 22  | Tonala                                                                                                            | Jul 20 <sup>th</sup> , 05  | Chiapas                            | Chiapas Coast                        | XI   | Southern Border           |
| 23  | Municipal of Centla, Tabasco                                                                                      | Mar 16 <sup>th</sup> , 06  | Tabasco                            | Rivers Grijalva and Usumacinta       | XI   | Southern Border           |
| 24  | Municipal of Paraiso, Tabasco                                                                                     | Mar 20 <sup>th</sup> , 06  | Tabasco                            | Rivers Grijalva and Usumacinta       | XI   | Southern Border           |
| 25  | Municipal of Cardenas, Tabasco                                                                                    | Mar 23 <sup>rd</sup> , 07  | Tabasco                            | Rivers Grijalva and Usumacinta       | XI   | Southern Border           |
| 26  | North Coast of the State of<br>Yucatan                                                                            | Mar 08 <sup>th</sup> , 05  | Yucatán                            | Yucatan Peninsula                    | XII  | Yucatan Peninsula         |
| 27  | Cancun – Riviera Maya                                                                                             | Aug 28 <sup>th</sup> , 03  | Quintana Roo                       | Yucatan Peninsula                    | XII  | Yucatan Peninsula         |
| 28  | Campeche                                                                                                          | Serp 23 <sup>rd</sup> , 04 | Campeche                           | Yucatan Peninsula                    | XII  | Yucatan Peninsula         |

(continues)

#### (continued)

| T5.18 | 3 Characteristics of the Clea<br>(situation up to December 31st) | n Beach Com               | mittees, 2007            |                     |                                        |
|-------|------------------------------------------------------------------|---------------------------|--------------------------|---------------------|----------------------------------------|
| No.   | Name                                                             | Date of establishment     | State                    | River Basin Council | Hydrological-<br>Administrative Region |
| 29    | Champoton                                                        | Nov 09 <sup>th</sup> , 04 | Campeche                 | Yucatan Peninsula   | XII Yucatan Peninsula                  |
| 30    | Mayan Coast of the State of<br>Quintana Roo                      | Mar 24 <sup>th</sup> , 07 | Quintana Roo             | Yucatan Peninsula   | XII Yucatan Peninsula                  |
| 31    | Playa del Carmen, Campeche                                       | Apr 13 <sup>rd</sup> , 07 | Campeche                 | Yucatan Peninsula   | XII Yucatan Peninsula                  |
| SOURC | E: CONAGUA. General Coordination for Atte                        | ntion to Emergencies      | and River Basin Councils |                     |                                        |

#### Water Advisory Council

The Water Advisory Council is a civil-society, multistakeholder, independent, non-profit organization, created as an association under Mexican law in March 2000.

The Council is integrated by individuals or institutions of an altruistic vocation, recognized for their activities in the academic, civil society and economic sectors, and sensitive to water-related problems and the need to solve them.

The Council's main objective is to promote and support the necessary strategic shift for the rational use and sustainable management of water in Mexico, advising with this aim to public and private sectors and civil society.

The Council has two types of advisors, personal and institutional, according to whether they are individuals or organizations. It currently has 22 advisors, of which 14 are personal and 8 are institutional. The institutional advisors are:

• National Association of Water and Sanitation Utilities of Mexico;

- National Association of Irrigation Users;
- Business Coordination Council;
- Communication Council;

• National Chamber of the Radio and Television Industry;

• National Polytechnic Institute;

• Monterrey Technological and Higher Studies Institute, and

• National Autonomous University of Mexico.

It should be mentioned that the National Water Commission is not a member of the Council, but is invited as a permanent guest.

#### 5.5 Water-Related Standards

# Official Mexican Ecological Standards and those of the water sector

In the following, the Mexican environmental standards related to the theme of water are presented. The name of the standards changed from ECOL to SEMARNAT according to the modifications of names specified in the Official Government Gazette on April 23<sup>rd</sup>, 2003.

NOM-001-Semarnat-1996 Establishes the maximum permissible limits of pollutants in wastewater discharges in national waters and goods. It was published in the Official Government Gazette on January 6<sup>th</sup>, 1997 and came into effect the following day. This standard was complemented by the clarification published in the same means of communication on April 30<sup>th</sup>, 1997.



| T5.19 Dates of completion of the N | IOM-001-SEMARNAT-1996                              |                                                        |
|------------------------------------|----------------------------------------------------|--------------------------------------------------------|
|                                    | Municipal discharges                               |                                                        |
| Modified dates of completion from: | Population range<br>(according to the 1990 Census) | Number of localities<br>(according to the 1990 Census) |
| January 1 <sup>st</sup> , 2000     | More than 50 000 inhabitants                       | 139                                                    |
| January 1 <sup>st</sup> , 2005     | From 20 001 to 50 000 inhabitants                  | 181                                                    |
| January 1 <sup>st</sup> , 2010     | From 2 501 to 20 000 inhabitants                   | 2 266                                                  |
|                                    | Non-municipal discharges                           |                                                        |
| Modified dates of completion from: | Biochemical Oxygen Demand<br>(tons/day)            | Total Suspended Solids<br>(tons/day)                   |
| January 1 <sup>st</sup> , 2000     | More than 3.0                                      | More than 3.0                                          |
| January 1 <sup>st</sup> , 2005     | From 1.2 to 3.0                                    | From 1.2 to 3.0                                        |
| January 1 <sup>st</sup> , 2010     | Less than 1.2                                      | Less than 1.2                                          |

| NOM-002-SEMARNAT-1996 | Establishes the maximum<br>permissible limits of pollutants in<br>wastewater discharges to urban<br>and municipal sewerage systems.<br>It was published in the Official<br>Government Gazette on June 3 <sup>rd</sup> ,<br>1998 and came into effect the<br>following day.                                                                                                                                                                            | NOM-022-SEMARNAT-2003 | Establishes the specifications for<br>the preservation, conservation,<br>sustainable use and restoration<br>of coastal wetlands in areas<br>of mangrove swamps. It<br>was published in the Official<br>Government Gazette on April<br>10 <sup>th</sup> , 2003, and came into effect                                                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOM-003-SEMARNAT-1997 | Establishes the maximum<br>permissible limits of pollutants<br>for treated wastewater that<br>is reused in services to the<br>public. It was published in the<br>Official Government Gazette on<br>September 21 <sup>st</sup> , 1998 and came<br>into effect the following day.                                                                                                                                                                       |                       | sixty calendar days following its<br>publication.<br>There exists an agreement that<br>adds the specification 4.43 to the<br>Official Mexican Standard NOM-<br>022-SEMARNAT-2003, which<br>establishes the specifications for<br>the preservation, conservation,                                                                                                                                  |
| NOM-004-SEMARNAT-2002 | Environmental protection Sludge<br>and biosolids Specifications and<br>maximum permissible limits of<br>pollutants for their use and final<br>disposal. It was published in the<br>Official Government Gazette on<br>August 15 <sup>th</sup> , 2003 and came into                                                                                                                                                                                     | NOM-141-SEMARNAT-2003 | sustainable use and restoration<br>of the coastal wetlands in<br>areas of mangrove swamps. It<br>was published in the Official<br>Government Gazette on May 7 <sup>th</sup> ,<br>2004 and came into effect the<br>following day.<br>Establishes the procedure to                                                                                                                                  |
| NOM-083-SEMARNAT-2003 | effect the following day.<br>Specifications of environmental<br>protection for the selection of<br>the site, design, construction,<br>operation, monitoring, closing<br>and complementary works of<br>final disposal sites for solid urban<br>waste and special management.<br>It was published in the Official<br>Government Gazette on October<br>20 <sup>th</sup> , 2004 and came into effect<br>sixty calendar days following its<br>publication. |                       | characterize mine tailings, as well<br>as the specifications and criteria<br>for the characterization and<br>preparation of the site, project,<br>construction, operation and<br>post-operation of main tailing<br>dams. It was published in the<br>Official Government Gazette on<br>September 13 <sup>th</sup> , 2004 and came<br>into effect sixty calendar days<br>following its publication. |

With the aim of complying with its obligation to publish the availability of water in the watersheds and aquifers of the country, the CONAGUA issued the standard NOM-011-CNA-2000.

| NOM-011-CNA -2000 | Conservation of water resources.<br>Establishes the specifications and<br>the method to determine the<br>mean annual availability of the                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | nation's waters. It was published<br>in the Official Government Gazette<br>on April 17 <sup>th</sup> , 2002, and came into<br>effect on June 17 <sup>th</sup> , 2002. |

Additionally, the CONAGUA has issued standards that establish the dispositions, specifications and test methods that guarantee that the products and services tendered to drinking water, sewerage and sanitation system water utilities comply with the objective of using and preserving water in quantity and quality. The Official Mexican Standards in effect are the following:

| NOM-001-CNA-1995 | Sanitary sewerage systems –<br>Hermiticism specifications. It was<br>published in the Official Government<br>Gazette on October 11 <sup>th</sup> , 1996. Came<br>into effect on February 8 <sup>th</sup> , 1997.                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOM-002-CNA-1995 | Home outlet for drinking water supply<br>- Specifications and testing methods.<br>It was published in the Official<br>Government Gazette on October 14 <sup>th</sup> ,<br>1996. It came into effect on April 12 <sup>th</sup> ,<br>1997.                                                                                     |
| NOM-003-CNA-1996 | Requirements during the construction<br>of water-withdrawal wells to prevent<br>the pollution of aquifers. It was<br>published in the Official Government<br>Gazette on February 3 <sup>rd</sup> , 1997, and<br>came into effect on May 4 <sup>th</sup> , 1997.                                                              |
| NOM-004-CNA-1996 | Requirements for the protection of<br>aquifers during the maintenance and<br>rehabilitation of water-withdrawal<br>wells and for the closing of wells in<br>general. It was published in the Official<br>Government Gazette on August<br>8 <sup>th</sup> , 1997, and came into effect on<br>February 3 <sup>rd</sup> , 1998. |
| NOM-005-CNA-1996 | Flux meters - Specifications and<br>testing methods. It was published in<br>the Official Government Gazette on<br>July 25 <sup>th</sup> , 1997. It came into effect on<br>January 21 <sup>st</sup> , 1998.                                                                                                                   |

| NOM-006-CNA-1997 | Pre-manufactured septic tanks -<br>Specifications and testing methods.<br>It was published in the Official<br>Government Gazette on January 29 <sup>th</sup> ,<br>1999, and came into effect on January<br>30 <sup>th</sup> , 1999.                 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOM-007-CNA-1997 | Security requirements for the<br>construction and operation of water<br>tanks. It was published in the Official<br>Government Gazette on February 1 <sup>st</sup> ,<br>1999 and came into effect on June 1 <sup>st</sup> ,<br>1999.                 |
| NOM-008-CNA-1998 | Showers used for corporate hygiene<br>- Specifications and testing methods.<br>It was published in the Official<br>Government Gazette on June 25 <sup>th</sup> ,<br>2001, and came into effect on<br>December 22 <sup>nd</sup> , 2001.              |
| NOM-009-CNA-1998 | Lavatories for sanitary use.<br>Specifications and testing methods.<br>It was published in the Official<br>Government Gazette on August<br>2 <sup>nd</sup> , 2001, and came into effect on<br>November 30 <sup>th</sup> , 2001.                     |
| NOM-010-CNA-1999 | Inlet and discharge valves for lavatory<br>tanks. Specifications and testing<br>methods. It was published in the<br>Official Government Gazette on<br>September 2 <sup>nd</sup> , 2003, and came into<br>effect on February 29 <sup>th</sup> , 2004 |
| NOM-013-CNA-2000 | Drinking water distribution networks.<br>Hermiticism specifications and<br>testing methods. It was published in<br>the Official Government Gazette on<br>February 4 <sup>th</sup> , 2004. Came into effect<br>on June 3 <sup>rd</sup> , 2004.       |

#### Official Mexican Standards of the Ministry of Health

Water supply for human use and consumption with appropriate quality is fundamental, among other aspects, to prevent and avoid the transmission of gastrointestinal and other diseases, for which it was necessary to establish permissible limits as regards their microbiological, physical, sensory, chemical and radioactive characteristics. The standard that establishes the permissible limits of water quality is the following:

| NOM-127-SSA1-1994<br>Environmental health. Water for<br>human use and consumption.<br>Permissible limits of quality and<br>treatment to which water should<br>be submitted for its treatment.<br>It was published in the Official<br>Government Gazette on January<br>18 <sup>th</sup> , 1996, and came into effect<br>the following day. On November<br>22 <sup>md</sup> , 2000, a modification<br>was published in the Official<br>Government Gazette that came<br>into effect ninety calendar days<br>following its publication. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

This standard establishes:

• Permissible limits of bacteriological characteristics (fecal coliforms and total coliforms);

• Permissible limits of physical and sensory characteristics (color, smell, taste, and cloudiness);

• Permissible limits of chemical characteristics (which include 34 parameters, such as aluminum, arsenic, barium, etc);

• Treatment methods which should be applied according to the pollutants encountered.

In the following, some other standards of importance for the health sector are indicated:

| NOM-013-SSA1-1993 | Health requirements that the tanks<br>of vehicles must comply with for<br>the transport and distribution<br>of water for human use and<br>consumption. It was published in<br>the Official Government Gazette<br>on August 12 <sup>th</sup> , 1994, and came<br>into effect the following day.                                                                                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOM-014-SSA1-1993 | Health procedures for water<br>samples for human use and<br>consumption in public and private<br>supply systems. It was published<br>in the Official Government Gazette<br>on August 12 <sup>th</sup> , 1994, and came<br>into effect the following day.                                                                                                                                             |
| NOM-179-SSA1-1998 | Vigilance and evaluation of<br>the control of water quality for<br>human use and consumption,<br>distributed by public supply<br>systems. It was published in the<br>Official Government Gazette on<br>September 24 <sup>th</sup> , 2001, and came<br>into effect the following day.                                                                                                                 |
| NOM-230-SSA1-2002 | Environmental health. Water for<br>human use and consumption,<br>health requirements that should be<br>complied with in public and private<br>supply systems as part of water<br>management. Health procedures<br>for sampling. It was published in<br>the Official Government Gazette<br>on July 12 <sup>th</sup> , 2005, and came into<br>effect sixty calendar days following<br>its publication. |

#### Other standards

With the aim of monitoring water quality on the country's beaches, the following standard on beach quality was issued:

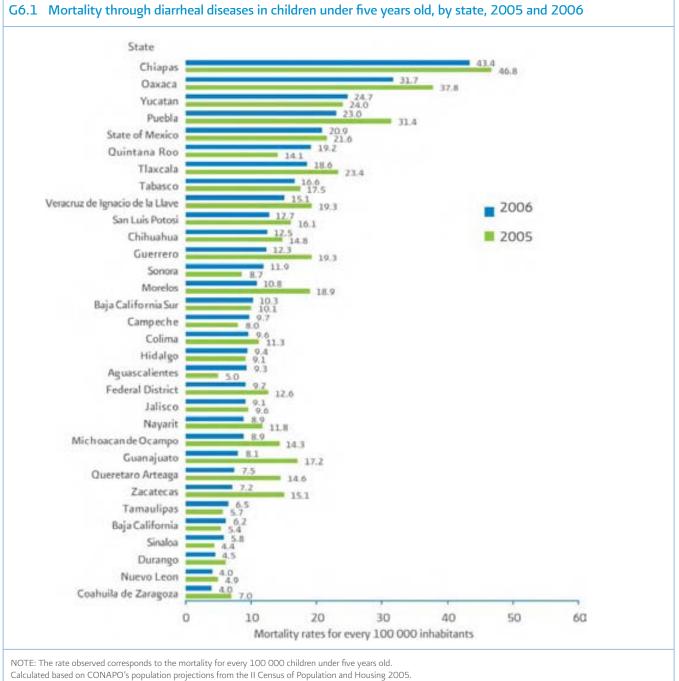
| NMX-AA-120-SCFI-2006 | Establishes the requirements and specifications of sustainability of |
|----------------------|----------------------------------------------------------------------|
|                      | '                                                                    |
|                      | beach quality. It was published in                                   |
|                      | the Official Government Gazette                                      |
|                      | on July 6 <sup>th</sup> , 2006 and came                              |
|                      | into effect on the date of its                                       |
|                      | publication.                                                         |



# Chapter 6



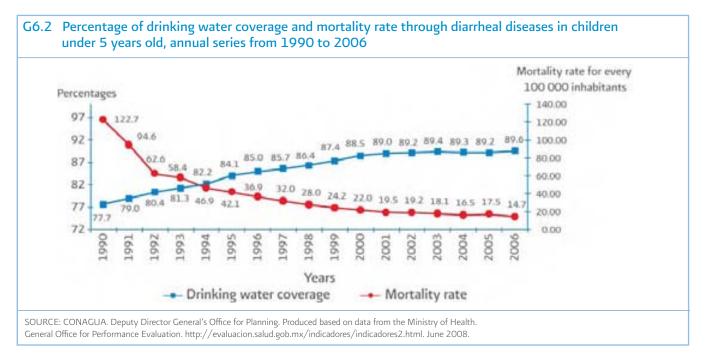



# Water, Health and the Environment

The concept of Integrated Water Resources Management includes a large number of complex interactions with ecosystems, which requires the participation of different disciplines.

That is why in this chapter the link between water and health aspects is presented, as well as its relationship with the environment. As regards the health aspects, it may be observed that increases in drinking water and sanitation coverage contribute to diminishing the mortality rates from water-borne diseases. As regards the environment, the evolution of the vegetable coverage in recent years is presented.

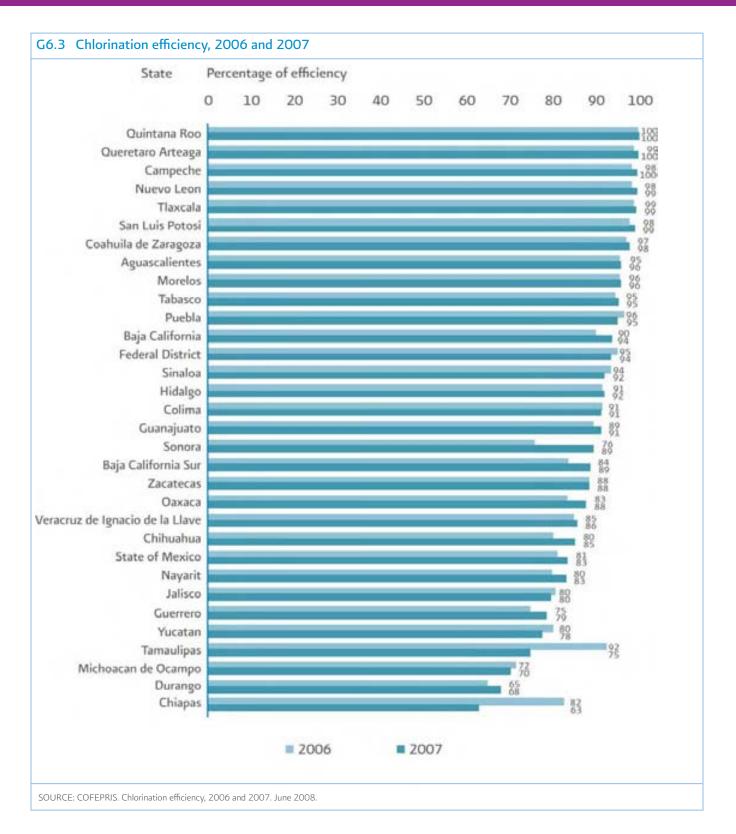
#### 6.1 Water and Health


The child population is the most susceptible to ailments related to the poor quality of water. The following table shows the mortality rate through diarrheal diseases, observed for 100 000 children under five years old, for 2005 and 2006, from which it becomes apparent that in the majority of the states in Mexico apart from Aguascalientes, Baja California, Baja California Sur, Campeche, Hidalgo, Quintana Roo, Sinaloa, Sonora, Tamaulipas and Yucatan, reductions in this rate were recorded during this period.



Calculated based on CONAPO's population projections from the II Census of Population SOURCE: Ministry of Health. General Office for Performance Evaluation.

http://evaluacion.salud.gob.mx/indicators/indicators2.html, June 2008.


Additionally, it has been shown that an increase in the drinking water and sanitation coverage contributes to reducing the mortality rate for diarrheal diseases, as demonstrated by the following figure:



The purpose of disinfecting water is to destroy or inactivate pathogenic agents and other microorganisms, with the aim of ensuring that the consumer receives water that is suitable for human consumption.

The effectiveness of the disinfection procedure of the water that is supplied to the population is evaluated through the determination of residual free chlorine, which is a fundamental indicator, and the presence of which in the domestic outlet signals the efficiency of the disinfection. It should be noted that, according to data from COFEPRIS, the national average in terms of chlorination efficiency is 86%.





#### 6.2 Vegetation

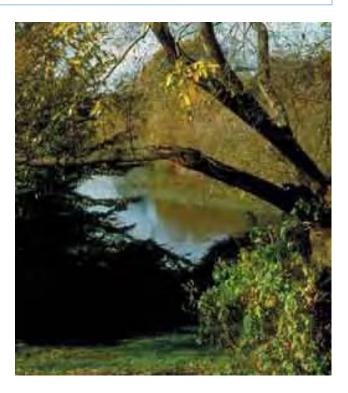
According to data from INEGI's Charter for Use of Soil and Vegetation, Mexico is classified into 12 groups of vegetation compatible with the Rzedowski classification system (1978). The incidence of these types of vegetation in Mexico is shown in the following table according to the classification of series I, II and III.

Series I has its roots in 1978, when work began on the Charter for Use of Soil and Vegetation, scale 1:250 000, for which more than ten years were required to achieve a national coverage on the issue, in part for the extensive field work carried out.

In this cartography, the current state of vegetation is considered in its primary and secondary states. Furthermore, agricultural and livestock use were considered. To achieve this, air photographs were taken from high altitude for the photographic interpretation and field work. The information was updated from 1996 to 1999 and is known as Series II of Use of Soils and Vegetation, scale 1:250 000, in which printed space maps, generated with LANDSAT in 1993, were used as input, as well as field work from 1996 to 1999. Series III, carried out with digital processes and methods, was prepared between 2002 and 2005. Images from the LANDSAT ETM satellite from 2002 were used as input. A virtual analysis and field work were carried out.

This information is structured digitally to be used and applied in a Geographic Information System (GIS) environment. The information is organized into 14 layers and considers both polygons and dots and lines to visualize the information on the coverage of the earth. Additionally, some conceptual adjustments were made to facilitate its interpretation and digital structuring, as well as considering the conceptual generalization for its representation at scales of 1:1 000 000 and 1:4 000 000.

| T6.] | T6.1 Surface covered by type of natural vegetation in Mexico, series I, II and III                 |                                                   |       |                                                        |       |                                                         |       |                                                           |       |
|------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|--------------------------------------------------------|-------|---------------------------------------------------------|-------|-----------------------------------------------------------|-------|
| No.  | Type of vegetation<br>or use of soil                                                               | Original<br>surface<br>(thousands<br>of hectares) | %     | 1980 series<br>I surface<br>(thousands<br>of hectares) | %     | 1990 series II<br>surface<br>(thousands<br>of hectares) | %     | 2005 series III<br>original<br>(thousands<br>of hectares) | %     |
| 1    | Conifer forests                                                                                    | 21 772                                            | 11.1  | 16 196                                                 | 8.Z   | 13 956                                                  | 7.1   | 11 340                                                    | 5.8   |
| 2    | Oak forests                                                                                        | 22 195                                            | 11.3  | 12 128                                                 | 6.2   | 10 838                                                  | 5.5   | 9 982                                                     | 5.1   |
| 3    | Mountain mesophile<br>forests                                                                      | 3 089                                             | 1.6   | 1 192                                                  | 0.6   | 1022                                                    | 0.5   | 870                                                       | 0.4   |
| 4    | Deciduous forests                                                                                  | 25 311                                            | 12.9  | 9 827                                                  | 5.0   | 6 980                                                   | 3.6   | 7 843                                                     | 4.0   |
| 5    | Thorny rainforests                                                                                 | 7 207                                             | 3.7   | 4891                                                   | 2.5   | 188                                                     | 0.1   | 827                                                       | 0.4   |
| 6    | Evergreen forests                                                                                  | 17 828                                            | 9.1   | 6 382                                                  | 3.Z   | 3 996                                                   | 2.0   | 3 158                                                     | 1.6   |
| 7    | Moist deciduous forests                                                                            | 6 276                                             | 3.2   | 894                                                    | 0.5   | 533                                                     | 0.3   | 463                                                       | 0.2   |
| 8    | Xerophile brushwood                                                                                | 66 421                                            | 33.8  | 55 922                                                 | 28.5  | 52 136                                                  | 26.5  | 53 233                                                    | 27.1  |
| 9    | Pasture                                                                                            | 18 682                                            | 9.5   | 9 795                                                  | 5.0   | 8 406                                                   | 4.3   | 8 445                                                     | 4.3   |
| 10   | Absorbent vegetation                                                                               | 3 571                                             | 1.8   | 2 421                                                  | 1.2   | 2 248                                                   | 1.1   | 2 540                                                     | 1.3   |
| 11   | Other types of vegetation                                                                          | 872                                               | 0.4   | 315                                                    | 0.2   | 6 009                                                   | 3.1   | 415                                                       | 0.2   |
| 12   | With no apparent vegetation                                                                        | 735                                               | 0.4   | 837                                                    | 0.4   | 982                                                     | 0.5   | 952                                                       | 0.5   |
|      | Induced vegetation                                                                                 | 0                                                 | 0.0   | 5 827                                                  | 3.0   | 6 203                                                   | 3.2   | 6 619                                                     | 3.4   |
|      | Secondary vegetation                                                                               | 0                                                 | 0.0   | 32 456                                                 | 16.5  | 38 722                                                  | 19.7  | 42 368                                                    | 21.6  |
|      | Agricultural areas                                                                                 | 0                                                 | 0.0   | 34 671                                                 | 17.7  | 40 612                                                  | 20.7  | 43 596                                                    | 22.2  |
|      | Urban zones                                                                                        | 0                                                 | 0.0   | 201                                                    | 0.1   | 1 121                                                   | 0.6   | 1 279                                                     | 0.7   |
|      | Water bodies                                                                                       | 2 478                                             | 1.3   | 2 482                                                  | 1.3   | 2 487                                                   | 1.3   | 2 508                                                     | 1.3   |
| Mexi | co's total surface area                                                                            | 196 438                                           | 100.0 | 196 438                                                | 100.0 | 196 438                                                 | 100.0 | 196 438                                                   | 100.0 |
| SOUF | SOURCE: Based on information for the evaluation of the rate of deforestation, INEGI. Mexico, 2008. |                                                   |       |                                                        |       |                                                         |       |                                                           |       |






#### 6.3 Biodiversity

With the aim of conserving the status of protected natural areas, as well as ensuring that they retain their function as areas of groundwater recharge, the necessary decrees are established for the protection of ground-based ecosystems and wetlands in particular, both nationally and worldwide.

In Mexico, the number of protected natural areas for flora and fauna increased to 164 in 2007, covering a total surface area of 232 000 km<sup>2</sup>. The following figure shows the land and coast areas covered by the protected natural areas.





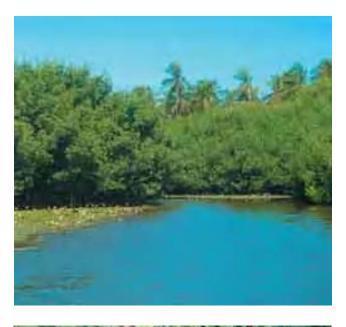
The following table shows a summary by category of the country's natural protected areas.

| T6.2 Mexico's natural protected areas, 2007 |                  |                            |  |  |  |
|---------------------------------------------|------------------|----------------------------|--|--|--|
| Category                                    | Quantity         | Surface area<br>(hectares) |  |  |  |
| Biosphere Reserves                          | 38               | 11 908 935                 |  |  |  |
| National Parks                              | 68               | 1 473 492                  |  |  |  |
| Natural monuments                           | 4                | 14 104                     |  |  |  |
| Natural resources protection areas          | 7                | 3 562 807                  |  |  |  |
| Flora and fauna protection areas            | 29               | 6 248 471                  |  |  |  |
| Sanctuaries                                 | 17               | 871                        |  |  |  |
| Total                                       |                  | 23 208 680                 |  |  |  |
| SOURCE: CONANP. Direction for Evaluation    | on and Follow-up | . 2008.                    |  |  |  |
|                                             |                  |                            |  |  |  |

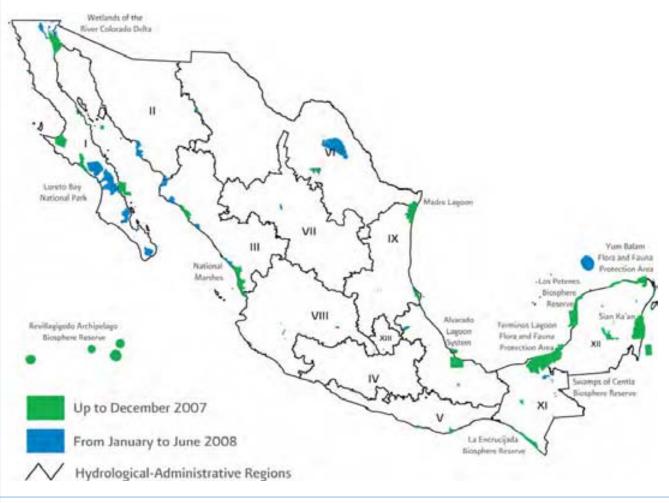
#### 6.4 Wetlands

Wetlands constitute a basic and irreplaceable link of the water cycle. Their conservation and sustainable management may ensure the biological richness and environmental services that they perform, such as water storage, the conservation of aquifers, water treatment through nutrient, sediment and pollutant retention, protection against storms and flood mitigation, the stabilization of coasts and erosion control.

These ecosystems have gone through transformation processes with various purposes, and the lack of knowledge on them and their inappropriate management constitute some of the main problems that adversely affect their conservation in Mexico. For all of the above, they have recently been the subject of standardization and protection efforts, so as to conserve them.


Nationally, as stipulated in the 1992 National Water Law, it is the CONAGUA's responsibility to carry out and update the National Inventory of Wetlands, as well as to mark their limits, classify them and propose standards for their protection, restoration and use.

For this purpose an inter-institutional group was created, which brings together interests on wetlands, from various agencies of the federal government. Among other institutions, the members of this group include the CONAGUA, the National Commission for the Knowledge and Use of Biodiversity (CONABIO), the National Commission for Protected natural areas (CONANP), the National Ecological Institute (INE), the National Statistics, Geography and Informatics Institute (INEGI), and, on behalf of the Ministry of the Environment and Natural Resources (SEMARNAT), the General Office of Federal Maritime Ground and Environmental Coastal Zones


Internationally, an intergovernmental Convention was signed in the city of Ramsar (Iran, 1971), known as the Ramsar Convention. This Convention "provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources"<sup>1</sup>.

<sup>1</sup> Website of the Ramsar Convention, www.ramsar.org/index.html, June 2007.

Up to December 2007, 67 Mexican wetlands had been registered in the Ramsar Convention, and at the close of this edition, 19 further wetlands in Mexico had been added, bringing the total surface area of the country registered to 5.9 million hectares. In annex, you will find a complete list of the Mexican wetlands registered in the Ramsar Convention. Among the 86 Mexican wetlands now registered in this Convention, the most important in terms of size are shown in the figure M6.3.







#### M6.3 Wetlands with more than 100 000 hectares in Mexico, registered in the Ramsar Convention, 2007

SOURCE: Consultation of the CONANP's Geographic Information System. Mexico, June 2008.





### Chapter 7





# Future Scenarios

According to current population growth trends, use and management of water resources, it is estimated that by 2030, the situation as regards water in Mexico will be more critical. For this reason, to face up to this situation, in the 2007-2012 National Water Program, specific goals, strategies and targets have been established with the aim of modifying the current situation.

This chapter also presents the projections for 2030 as regards population, urban areas and water availability, by Hydrological-Administrative Region. Additionally, the targets for 2012 and 2030 as regards water resources are explained.

#### 7.1 Growth Trends


A very important aspect to be considered in Mexico's future scenarios is the population growth and the concentration of the population in urban areas. According to estimates by the CONAPO, between 2007 and 2030, the population of Mexico will increase by almost 14.9 million people. Furthermore, approximately 82% of the total population will be based in urban localities.

It is estimated that 70% of the population growth for 2030 will occur in the Hydrological-Administrative Regions VIII Lerma-Santiago-Pacific, XIII Waters of the Valley of Mexico, VI Rio Bravo and I Baja California Peninsula. On the other hand, the regions III Northern Pacific and V Southern Pacific will experience a decrease in their population.



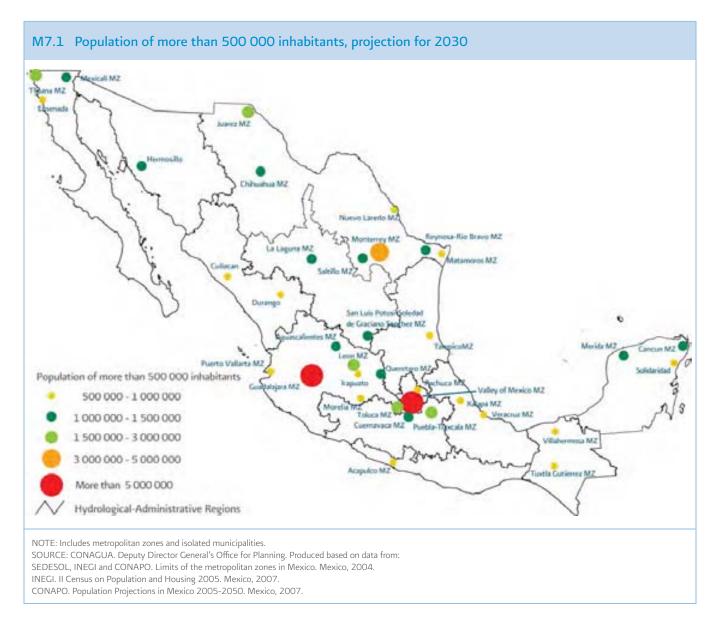
NOTE: Data interpolated on December 31st of each year.

The rural population is considered as that which lives in localities of less than 2 500 inhabitants, whereas the urban population refers to that of 2 500 inhabitants or more. SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from the CONAPO. Population Projections in Mexico 2005-2050. Mexico, 2007.



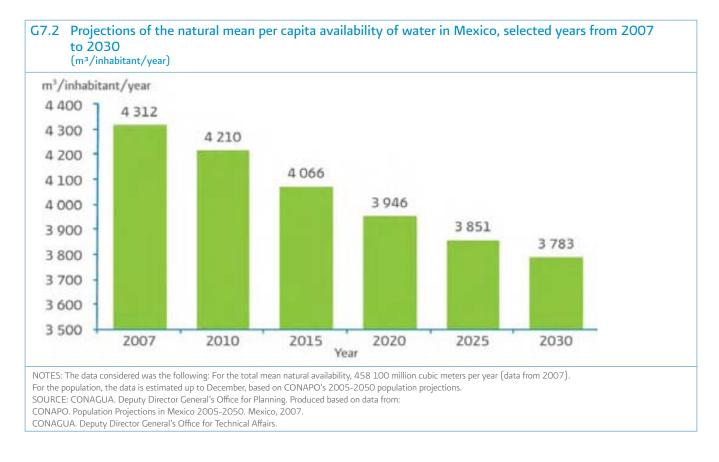
| Hydrological-Administrative Region |                                | Рор       | Population |        |  |
|------------------------------------|--------------------------------|-----------|------------|--------|--|
|                                    |                                | Year 2007 | Year 2030  | growth |  |
| I                                  | Baja California Peninsula      | 3 581     | 5 915      | 2 334  |  |
| Ш                                  | Northwest                      | 2 572     | 2 910      | 338    |  |
| Ш                                  | Northern Pacific               | 3 959     | 3 795      | - 164  |  |
| IV                                 | Balsas                         | 10 536    | 11 127     | 591    |  |
| V                                  | Southern Pacific               | 4116      | 4 022      | - 94   |  |
| VI                                 | Rio Bravo                      | 10 704    | 13 252     | 2 548  |  |
| VII                                | Central Basins of the North    | 4 121     | 4 568      | 447    |  |
| VIII                               | Lerma-Santiago-Pacific         | 20 625    | 23 512     | 2 887  |  |
| IX                                 | Northern Gulf                  | 4 941     | 5 099      | 158    |  |
| Х                                  | Central Gulf                   | 9 584     | 9 925      | 341    |  |
| XI                                 | Southern Border                | 6 503     | 7 498      | 1 001  |  |
| XII                                | Yucatan Peninsula              | 3 904     | 5 807      | 1 903  |  |
| хш                                 | Waters of the Valley of Mexico | 21 090    | 23 673     | 2 583  |  |
| otal                               |                                | 106 236   | 121 103    | 14 867 |  |

#### T7 1 Population in 2007 and 2030, by Hydrological-Administrative Region


SOURCE: CONAPO. Population Projections in Mexico 2005-2050. Mexico, 2007.

In 2030, it is expected that 57% of the population of Mexico will be living in 36 population centers with more than 500 000 inhabitants.

Between 2007 and 2030, the metropolitan zones of Matamoros, Pachuca, Nuevo Laredo and Puerto


Vallarta, as well as the municipalities of Irapuato, Ensenada and Solidaridad, will exceed half a million inhabitants. In the following figure all of the population centers of at least 500 000 inhabitants are shown.







The following figure shows how the population growth will cause the natural per capita water availability nationwide to drop from 4 312 m<sup>3</sup>/inhabitant/ year in 2007 to 3 783 in 2030.



By 2030, in some of the country's Hydrological-Administrative Regions, the mean natural water availability will reach levels close to or even less than 1 000 m<sup>3</sup> /inhabitant/year, a condition classified as serious scarcity. As shown in the following table, the Hydrological-Administrative Regions I Baja California Peninsula, VI Rio Bravo and XIII Waters of the Valley of Mexico in particular are at risk of finding themselves in a situation of scarcity.

### T7.2 Mean natural per capita availability of water, by Hydrological-Administrative Region, 2007 and 2030

| Hydrological-Administrative Region | Mean natural availability<br>(millions of m³/year) | Mean natural per capita<br>availability in 2007<br>(m³/inhabitant/year) | Mean natural per capita<br>availability in 2030<br>(m³/inhabitant/year) |
|------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| I Baja California Peninsula        | 4 616                                              | 1 289                                                                   | 780                                                                     |
| II Northwest                       | 8 204                                              | 3 192                                                                   | 2 819                                                                   |
| III Northern Pacific               | 25 627                                             | 6 471                                                                   | 6 753                                                                   |
| IV Balsas                          | 21 658                                             | 2 055                                                                   | 1946                                                                    |
| V Southern Pacific                 | 32 794                                             | 7 960                                                                   | 8 154                                                                   |
| VI Rio Bravo                       | 12 024                                             | 1 124                                                                   | 907                                                                     |
| VII Central Basins of the North    | 7 780                                              | 1888                                                                    | 1 703                                                                   |
| VIII Lerma-Santiago-Pacific        | 34 037                                             | 1 650                                                                   | 1 448                                                                   |
| IX Northern Gulf                   | 25 500                                             | 5 162                                                                   | 5 001                                                                   |
| X Central Gulf                     | 95 455                                             | 9 964                                                                   | 9 618                                                                   |
| XI Southern Border                 | 157 754                                            | 24 270                                                                  | 21 039                                                                  |

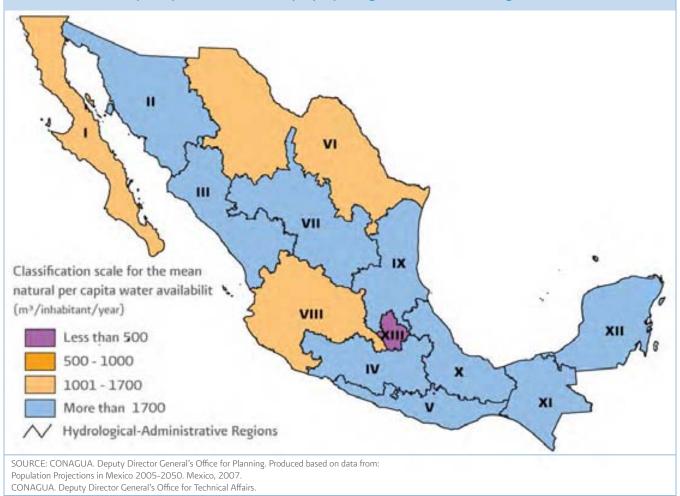
(continues)

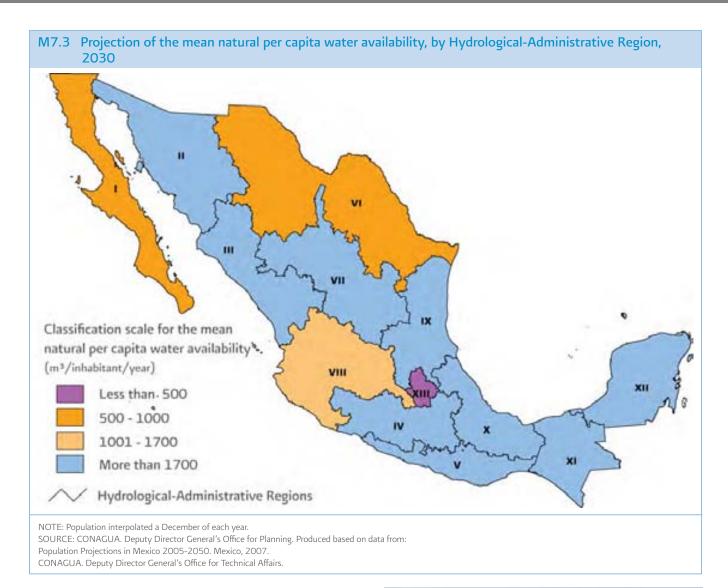
#### (continued)

| <ul> <li>T7.2 Mean natural per capita availability of water, by Hydrological-Administrative Region,</li> <li>2007 and 2030</li> </ul> |                                                    |                                                                         |                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| Hydrological-Administrative Region                                                                                                    | Mean natural availability<br>(millions of m³/year) | Mean natural per capita<br>availability in 2007<br>(m³/inhabitant/year) | Mean natural per capita<br>availability in 2030<br>(m³/inhabitant/year) |  |  |
| XII Yucatan Peninsula                                                                                                                 | 29 645                                             | 7 603                                                                   | 5 105                                                                   |  |  |
| XIII Waters of the Valley of Mexico                                                                                                   | 3 008                                              | 143                                                                     | 127                                                                     |  |  |
| Total                                                                                                                                 | 458 100                                            | 4 312                                                                   | 3 783                                                                   |  |  |
| NOTES: The data considered was the following:                                                                                         |                                                    |                                                                         |                                                                         |  |  |

For the total mean natural availability, 458 100 million cubic meters per year (data from 2007).

For the population, the data is estimated up to December, based on CONAPO's 2005-2050 population projections.


SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from:


CONAPO. Population Projections in Mexico 2005-2050. Mexico, 2007.

CONAGUA. Deputy Director General's Office for Technical Affairs.

Special attention will have to be paid to groundwater, since its overexploitation leads to the subsidence of the phreatic levels and the sinking of ground levels, as well as causing wells to have to be dug deeper and deeper to withdraw water. It is worth mentioning that the majority of the rural population, especially in arid areas, depends almost exclusively on groundwater.

M7.2 Mean natural per capita water availability, by Hydrological-Administrative Region, 2007





With the aim of facing up to the decrease in the availability of water in the coming years, it will be necessary to carry out actions to reduce the demand, by increasing the efficiency in the use of water for crop irrigation and in water distribution systems in cities. Furthermore, the volume of wastewater that is treated and reused must increase significantly, with the aim of enhancing the availability of water of appropriate quality for the uses for which it is destined.

In addition, it will be necessary to significantly increase the volumes of wastewater treated and reused, with the aim of increasing the availability of water with sufficient quality for the uses for which it is intended. Furthermore, in order to continue to guarantee social development, it will be necessary to significantly increase the drinking water and sanitation coverage.



# 7.2 National Development Plan 2007-2012

The 2007-2012 National Development Plan (NDP) has the objective of establishing the national goals, strategies and priorities so that, in the current administration, progress can be made towards the achievement of the vision that we have set for our nation over the coming years.

The objectives of the NDP are aligned with those of the Vision Mexico 2030, which aims to allow "...all Mexicans to have a dignified existence without compromising the inheritance of the future generations". The Vision has been formulated as follows:

"Towards 2030, we Mexicans see Mexico as a country of laws, where our families and our inheritance are assured, and we can exercise our freedoms and rights without any restrictions; a country with a highly competitive economy with a dynamic and sustainable growth, generating sufficient well-paid employment; a country with equal opportunities for all, where Mexicans fully exercise their social rights and where poverty has been eradicated; a country with a sustainable development in which there exists a culture of respect and of conservation of the environment; a fully democratic nation whose leaders offer clear accounts to the citizens, in which the political actors work together in a responsible manner and build agreements to promote the permanent development of the country; a nation that has consolidated a mature and equitable relationship with North America, and shows leadership in Latin America."

In the NDP, national goals and strategies are established for each of the five areas of public policy that compose it, as well as a series of targets associated with them. These areas are:

- 1. State of law and security.
- 2. Competitive economy that generates employment.
- 3. Equal opportunities.
- 4. Environmental sustainability.
- 5. Effective democracy and responsible foreign policy.

From the NDP, sector-wide, special, institutional and regional programs have been derived, among which the National Water Program 2007-2012.

## 7.3 National Water Program 2007-2012

The National Water Program 2007-2012 (NWP) incorporates the objectives, strategies and goals that have been set in the National Development Plan with regard to water management and preservation. In addition, it assimilates the concepts, proposals and goals of the Sectoral Program for the Environment and Natural Resources. The NWP basically seeks to improve the conditions of social wellbeing of all Mexicans, the economic development and the preservation of the environment in the country. The NWP assimilates the goals and strategies associated with the management and preservation of water, and is formulated in a participatory manner based on the following elements:

- 2007-2012 National Development Plan.
- 2007-2012 National Infrastructure Plan

• 2007-2012 Sectoral Program for the Environment and Natural Resources.

• National Water Programs prepared in previous government administrations.

• Water programs for each Hydrological-Administrative Region.

• Workshops held on topics of special relevance.

 A public consultation carried out through the National Water Commission's web page in order to gather the proposals from the citizens.

The goals established in the NWP are the following:

1. To improve water productivity in the agricultural sector.

2. To increase access to and quality of drinking water, sewerage and sanitation services.

3. To promote integrated, sustainable water management in river basins and aquifers.

4. To enhance the technical, administrative and financial development of the water sector.

5. To consolidate the participation of users and organized society in water management and to promote a culture for the proper use of this resource. 6. To prevent risks from meteorological and hydrometeorological events and attend to their effects.

7. To assess the effects of climate change on the hydrologic cycle.

8. To create a culture for paying duties and complying with the National Water Law in its administrative aspects. In order to reach the goals of the NWP, 68 strategies and 115 targets have been established (one target for each indicator). Additionally, in the NWP the organizations and institutions most related to the achievement of each goal are included, as well as the challenges to be overcome to reach the planned targets. In the following table the main medium-term (2012) and long-term (2030) targets are presented:

| Goal | Strategy                                                                                                                                                                                                                                                                        | Indicator                                                                                                     | Situation<br>2007 | Target for 2012   | Ideal targe<br>for 2030 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------------|
| 1    | Modernize the hydro-agricultural infrastructure and technify the agricultural areas in coordination with users and local authorities.                                                                                                                                           | Hectares modernized                                                                                           | 2.27<br>million   | 3.28<br>million   | 5.95<br>million         |
| 1    | Modernize the hydro-agricultural infrastructure and technify the agricultural areas in coordination with users and local authorities.                                                                                                                                           | Rehabilitated technified rainfed area (hectares)                                                              | 414.2<br>thousand | 487.5<br>thousand | 511.5<br>thousand       |
| 1    | Extend the agricultural border of irrigation and technified rainfed in zones with availability of water subject to land planning                                                                                                                                                | Hectares included in irrigation                                                                               | 6.511<br>thousand | 6 603<br>thousand | 10 000<br>thousand      |
| 1    | Extend the agricultural border of irrigation and technified rainfed in zones with availability of water subject to land planning.                                                                                                                                               | Hectares included in technified rainfed                                                                       | 2 745<br>thousand | 2 803<br>thousand | 7 500<br>thousand       |
| 1    | Maintain in appropriate working conditions the dams managed by the CONAGUA.                                                                                                                                                                                                     | Rehabilitated dams                                                                                            | 265               | 499               | 750                     |
| Z    | Treat the wastewater generated and promote the reuse and exchange of this wastewater.                                                                                                                                                                                           | Treatment of wastewater collected (%)                                                                         | 38.3              | 60.0              | 100                     |
| 2    | Increase the coverage of drinking water and sanitation services in Mexico, leading to the sustainability of the services.                                                                                                                                                       | Drinking water coverage (%)                                                                                   | 89.9              | 95.0              | 100                     |
| 2    | Increase the coverage of drinking water and sanitation services in Mexico, leading to the sustainability of the services.                                                                                                                                                       | Sanitation coverage (%)                                                                                       | 86.1              | 88.0              | 100                     |
| Z    | Improve the quality of the water supplied to populations.                                                                                                                                                                                                                       | Volume of water disinfected (%)                                                                               | 96.3              | 98.0              | 100                     |
| 3    | Publish the availability of water in the country's aquifers and watersheds.                                                                                                                                                                                                     | Aquifers with published availability                                                                          | 252               | 653               | 653                     |
| 3    | Publish the availability of water in the country's aquifers and watersheds.                                                                                                                                                                                                     | Watersheds with published water availability                                                                  | 491               | 718               | 718                     |
| 8    | Review the sources of income from the nation's water<br>and in particular wastewater discharges, in order to<br>contribute to the sanitation of the watersheds and<br>aquifers.                                                                                                 | Annual amount received<br>through the heading of the<br>payment of duties (millions<br>of 2006 Mexican pesos) | 8 718             | 9 700             | More<br>than10<br>000   |
| 8    | Strengthen the application of the control mechanisms<br>planned by law and watch over the appropriate use of<br>the concessions and allocations of the nation's water<br>and discharge permits to bring about an appropriate<br>management and preservation of water resources. | Inspection visits to users of<br>the nation's water and their<br>inherent goods                               | 3 thousand        | Does Not<br>Apply | 432.8<br>thousand       |

# **Chapter 8**






Through various indicators, this chapter allows the reader to have an overview of the state of water resources in the world and in particular to understand Mexico's situation in the international context.

Among the main indicators are those of population, GDP, precipitation, availability of water, uses of water, irrigation infrastructure, dams, coverage of services and water stress, among others.

Some topics of topical interest have also been included in recent editions, such as the water footprint, virtual water and climate change




# 8.1 Socio-Economic and Demographic Aspects

In 1950, the world population was 2 534 million people, whereas for 2005, it had risen to 6 515 million. It is estimated that by 2010, this population will be 6 907 million, and that this future growth will be concentrated mainly in the least developed countries, where the population is growing at a rate five times faster than that in developed countries.

Similarly, a further characteristic of the world demography is the trend towards a concentration of the population in urban centers. This trend is even more pronounced in the least developed countries of the world.





As a consequence of this trend towards converging in urban centers, it may be observed that an everincreasing percentage of the world's population now lives in mega-cities.

| T8.1 Largest population centers of the world,<br>by total population, 2007 |                         |                                            |  |  |
|----------------------------------------------------------------------------|-------------------------|--------------------------------------------|--|--|
| No.                                                                        | Urban center            | Population<br>(millions of<br>inhabitants) |  |  |
| 1                                                                          | Tokyo, Japan            | 35.67                                      |  |  |
| 2                                                                          | Mexico City, Mexico     | 19.35°                                     |  |  |
| 3                                                                          | New York, USA           | 19.04                                      |  |  |
| 4                                                                          | Bombay, India           | 18.98                                      |  |  |
| 5                                                                          | Sao Paulo, Brazil       | 18.84                                      |  |  |
| 6                                                                          | Delhi, India            | 15.93                                      |  |  |
| 7                                                                          | Shanghai, China         | 14.99                                      |  |  |
| 8                                                                          | Calcuta, India          | 14.79                                      |  |  |
| 9                                                                          | Dhaka, Bangladesh       | 13.49                                      |  |  |
| 10                                                                         | Buenos Aires, Argentina | 12.80                                      |  |  |
| 11                                                                         | Los Angeles, USA        | 12.50                                      |  |  |
| 12                                                                         | Karachi, Pakistan       | 12.13                                      |  |  |
| 13                                                                         | Cairo, Egypt            | 11.89                                      |  |  |
| 14                                                                         | Rio de Janeiro, Brazil  | 11.75                                      |  |  |
| 15                                                                         | Osaka, Japan            | 11.29                                      |  |  |
| 16                                                                         | Beijing, China          | 11.11                                      |  |  |
| 17                                                                         | Manila, Filipinas       | 11.10                                      |  |  |
| 18                                                                         | Paris, France           | 9.90                                       |  |  |
| 19                                                                         | Seoul, South Korea      | 9.80                                       |  |  |
| 20                                                                         | Jakarta, Indonesia      | 9.13                                       |  |  |
| NOTE: 3Description of the Materia litera Zana of the Manier                |                         |                                            |  |  |

NOTE: <sup>a</sup>Population of the Metropolitan Zone of the Valley of Mexico. SOURCE: UNDESA. World Population Prospects: The 2006 Revision and World Urbanization Prospects: The 2007 Revision, http://esa.un.org/unup. June 2008. CONAPO. Population Projections in Mexico, 2005-2050. Mexico 2007. SEDESOL, INEGI and CONAPO. Limits of the metropolitan zones in Mexico. 2005. Mexico.

In the following table, the world's most populated countries are presented, among which Mexico is ranked 11<sup>th</sup> out of a total of 222. It is worth mentioning that there are five countries, in addition to Mexico, which appear in every table of this chapter as references, namely Brazil, the United States of America, France, South Africa and Turkey, with the aim of illustrating the situation of these countries in the international context.

### T8.2 The world's most populated countries, 2005

|     | 2003                        |                                            |                                                         |                                                |  |
|-----|-----------------------------|--------------------------------------------|---------------------------------------------------------|------------------------------------------------|--|
| No. | Country                     | Population<br>(millions of<br>inhabitants) | Land<br>extension<br>(thousands<br>of km <sup>2</sup> ) | Population<br>density<br>(inhabitants/<br>km²) |  |
| 1   | China                       | 1 312.98                                   | 9 598.09                                                | 137                                            |  |
| Z   | India                       | 1 134.40                                   | 3 287.26                                                | 345                                            |  |
| 3   | United States<br>of America | 299.85                                     | 9 632.03                                                | 31                                             |  |
| 4   | Indonesia                   | 226.06                                     | 1 904.57                                                | 119                                            |  |
| 5   | Brazil                      | 186.83                                     | 8 514.88                                                | 22                                             |  |
| 6   | Pakistan                    | 158.08                                     | 796.10                                                  | 199                                            |  |
| 7   | Bangladesh                  | 153.28                                     | 144.00                                                  | 1064                                           |  |
| 8   | Russia                      | 141.95                                     | 17 098.24                                               | 8                                              |  |
| 9   | Nigeria                     | 141.36                                     | 923.77                                                  | 153                                            |  |
| 10  | Japan                       | 127.90                                     | 377.91                                                  | 338                                            |  |
| 11  | Mexico                      | 105.79                                     | 1964.38                                                 | 54                                             |  |
| 12  | Vietnam                     | 85.03                                      | 329.31                                                  | 258                                            |  |
| 13  | Philippines                 | 84.57                                      | 300.00                                                  | 281                                            |  |
| 14  | Germany                     | 82.65                                      | 357.05                                                  | 231                                            |  |
| 15  | Ethiopia                    | 78.99                                      | 1 104.30                                                | 72                                             |  |
| 16  | Turkey                      | 72.97                                      | 783.56                                                  | 93                                             |  |
| 17  | Egypt                       | 72.85                                      | 1 001.45                                                | 72                                             |  |
| 18  | Iran                        | 69.42                                      | 1 745.15                                                | 40                                             |  |
| 19  | Thailand                    | 63.00                                      | 513.12                                                  | 123                                            |  |
| 20  | France                      | 60.99                                      | 551.50                                                  | 111                                            |  |
| 25  | South Africa                | 47.94                                      | 1 219.09                                                | 39                                             |  |
|     |                             |                                            |                                                         |                                                |  |

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from UNDESA. World Population Prospects: The 2006 Revision and World Urbanization Prospects: The 2007 Revision,

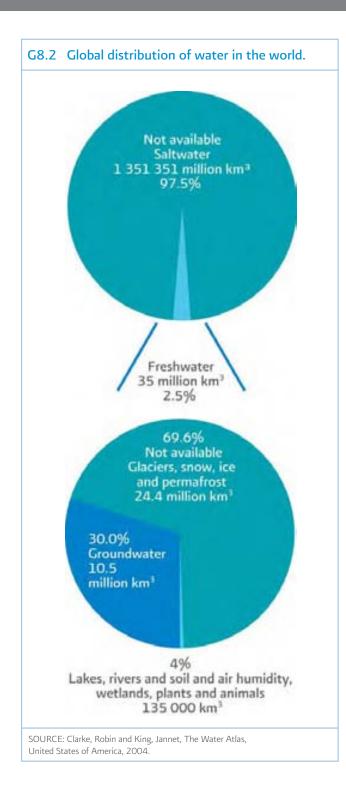
http://esa.un.org/unup. June 2008.

INEGI. Yearbook of Statistics by State, Edition 2007. Mexico, 2007. INEGI. General Censuses.



The following table presents information on the countries with the highest Gross Domestic Product per capita. It is worth noting that Mexico is ranked 54<sup>th</sup> out of 178 countries evaluated.

| T8.3 | T8.3 Countries with the highest Gross Domestic<br>Product per capita, 2007 |                                   |                             |  |  |  |
|------|----------------------------------------------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| No.  | Country                                                                    | Total GDP<br>(billions<br>of USD) | GDP<br>(USD/<br>inhabitant) |  |  |  |
| 1    | Luxembourg                                                                 | 50                                | 104 673                     |  |  |  |
| Z    | Norway                                                                     | 391                               | 83 922                      |  |  |  |
| 3    | Qatar                                                                      | 68                                | 72 849                      |  |  |  |
| 4    | Iceland                                                                    | 20                                | 63 830                      |  |  |  |
| 5    | Ireland                                                                    | 259                               | 59 924                      |  |  |  |
| 6    | Switzerland                                                                | 424                               | 58 084                      |  |  |  |
| 7    | Denmark                                                                    | 312                               | 57 261                      |  |  |  |
| 8    | Sweden                                                                     | 455                               | 49 655                      |  |  |  |
| 9    | Finland                                                                    | 245                               | 46 602                      |  |  |  |
| 10   | Netherlands                                                                | 769                               | 46 261                      |  |  |  |
| 11   | United States of America                                                   | 13 844                            | 45 845                      |  |  |  |
| 12   | United Kingdom                                                             | 2 773                             | 45 575                      |  |  |  |
| 13   | Austria                                                                    | 374                               | 45 181                      |  |  |  |
| 14   | Canada                                                                     | 1 432                             | 43 485                      |  |  |  |
| 15   | Australia                                                                  | 909                               | 43 312                      |  |  |  |
| 16   | United Arab Emirates                                                       | 193                               | 42 934                      |  |  |  |
| 17   | Belgium                                                                    | 454                               | 42 557                      |  |  |  |
| 18   | France                                                                     | 2 560                             | 41 511                      |  |  |  |
| 19   | Germany                                                                    | 3 322                             | 40 415                      |  |  |  |
| 20   | Italy                                                                      | 2 105                             | 35 872                      |  |  |  |
| 48   | Turkey                                                                     | 663                               | 9 629                       |  |  |  |
| 54   | Mexico                                                                     | 893                               | 8 479                       |  |  |  |
| 60   | Brazil                                                                     | 1314                              | 6 938                       |  |  |  |
| 64   | South Africa                                                               | 283                               | 5 906                       |  |  |  |


NOTE: GDP= Gross Domestic Product, USD= United States Dollars SOURCE: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008. International Monetary Fund, World Economic Outlook. United States of America, 2008. Bank of Mexico, www.banxico.org.mx. June 2008.

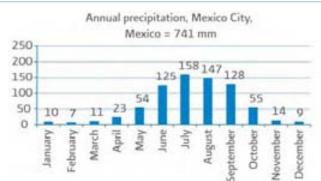
INEGI. II Census of Population and Housing 2005.

#### 8.2 Components of the Hydrologic Cycle in the World

The average annual availability of water in the world is approximately 1 386 million cubic kilometers, of which 97.5% is saltwater and only 2.5%, or 35 million cubic kilometers, is freshwater. Of that amount, almost 70% is unavailable for human consumption since it is locked up in glaciers, in snow and ice. Of the water that is technically available for human consumption, only a small percentage is in lakes, rivers, soil humidity and relatively shallow groundwater deposits, the renovation of which is a product of infiltration. Much of this theoretically usable water is far from populated areas, making it difficult or impossible to effectively use it.





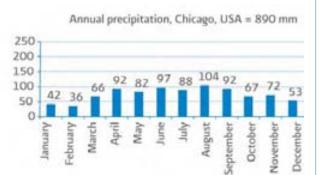

#### Precipitation

Precipitation constitutes an important part of the hydrologic cycle, since it produces the planet's renewable water. However, precipitation varies from country to country and from region to region, depending on the climate and the geographical situation. In the majority of Mexico, the precipitation is torrential and occurs mainly in the summer.

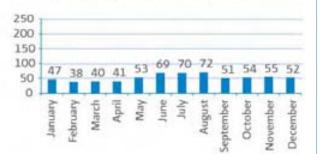
The following figures show the differences that can be observed between Mexico City and other cities in the world, which are characterized by either having a uniform precipitation throughout the year – cities with greater latitudes, or by a greater precipitation in the summer – cities closer to the equator.



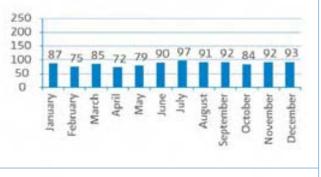





Annual precipitation, Beijing, China = 628 mm




Annual precipitation, New Delhi, India = 706 mm






Annual precipitation, Frankfurt, Germany = 639 mm



Annual precipitation, Montreal, Canada = 1 036 mm



NOTE: The normal periods considered are variable for each city, so the years are not specified.

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on: World Climate (www.worldclimate.com). June 2008.

CONAGUA. Deputy Director General's Office for Technical Affairs.



#### Availability of water

The mean natural per capita availability of a country may be calculated by dividing its renewable resources by the number of inhabitants. According to this criterion, Mexico is 89<sup>th</sup> worldwide out of 177 countries on which data exists, in terms of the mean per capita availability. It should be mentioned that in the case of Mexico, the national availability hides a strong regional variation.

| T8.4 | Countries with the highest mean pe | er capita availability, 200         | 07                               |                                                                  |
|------|------------------------------------|-------------------------------------|----------------------------------|------------------------------------------------------------------|
| No.  | Country                            | Mean precipitation<br>(millimeters) | Availability<br>(billions of m³) | Availability natural media<br>per capita<br>(m³/inhabitant/year) |
| 1    | Greenland                          | 350                                 | 603                              | 10 595 305                                                       |
| 2    | French Guiana                      | 2 895                               | 134                              | 680 203                                                          |
| 3    | Iceland                            | 1 940                               | 170                              | 574 588                                                          |
| 4    | Guyana                             | 2 387                               | 241                              | 320 667                                                          |
| 5    | Congo                              | 1 646                               | 910                              | 281 618                                                          |
| 6    | Surinam                            | 2 331                               | 122                              | 250 501                                                          |
| 7    | Papua New Guinea                   | 3 142                               | 801                              | 146 651                                                          |
| 8    | Gabon                              | 1831                                | 164                              | 126 154                                                          |
| 9    | Canada                             | 537                                 | 2 902                            | 93 549                                                           |
| 10   | Solomon Islands                    | 3 028                               | 45                               | 90 298                                                           |
| 11   | Norway                             | 1 414                               | 382                              | 81 967                                                           |
| 12   | Liberia                            | 2 391                               | 232                              | 80 573                                                           |
| 13   | New Zealand                        | 1 732                               | 327                              | 78 146                                                           |
| 14   | Peru                               | 1 738                               | 1 913                            | 69 446                                                           |
| 15   | Bolivia                            | 1 146                               | 623                              | 67 472                                                           |
| 16   | Paraguay                           | 1 130                               | 336                              | 65 076                                                           |
| 17   | Belize                             | 1 705                               | 19                               | 61 566                                                           |
| 18   | Chile                              | 1 522                               | 922                              | 57 291                                                           |
| 19   | Laos                               | 1834                                | 334                              | 56 836                                                           |
| 20   | Colombia                           | 2 612                               | 2 132                            | 46 302                                                           |
| 25   | Brazil                             | 1 782                               | 8 233                            | 44 081                                                           |
| 62   | United States of America           | 715                                 | 3 051                            | 10 293                                                           |
| 89   | Mexico                             | 760                                 | 458                              | 4 312                                                            |
| 101  | France                             | 867                                 | 204                              | 3 320                                                            |
| 107  | Turkey                             | 593                                 | 214                              | 2 891                                                            |

NOTE: 1 km<sup>3</sup> = 1 000 hm<sup>3</sup> = 1 billion m<sup>3</sup>.

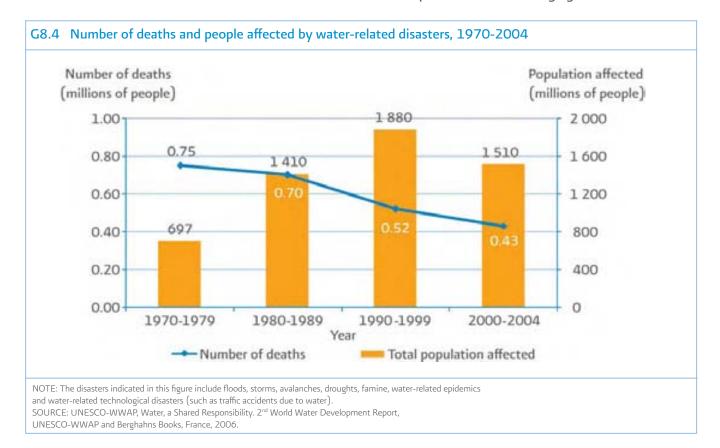
SOURCE: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008. CONAGUA. Deputy Director General's Office for Technical Affairs. 2008.

## **Climate change**

Climate change is expected to intensify the current stress placed on water resources, as a consequence of the population growth, economic activities, uses of soil and in particular urbanization processes. Regionally, the mountain snowcaps, glaciers and small icecaps perform a crucial function as regards freshwater availability. According to projections of the International Panel on Climate Change (IPCC), the generalized loss of landmass of the glaciers and the shrinking of the snow cover in recent decades will accelerate in the 21<sup>st</sup> century, thus reducing the availability of water and the hydropower potential, and altering the seasonality of the flows in the regions supplied with snow water from the main mountain ranges, currently home to one sixth of the world's population.

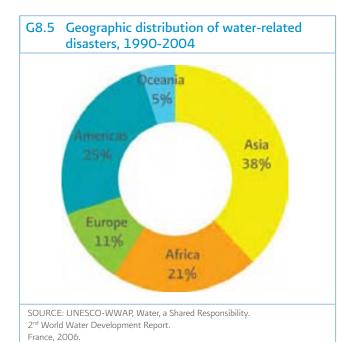
In the following table, the projected impacts as a consequence of the effects of climate change are shown.

| T8.5 Projected               | d regional impacts on the water sector as a consequence of the effects of climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Africa                       | By 2020, between 75 and 250 million of people are projected to be exposed to increased water stress due to climate change.<br>By 2020, in some countries, yields from rain-fed agriculture could be reduced by up to 50%. Agricultural production, including access to food, in many African countries is projected to be severely compromised. This would further adversely affect food security and exacerbate malnutrition.<br>Towards the end of the 21 <sup>st</sup> century, projected sea level rise will affect low-lying coastal areas with large populations. The cost of adaptation could amount to at least 5 to 10% of Gross Domestic Product (GDP).<br>By 2080, an increase of 5 to 8% of arid and semi-arid land in Africa is projected under a range of climate scenarios (TS).                                                                                                                                              |
| Asia                         | By the 2050s, freshwater availability in Central, South, East and South-East Asia, particularly in large river basins, is projected to decrease.<br>Coastal areas, especially heavily populated megadelta regions in South, East and South-East Asia, will be at greatest risk due to increased flooding from the sea and, in some megadeltas, flooding from the rivers.<br>Climate change is projected to compound the pressures on natural resources and the environment associated with rapid urbanisation, industrialisation and economic development.<br>Endemic morbidity and mortality due to diarrhoeal disease primarily associated with floods and droughts are expected to rise in East, South and South-East Asia due to projected changes in the hydrological cycle.                                                                                                                                                            |
| Australia and New<br>Zealand | By 2020, significant loss of biodiversity is projected to occur in some ecologically rich sites, including the New Zealand Great<br>Barrier Reef and Queensland Wet Tropics.<br>By 2030, water security problems are projected to intensify in southern and eastern Australia and, in New Zealand, in<br>Northland and some eastern regions.<br>By 2030, production from agriculture and forestry is projected to decline over much of southern and eastern Australia, and<br>over parts of eastern New Zealand, due to increased drought and fire. However, in New Zealand, initial benefits are projected<br>in some other regions.<br>By 2050, ongoing coastal development and population growth in some areas of Australia and New Zealand are projected to<br>exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding.                                                          |
| Europe                       | Climate change is expected to magnify regional differences in Europe's natural resources and assets.<br>Negative impacts will include increased risk of inland flash floods and more frequent coastal flooding and increased erosion<br>(due to storminess and sea level rise).<br>Mountainous areas will face glacier retreat, reduced snow cover and winter tourism, and extensive species losses (in some<br>areas up to 60% under high emissions scenarios by 2080).<br>In southern Europe, climate change is projected to worsen conditions (high temperatures and drought) in a region already<br>vulnerable to climate variability, and to reduce water availability, hydropower potential, summer tourism and, in general, crop<br>productivity.<br>Climate change is also projected to increase the health risks due to heat waves and the frequency of wildfires.                                                                  |
| Latin America                | By mid-century, increases in temperature and associated decreases in soil water are projected to lead to gradual replacement<br>of tropical forest by savanna in eastern Amazonia. Semi-arid vegetation will tend to be replaced by arid-land vegetation.<br>There is a risk of significant biodiversity loss through species extinction in many areas of tropical Latin America.<br>Productivity of some important crops is projected to decrease and livestock productivity to decline, with adverse<br>consequences for food security. In temperate zones, soybean yields are projected to increase. Overall, the number of people at<br>risk of hunger is projected to increase (TS; medium confidence).                                                                                                                                                                                                                                 |
| North America                | <ul> <li>Warming in western mountains is projected to cause decreased snowpack, more winter flooding and reduced summer flows, exacerbating competition for over-allocated water resources.</li> <li>In the early decades of the century, moderate climate change is projected to increase aggregate yields of rain-fed agriculture by 5 to 20%, but with important variability among regions. Major challenges are projected for crops that are near the warm end of their suitable range or which depend on highly utilized water resources.</li> <li>Cities that currently experience heat waves are expected to be further challenged by an increased number, intensity and duration of heat waves during the course of the century, with potential for adverse health impacts.</li> <li>Coastal communities and habitats will be increasingly stressed by climate change impacts interacting with development and pollution.</li> </ul> |
| Polar Regions                | The main projected biophysical effects are reductions in thickness and extent of glaciers, ice sheets and sea ice, and changes in natural ecosystems with detrimental effects on many organisms including migratory birds, mammals and higher predators. For human communities in the Arctic, impacts, particularly those resulting from changing snow and ice conditions, are projected to be mixed.<br>Detrimental impacts would include those on infrastructure and traditional indigenous ways of life.<br>In both polar regions, specific ecosystems and habitats are projected to be vulnerable, as climatic barriers to species invasions are lowered.                                                                                                                                                                                                                                                                                |


#### (continued)

| T8.5 Projected     | d regional impacts on the water sector as a consequence of the effects of climate change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Small Islands      | Sea level rise is expected to exacerbate inundation, storm surge, erosion and other coastal hazards, thus threatening vital<br>infrastructure, settlements and facilities that support the livelihood of island communities.<br>Deterioration in coastal conditions, for example through erosion of beaches and coral bleaching, is expected to affect local<br>resources.<br>By mid-century, climate change is expected to reduce water resources in many small islands, e.g. in the Caribbean and Pacific,<br>to the point where they become insufficient to meet demand during low-rainfall periods.<br>With higher temperatures, increased invasion by non-native species is expected to occur, particularly on mid- and high-<br>latitude islands. |
| SOURCE: WMO, UNDP, | IPCC. Climate Change 2007. Synthesis Report. 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

In the case of Mexico, climate change is an ongoing process that will have important repercussions on the availability of water resources. The various estimates agree on temperature increases, towards the end of the next century, between three and four degrees centigrade.

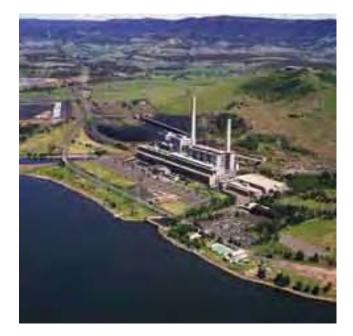

#### Extreme meteorological phenomena

Developing countries are more affected by disasters; their losses are estimated at five times more per unit of Gross Domestic Product (GDP) as compared to developed countries. These losses set developing countries back years in terms of the progress and socio-economic development achieved through great effort.



According to the World Meteorological Organization (WMO), in the period from 2000 to 2004, 1942 waterrelated disasters were registered, in which 427 000 people lost their lives and more than 1 510 million people were affected. The following figure shows the populated killed and affected by water-related disasters.

In the period between 1996 and 2005, around 80% of all natural disasters were water-related. In this period, disasters related with tidal waves accompanied by hurricanes, as well as the tsunami that occurred in the Indian Ocean in 2004, threatened an increasingly large number of people around the world. The following figure shows the geographic distribution of waterrelated natural disasters.






Between 1992 and 2001, it has been calculated that the losses derived from water-related disasters could be estimated at 446 billion US dollars, meaning a 65% economic loss owing to natural disasters.

## 8.3 Uses of Water and Infrastructure

In the last century, the world population tripled, whereas water withdrawals multiplied six-fold. This situation has contributed to the increase in water stress around the world. In the following table, the countries of the world with the highest per capita water withdrawal are shown, in which it can be seen that Mexico is ranked 36<sup>th</sup>.





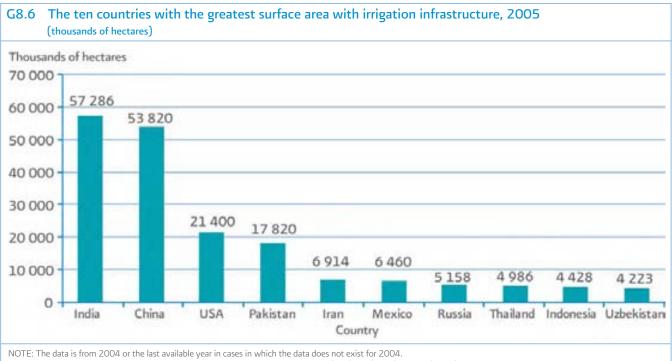
| T8.6 | Countries with the h     | ighest per capita              | water withdrawal,                                | 2005                |                      |                    |
|------|--------------------------|--------------------------------|--------------------------------------------------|---------------------|----------------------|--------------------|
| No.  | Country                  | Total withdrawal<br>(km³/year) | Per capita<br>withdrawal<br>(m³/inhabitant/year) | Agricultural<br>(%) | Public supply<br>(%) | Industrialª<br>(%) |
| 1    | Turkmenistan             | 24.6                           | 5 071                                            | 97.5                | 1.7                  | 0.8                |
| Z    | Uzbekistan               | 58.3                           | 2 337                                            | 93.2                | 4.7                  | 2.1                |
| З    | Kazakhstan               | 35.0                           | 2 311                                            | 81.8                | 1.7                  | 16.5               |
| 4    | Guyana                   | 1.6                            | 2 182                                            | 97.6                | 1.8                  | 0.6                |
| 5    | Azerbaijan               | 17.3                           | 2 077                                            | 67.5                | 4.8                  | 27.7               |
| 6    | Kyrgyzstan               | 10.1                           | 2 019                                            | 93.7                | 3.2                  | 3.1                |
| 7    | Tajikistan               | 12.0                           | 1 746                                            | 91.6                | 3.7                  | 4.7                |
| 8    | United States of America | 479.3                          | 1 617                                            | 41.3                | 12.7                 | 46.0               |
| 9    | Iraq                     | 42.7                           | 1 482                                            | 92.2                | 3.2                  | 4.6                |
| 10   | Canada                   | 46.0                           | 1 482                                            | 11.8                | 19.6                 | 68.6               |
| 11   | Surinam                  | 0.7                            | 1 376                                            | 92.5                | 4.5                  | 3.0                |
| 12   | Bulgaria                 | 10.5                           | 1 357                                            | 18.8                | 3.0                  | 78.2               |
| 13   | Thailand                 | 87.1                           | 1 333                                            | 95.0                | 2.5                  | 2.5                |
| 14   | Ecuador                  | 17.0                           | 1 303                                            | 82.2                | 12.5                 | 5.3                |
| 15   | Australia                | 23.9                           | 1 156                                            | 75.3                | 14.7                 | 10.0               |
| 16   | Syria                    | 20.0                           | 1 110                                            | 94.9                | 3.3                  | 1.8                |
| 17   | Pakistan                 | 169.4                          | 1 090                                            | 96.0                | 1.9                  | 2.1                |
| 18   | Rumania                  | 23.2                           | 1072                                             | 57.0                | 8.6                  | 34.4               |
| 19   | Portugal                 | 11.3                           | 1067                                             | 78.2                | 9.6                  | 12.2               |
| 20   | Iran                     | 72.9                           | 1064                                             | 90.9                | 6.8                  | 2.3                |
| 36   | Mexico                   | 78.9                           | 743                                              | 76.8                | 14.1                 | 9.1                |
| 45   | France                   | 40.0                           | 669                                              | 9.8                 | 15.7                 | 74.5               |
| 59   | Turkey                   | 37.5                           | 534                                              | 74.2                | 14.8                 | 11.0               |
| 85   | Brazil                   | 59.3                           | 331                                              | 61.8                | 20.3                 | 18.0               |
| 92   | South Africa             | 12.5                           | 268                                              | 62.7                | 31.2                 | 6.0                |

NOTES: The data is from the last available year in the period from 2000 to 2007.

1 km³ = 1 000 hm³ = 1 billion m³.

<sup>a</sup> Includes the use of water in thermoelectric plants.

SOURCE: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008.


CONAGUA. Deputy Director General's Office for Water Management.

### Industrial use

Industry is the motor of growth and economic development in many developed countries. In the East Asia and Pacific region, industry currently generates 48% of the total GDP, and this proportion is increasing. On the other hand, in developing countries, the proportion of GDP grew from 22 to 26% between 1998 and 2002. Around 20% of water is employed in industry, this quantity being the equivalent of a consumption of 130 m<sup>3</sup>/person/year. Of this quantity, more than half is used in thermoelectric stations in their cooling processes. Among the greatest consumers of water are petrol plants, the metal, paper and wood industries, food processing and the manufacturing industry.

#### Agricultural use

Irrigation is fundamental to meet the world's food requirements. Only 17% of the area with irrigation is watered, but produces more than a third of the world's food. Additionally, in recent years agriculture has used greater quantities of fertilizers, and chemicals used in irrigation have polluted soils. Mexico is in 6<sup>th</sup> place worldwide in terms of the surface area with irrigation infrastructure, the first places being occupied by China, India and the United States of America, as shown in the following figure:



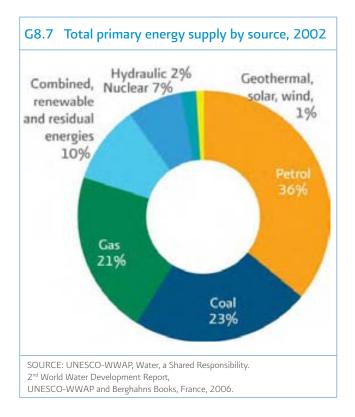
SOURCE: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008.

| T8.7 | T8.7 Countries with the greatest surface area with irrigation infrastructure, 2005 |                                                 |                                                                                        |                                                                         |  |  |
|------|------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| No.  | Country                                                                            | Cultivatable surface<br>(thousands of hectares) | Surface area with irrigation<br>infrastructure <sup>a</sup><br>(thousands of hectares) | Irrigation infrastructure as regards<br>the cultivatable surface<br>(%) |  |  |
| 1    | India                                                                              | 169 650                                         | 57 286                                                                                 | 34                                                                      |  |  |
| Z    | China                                                                              | 156 327                                         | 53 820                                                                                 | 34                                                                      |  |  |
| 3    | United States of America                                                           | 177 178                                         | 21 400                                                                                 | 12                                                                      |  |  |
| 4    | Pakistan                                                                           | 22 070                                          | 17 820                                                                                 | 81                                                                      |  |  |
| 5    | Iran                                                                               | 18 107                                          | 6 914                                                                                  | 38                                                                      |  |  |
| 6    | Mexico                                                                             | 27 600                                          | 6 460                                                                                  | 23                                                                      |  |  |
| 7    | Russia                                                                             | 123 581                                         | 5 158                                                                                  | 4                                                                       |  |  |
| 8    | Thailand                                                                           | 17 800                                          | 4 986                                                                                  | 28                                                                      |  |  |
| 9    | Indonesia                                                                          | 36 600                                          | 4 428                                                                                  | 12                                                                      |  |  |
| 10   | Uzbekistan                                                                         | 5 040                                           | 4 223                                                                                  | 84                                                                      |  |  |
| 11   | Turkey                                                                             | 26 606                                          | 4186                                                                                   | 16                                                                      |  |  |
| 12   | Bangladesh                                                                         | 8 411                                           | 3 751                                                                                  | 45                                                                      |  |  |
| 13   | Kazakhstan                                                                         | 22 500                                          | 3 556                                                                                  | 16                                                                      |  |  |
| 14   | Iraq                                                                               | 6 010                                           | 3 525                                                                                  | 59                                                                      |  |  |
| 15   | Spain                                                                              | 18 630                                          | 3 478                                                                                  | 19                                                                      |  |  |
| 16   | Egypt                                                                              | 3 520                                           | 3 422                                                                                  | 97                                                                      |  |  |
| 17   | Japan                                                                              | 4 692                                           | 3 1 2 8                                                                                | 67                                                                      |  |  |

#### (continued)

| T8.7 | 8.7 Countries with the greatest surface area with irrigation infrastructure, 2005 |                                                 |                                                                                        |                                                                         |  |  |  |
|------|-----------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| No.  | Country                                                                           | Cultivatable surface<br>(thousands of hectares) | Surface area with irrigation<br>infrastructure <sup>a</sup><br>(thousands of hectares) | Irrigation infrastructure as regards<br>the cultivatable surface<br>(%) |  |  |  |
| 18   | Romania                                                                           | 9 828                                           | 3 082                                                                                  | 31%                                                                     |  |  |  |
| 19   | Vietnam                                                                           | 8 950                                           | 3 000                                                                                  | 34%                                                                     |  |  |  |
| 20   | Brazil                                                                            | 66 600                                          | 2 870                                                                                  | 4%                                                                      |  |  |  |
| 25   | France                                                                            | 19 635                                          | 2 634                                                                                  | 13%                                                                     |  |  |  |
| 36   | South Africa                                                                      | 15 712                                          | 1 498                                                                                  | 10%                                                                     |  |  |  |
|      |                                                                                   |                                                 |                                                                                        |                                                                         |  |  |  |

NOTE: "The data is from 2005 or the last available year in the cases in which no data exists for 2005.


SOURCE: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008.

CONAGUA. Deputy Director General's Office for Hydro-agricultural Infrastructure.

#### Hydropower generation

Electricity performs a key function in poverty reduction, the promotion of economic activities and the improvement of the quality of life, health and education opportunities, especially for women and children.

The 2<sup>nd</sup> United Nations' World Water Development Report indicates that, despite the percentage of hydropower in the total world energy supply being only 2.2% in 2002, hydropower constitutes 19% of all electricity generated. The following figure shows the world energy supply by the type of source.



#### Storage dams in the world

The water storage capacity for various uses and for flood control is directly proportional to the degree of hydraulic development of countries. An indicator that allows this degree to be appreciated is the per capita storage capacity. It is worth mentioning that Mexico has the 19<sup>th</sup> highest storage capacity in the world.

|     | storage capac                   | .icy                         |                                                          |                            |
|-----|---------------------------------|------------------------------|----------------------------------------------------------|----------------------------|
| No. | Country                         | Storage<br>capacity<br>(km³) | Per capita<br>storage<br>capacity<br>(m³/<br>inhabitant) | Number<br>of large<br>dams |
| 1   | Canada                          | 857                          | 26 778                                                   | 793                        |
| Ζ   | Norway                          | 49                           | 9 889                                                    | 335                        |
| 3   | Ghana                           | 150                          | 7 152                                                    | 5                          |
| 4   | Venezuela                       | 155                          | 5 975                                                    | 74                         |
| 5   | Uruguay                         | 18                           | 5 948                                                    | 6                          |
| 6   | Australia                       | 93                           | 4 663                                                    | 486                        |
| 7   | Sweden                          | 38                           | 4 2 4 3                                                  | 190                        |
| 8   | New Zealand                     | 17                           | 4 131                                                    | 86                         |
| 9   | Finland                         | 19                           | 3 806                                                    | 55                         |
| 10  | Argentina                       | 130                          | 3 515                                                    | 101                        |
| 11  | Brazil                          | 550                          | 3 110                                                    | 594                        |
| 12  | Egypt                           | 167                          | 2 456                                                    | 6                          |
| 13  | United States of<br>America     | 553                          | 1 899                                                    | 6 575                      |
| 14  | Honduras                        | 13                           | 1841                                                     | 9                          |
| 15  | Turkey                          | 109                          | 1 538                                                    | 625                        |
| 16  | Spain                           | 56                           | 1 377                                                    | 1196                       |
| 17  | Democratic<br>Republic of Congo | 5                            | 1 319                                                    | 14                         |
| 18  | Thailand                        | 79                           | 1 267                                                    | 204                        |
| 19  | Mexico                          | 150                          | 1 189                                                    | 667                        |

(continues)

#### (continued)

| T8.8 | T8.8 Dams per selected country, by per capita storage capacity |                              |                                                          |                            |  |
|------|----------------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------|--|
| No.  | Country                                                        | Storage<br>capacity<br>(km³) | Per capita<br>storage<br>capacity<br>(m³/<br>inhabitant) | Number<br>of large<br>dams |  |
| 20   | Greece                                                         | 13                           | 1164                                                     | 46                         |  |
| 27   | South Africa                                                   | 31                           | 665                                                      | 539                        |  |
| 42   | France                                                         | 16                           | 266                                                      | 569                        |  |

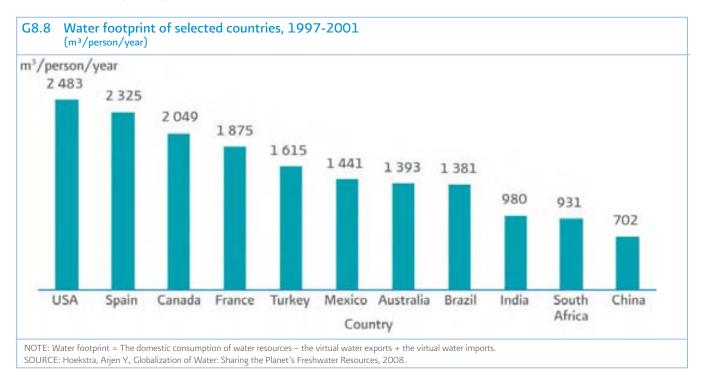
NOTE:  $1 \text{ km}^3 = 1 000 \text{ hm}^3 = 1 \text{ billion m}^3$ .

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from:

ICOLD. World Register of Dams. France, 2003.

World Commission of Dams. Dams and Development: A New Framework for Decision-making, Annex V, South Africa, 2000.

## Water footprint


One way of measuring the impact of human activities on water resources is the so-called water footprint, which can be calculated by adding up the water used by each person for his or her activities and which is necessary to produce the goods and services that they consume.

The four main factors that determine the water footprint of a country are: the level of consumption, the type of consumption (for example the quantity of meat consumed by each person), the climate and the efficiency with which water is used. According to this concept, each human being on average uses 1 240 cubic meters of water per year; however the differences between countries are significant. For example, in Mexico the water footprint is 1 441 cubic meters of water per person per year, whereas in the United States of America (the country with the largest water footprint), 2 483 are required, and in China (one of the countries with the smallest water footprints), the figure is 702.

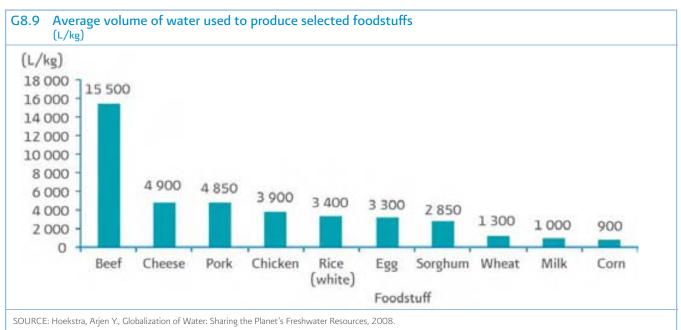
In these calculations, both the water withdrawn from aquifers, lakes, rivers and streams (known as blue water), and the rainwater that feeds rainfed crops (known as green water) are included.

## Virtual water

A concept that is closely linked to the water footprint is that of virtual water. The virtual water content of a product is the quantity of water that was employed in its productive process. Trade between countries implies a flow of virtual water between them, which corresponds to the water that was used for the generation of the products or services imported or exported. The total volume of virtual water exchanged between the countries of the world is 1 625 cubic kilometers



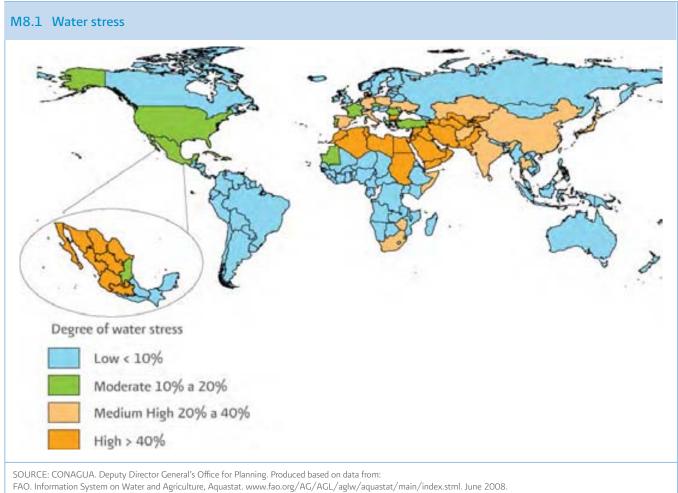
(km<sup>3</sup>) per year, of which approximately 80% corresponds to agricultural products, the remainder corresponding to industrial products.


Growing one kilogram of corn requires on average in the world 900 liters of water, whereas growing one kilogram of white rice requires 3 400 liters. However, the production of one kilogram of beef requires on average 15 500 liters, which includes the water drunk by the animal throughout its lifetime and the water required to grow the grain that serves as its food. The graphic G8.9 shows the average virtual water content of various products. The values are different in every country, depending on the climatic conditions and the efficiency in the use of water.

Importing virtual water may be an option to reduce the problems of water scarcity in some countries. The countries that export virtual water should evaluate the impact of this activity on the availability of their water resources and the possible distortions derived from subsidies applied to agricultural production.

#### Water stress

In the table T8.9, the countries with the highest water stress are shown, this calculation being made by dividing their withdrawal by the availability. It should be noted that, as a result of their low availability, the Middle East countries figure among those that suffer from the highest water stress, whereas Mexico is in 55<sup>th</sup> place out of 155 evaluated according to this indicator.






| No.CountryAvailability<br>(km')Total withdrawal<br>(km')Water stress<br>(k)1Kwait0.020.452.2502United Arab Emirates0.122.3122.7223Arabis Saudi Arabia0.6001.7.327.7224Libya0.6000.2727.115Gaar0.0500.2905.4716Bhrain0.0120.3002.5917Yenen0.120.3012.5918Mana0.0511.3541.6219Israel0.0510.6631.62110Mata0.0510.0641.20211Eypt58.300.68.301.16112Jordan0.5415.8331.16113Uzbekistan0.080.080.0014Brabados0.22.671.69.383.61615Jikistan2.62.641.9.657.616Jikistan0.50.011.16.97.617Syniat6.45.001.1.645.818Tajikistan6.45.003.7.315.819Lusiat50.001.2.502.514Suth Africa50.001.2.502.515Marcio2.0.3.013.9.62.015Integer2.0.3.013.9.63.016Suth Africa5.0.013.9.63.015Suth Africa6.0.5.013.9.63.016 <td< th=""><th>T8.9</th><th colspan="5">T8.9 Countries with the highest degree of water stress, 2008</th></td<>                                         | T8.9 | T8.9 Countries with the highest degree of water stress, 2008 |         |        |       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------|---------|--------|-------|--|
| A<br>Nabis Audi Arabia0.152.311.5403Arabis Saudi Arabia2.4017.327.224Libq0.604.277.115Otar0.050.295.476Bahain0.120.302.597Yenen4.106.631.628Oman0.991.351.379Isrel0.050.061.2210Mata0.050.061.2211Eypt5.8306.8301.1212Jordan0.881.021.1613Uzbekistan0.080.080.0814Babados0.080.080.0015Inkmenistan22.671.69.381.0216Ajistan1.59.81.1967.617Syria64.503.73.15.818Jikistan64.503.73.15.819Staft5.001.25.02.514Juria6.003.73.15.815Juria20.37.03.95.03.615Inkey22.303.7521.815Maxio4.58.107.85.01.7                                                                                                                                                                                                                                                                                                                                                      | No.  | Country                                                      |         |        |       |  |
| Abia Saudi Anbia2.4017.327224Libya0.604.277115Oatar0.050.295476Bahrain0.120.302597Yemen4.106.631628Oman0.991.351379Isrel0.050.0612210Mata0.050.0612011Eypt58.3068.3011612Jordan0.881.0211613Uzbekistan0.080.0810014Babados0.080.0810015Iurkmenistan22.67169.387616Jijkistan15.9811.097517Jurka64.5019.957518Jajkistan64.5037.315819Iurka60.0012.502510Stahfrica50.0012.506314Jurka62.3039.962015Jurka22.3037.521815Mixo23.5037.5218                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    | Kuwait                                                       | 0.02    | 0.45   | 2 250 |  |
| 4Idya0.004.277115Oatar0.050.295476Bahrain0.120.302597Yenen4.106.631628Oman0.991.351379Isrel1.672.0412210Mata0.050.0612011Eypt58.3068.3011712Jordan0.881.0211613Uzbekistan0.080.0810014Barbados0.080.0810015Turkenistan22.67169.3810016Paistan22.67169.387617Syia26.6219.957618Tajkistan15.9811.967519Iurisia4462.645810Suita friac63.0012.502514Suth Africa50.003.9.62.615Ance20.37.03.9.62.614Iurisi22.93.03.7.521815Mixo445.075.5218                                                                                                                                                                                                                                                                                                                                                                                                                | Z    | United Arab Emirates                                         | 0.15    | 2.31   | 1 540 |  |
| Attar0.050.295476Bahrain0.050.292597Yenen4.106.631628Oman0.991.351379Isrel1.672.0412210Mata0.050.0612011Eypt58.3068.3011712Jordan0.881.0211613Uzbekistan0.080.0810014Barbados0.080.0810015Turkenistan222.67169.3810216Akistan222.671.09.387617Syria64.501.9.557618Tajkistan15.981.1.967519Inisia4.462.648810Suth Africa50.0012.502514Suth Africa50.0012.502515Anex203.7039.962014Kirky22.9337.521.815Mexico458.1078.551.7                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    | Arabia Saudi Arabia                                          | 2.40    | 17.32  | 722   |  |
| 6Bhrain0.120.302597Yemen0.120.6630.1628Oman0.991.350.1379Isral1.672.040.2210Mata0.050.061.2011Eyyt58.3068.301.1712Jordan0.881.021.1613Uzbekistan0.080.080.1014Barbados0.080.080.0015Turkmenistan22.671.69.381.0016Pakistan22.671.69.387.617Syria64.501.9.957.618Tajikistan1.5.981.1.967.519Suda64.5037.315.810Suda64.503.9.642.514Suth Africa50.0012.502.515Fance203.703.9.643.815Maico448.103.9.51.815Suth Africa5.0.012.502.515Kato3.9.643.9.643.816Suth Africa3.0.23.9.643.815Maico4.88.103.9.653.8                                                                                                                                                                                                                                                                                                                                                | 4    | Libya                                                        | 0.60    | 4.27   | 711   |  |
| 7Yenen4.106.631628Oman0.991.351379Isrel1.672.0412210Mata0.050.0622011Egypt58.3068.3011712Jordan0.881.0211613Uzbekistan50.4158.3311614Brados0.080.080.0015Turkmenistan24.7224.6410016Pakistan26.2619.957617Syria64.5011.967518Tajkistan15.9811.965819Iunisia64.5037.315820Sudan Frida50.0012.502514South Africa50.0012.502515Irkey223.7039.962015Marko62.9337.521815Mexico458.1078.5517                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5    | Qatar                                                        | 0.05    | 0.29   | 547   |  |
| 80man0.991.351379Israel1.672.041.2210Mata0.050.061.2011Eypt58.3068.301.1712Jordan0.881.021.1613Uzbekistan0.080.080.1614Barbados0.080.080.0015Turkmenistan222.671.69.387.616Pakistan222.671.69.387.617Syria262.621.9.957.618Tajkistan15.981.1.965.819Iunisia4.462.645.820Sudan frica50.001.2.502.514South Africa50.001.2.502.515Irkey203.703.9.962.015Mexico445.107.521.815Strike2.03.703.9.962.015Mexico4.58.107.8.551.8                                                                                                                                                                                                                                                                                                                                                                                                                              | б    | Bahrain                                                      | 0.12    | 0.30   | 259   |  |
| 9Irael1.672.0412210Mata0.050.0612011Eypt58.3068.3011712Jordan0.881.0211613Uzbekistan50.4158.3311614Babados0.080.0810015Turkmenistan24.7224.6410016Pakistan222.67169.387617Syria26.2619.957618Tajikistan15.9811.967519Tunisia64.5037.315820Sudan frica50.0012.502552Fance203.7039.962054Turkey458.1078.521855Mexico458.1078.5517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7    | Yemen                                                        | 4.10    | 6.63   | 162   |  |
| 10Mata0001210Egypt0.050.0612011Egypt58.3068.3011712Jordan0.881.0211613Uzbekistan50.4158.3311614Babados0.080.080.0810015Turkmenistan24.7224.6410016Paistan222.67169.387617Syria26.2611.957618Tajkistan15.9811.967519Tunisia64.5037.315820Such Africa50.0012.502552Fance203.7039.962054Tukey458.1075.251855Maxico458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    | Oman                                                         | 0.99    | 1.35   | 137   |  |
| In<br>EgyptEgyptIn<br>S830In<br>S83011EgyptS830S830S11712JordanO.88I.02S11613UzbekistanS0.41S8.33S11614BarbadosO.08O.08O.08S10015TurkmenistanZ472Z4.64S10016PakistanZ22.67S169.38S7617SyriaZ62.67S19.95S7618TajkistanS15.98S11.96S7519TunisiaA4.64Z.64S820JudanG64.50S17.31S821South AfricaS0.00S12.50S252FranceZ03.70S9.962054TurkyZ29.30S7.52S1855MaxicoA58.10S8.50S17.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9    | Israel                                                       | 1.67    | 2.04   | 122   |  |
| 12         Jordan         0.88         1.02         116           13         Uzbekistan         50.41         58.33         116           14         Barbados         0.08         0.08         0.09           15         Turkmenistan         24.72         24.64         100           16         Pakistan         222.67         169.38         76           17         Syria         26.26         19.95         76           18         Tajikistan         15.98         11.96         75           19         Tunisia         44.64         2.64         58           20         Sudan         64.50         37.31         58           21         South Africa         203.70         39.96         20           52         France         203.70         37.52         18           54         Turkey         229.30         37.52         18 | 10   | Malta                                                        | 0.05    | 0.06   | 120   |  |
| 13Uzbekistan60.0058.3311614Barbados0.080.080.0015Turkmenistan24.7224.6410016Pakistan222.67169.387617Syria26.2619.957618Tajkistan15.9811.967519Tunisia64.5037.315820Sudan Africa50.0012.502552France203.7039.962054Turky229.3037.521855Mexico458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11   | Egypt                                                        | 58.30   | 68.30  | 117   |  |
| 14Britan1014Barbados0.080.0810015Turkmenistan24.7224.6410016Pakistan222.67169.387617Syria26.2619.957618Tajikistan15.9811.967519Tunisia4.462.645820Sudan64.5037.315821Fance203.7039.962052France229.3037.521854Mexico458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12   | Jordan                                                       | 0.88    | 1.02   | 116   |  |
| 111111115Tukmenistan24.7224.6410016Pakistan222.67169.387617Syria26.2619.957618Tajkistan15.9811.967519Tunisia4.462.645820Sudan Arrica50.0012.502541South Africa203.7039.962052France229.3037.521853Mako Arrica458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13   | Uzbekistan                                                   | 50.41   | 58.33  | 116   |  |
| 10MarcialMarcialMarcialMarcial11PakistanPakistanPakistanPakistanPakistanPakistan12JajkistanPakistanPakistanPakistanPakistan13SudanPakistanPakistanPakistanPakistan14South AfricaPakistanPakistanPakistan15FrancePakistanPakistanPakistan16SudanPakistanPakistanPakistan17South AfricaPakistanPakistanPakistan18PakistanPakistanPakistanPakistan19KangePakistanPakistanPakistan10PakistanPakistanPakistanPakistan15Marking PakistanPakistanPakistanPakistan16PakistanPakistanPakistanPakistan16PakistanPakistanPakistanPakistan17PakistanPakistanPakistanPakistan18PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19PakistanPakistanPakistanPakistan19Pakistan                              | 14   | Barbados                                                     | 0.08    | 0.08   | 100   |  |
| 17Syria000018Syria126.2619.957618Tajkistan11.9611.967519Tunisia4.462.645820Suda64.5037.315841South Africa50.0012.502552France203.7039.962054Turky458.1078.9518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15   | Turkmenistan                                                 | 24.72   | 24.64  | 100   |  |
| 18Tajikistan11.967519Tunisia4.462.645820Sudan64.5037.315841South Africa50.0012.502552France203.7039.962054Turkey458.1037.5218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16   | Pakistan                                                     | 222.67  | 169.38 | 76    |  |
| 19TunisiaA.4.6A.6.4S820Sudan64.5037.315841South Africa50.0012.502552France203.7039.962054Turkey62.93.0037.521855Mexico458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17   | Syria                                                        | 26.26   | 19.95  | 76    |  |
| 20Sudan64.5037.315841South Africa50.0012.502552France203.7039.962054Turkey229.3037.521855Mexico458.1078.9517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18   | Tajikistan                                                   | 15.98   | 11.96  | 75    |  |
| A1         South Africa         50.00         12.50         25           52         France         203.70         39.96         20           54         Turkey         229.30         37.52         18           55         Mexico         458.10         78.95         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19   | Tunisia                                                      | 4.46    | 2.64   | 58    |  |
| 52         France         203.70         39.96         20           54         Turkey         229.30         37.52         18           55         Mexico         458.10         78.95         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20   | Sudan                                                        | 64.50   | 37.31  | 58    |  |
| 54         Turkey         229.30         37.52         18           55         Mexico         458.10         78.95         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41   | South Africa                                                 | 50.00   | 12.50  | 25    |  |
| 55 Mexico 458.10 78.95 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52   | France                                                       | 203.70  | 39.96  | 20    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54   | Turkey                                                       | 229.30  | 37.52  | 18    |  |
| 58         United States of America         2071.00         479.29         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55   | Mexico                                                       | 458.10  | 78.95  | 17    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58   | United States of America                                     | 2071.00 | 479.29 | 16    |  |

NOTE:  $1 \text{ km}^3 = 1 000 \text{ hm}^3 = 1 \text{ billion m}^3$ .

SOURCE: CONAGUA. Deputy Director General's Office for Planning. Produced based on data from: FAO. Information System on Water and Agriculture, Aquastat. www.fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008. CONAGUA. Deputy Director General's Office for Technical Affairs. Deputy Director General's Office for Water Management.



CONAGUA. Deputy Director General's Office for Technical Affairs.

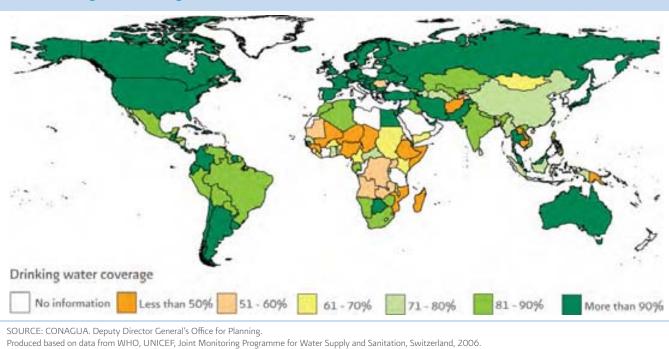
#### Drinking water, sanitation and wastewater treatment

For 2004, according to the World Health Organization (WHO), 1 100 million people in the world, or 17% of the population of the planet, were lacking access to drinking water services, the most affected being the inhabitants of the Asian and African continents.

Likewise, as regards sanitation, in 2004 it was calculated that 2 400 million inhabitants did not have access to this service, or 42% of the world population, Asia and Africa again being the most disadvantaged regions of the world.

The WHO also estimates that the propagation of

diarrhoeal diseases, malaria, hepatitis and trachoma is closely linked to the provision of drinking water and sanitation services, young children being the most at threat. Extending the coverage of the service would therefore contribute to reducing mortality through these diseases. In the following table, the countries with the highest coverage rates of drinking water, sanitation and wastewater treatment are shown. It should be mentioned that Mexico is ranked 90<sup>th</sup> out of 184 countries in terms of drinking water, 67<sup>th</sup> out of 172 for sanitation and 39<sup>th</sup> out of 56 for wastewater treatment.

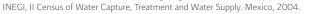

| 0. | Country                  | Continent                 | Drinking water coverage<br>(%) |
|----|--------------------------|---------------------------|--------------------------------|
| 1  | Germany                  | Europe                    | 100                            |
| Z  | Andorra                  | Europe                    | 100                            |
| 3  | Aruba                    | North and Central America | 100                            |
| 4  | Australia                | Oceania                   | 100                            |
| 5  | Austria                  | Europe                    | 100                            |
| 6  | Barbados                 | North and Central America | 100                            |
| 7  | Belarus                  | Europe                    | 100                            |
| 8  | Canada                   | North and Central America | 100                            |
| 9  | Cyprus                   | Asia                      | 100                            |
| 10 | Croatia                  | Europe                    | 100                            |
| 11 | Denmark                  | Europe                    | 100                            |
| 12 | United Arab Emirates     | Asia                      | 100                            |
| 13 | Slovakia                 | Europe                    | 100                            |
| 14 | Spain                    | Europe                    | 100                            |
| 15 | United States of America | North and Central America | 100                            |
| 16 | Estonia                  | Europe                    | 100                            |
| 17 | Finland                  | Europe                    | 100                            |
| 18 | France                   | Europe                    | 100                            |
| 19 | Guam                     | Oceania                   | 100                            |
| 20 | Iceland                  | Europe                    | 100                            |
| 62 | Turkey                   | Asia                      | 96                             |
| 88 | Brazil                   | South America             | 90                             |
| 90 | Mexico                   | North and Central America | 89                             |
| 91 | South Africa             | Africa                    | 89                             |

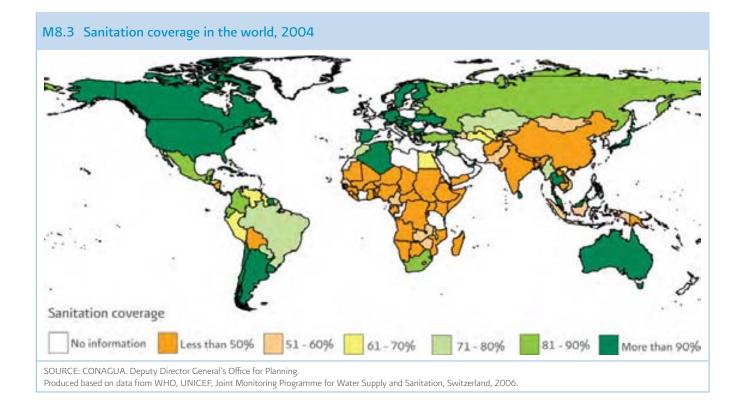
There are 45 countries with 100% coverage of drinking water. Here we present the first 20 in alphabetic order in Spanish.

SOURCE: WHO, UNICEF, Joint Monitoring Programme for Water Supply and Sanitation, Switzerland, 2006.

INEGI, II Census of Water Capture, Treatment and Water Supply. Mexico, 2004.

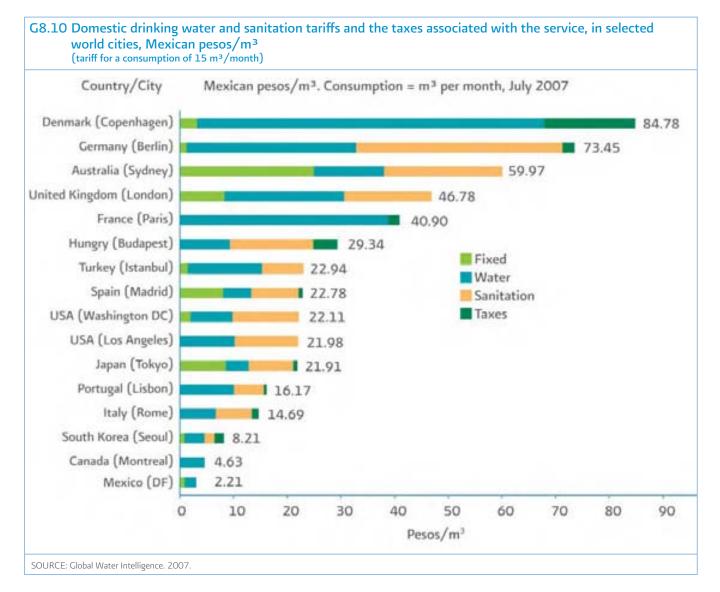
## M8.2 Drinking water coverage in the world, 2004





| Vo. | Country                  | Continent                     | Sanitation coverage |
|-----|--------------------------|-------------------------------|---------------------|
|     |                          |                               | (%)                 |
| 1   | Germany                  | Europe                        | 100                 |
| 2   | Andorra                  | Europe                        | 100                 |
| 3   | Autralia                 | Oceania                       | 100                 |
| 4   | Austria                  | Europe                        | 100                 |
| 5   | Barbados                 | North and Central America     | 100                 |
| 6   | Canada                   | North and Central America     | 100                 |
| 7   | Cyprus                   | Asia                          | 100                 |
| 8   | Croacia                  | Europe                        | 100                 |
| 9   | Spain                    | Europe                        | 100                 |
| 10  | United States of America | North and Central America     | 100                 |
| 11  | Finland                  | Europe                        | 100                 |
| 12  | Iceland                  | Europe                        | 100                 |
| 13  | Cook Islands             | Oceania                       | 96                  |
| 14  | Japan                    | Asia                          | 100                 |
| 15  | Monaco                   | Europe                        | 100                 |
| 16  | Montserrat               | Central America and Caribbean | 100                 |
| 17  | Netherlands              | Europe                        | 100                 |
| 18  | Qatar                    | Asia                          | 100                 |
| 19  | Samoa                    | Oceania                       | 98                  |
| 20  | Singapore                | Asia                          | 100                 |
| 6Z  | Turkey                   | Asia                          | 88                  |
| 67  | Mexico                   | North and Central America     | 86                  |
| 68  | South Africa             | Africa                        | 86                  |
| 85  | Brazil                   | South America                 | 75                  |

NOTES: There are 26 countries with 100% coverage. Here we present the first 20 in alphabetic order in Spanish.

There is no existing data for France, among other countries.


SOURCE: WHO, UNICEF, Joint Monitoring Programme for Water Supply and Sanitation, Switzerland, 2006.





## Drinking water and sanitation tariffs

In the following figure the drinking water and sanitation tariffs for selected cities in the world are shown, for a domestic consumption of 15 m<sup>3</sup>/month, as well as the taxes associated with the service.



#### Water and health

Estimates from the World Health Organization (WHO) indicate that every year approximately 1.5 million people in the world die from diarrhoeal diseases. The majority of these people are children under 5 years old, mainly in developing countries. These diarrhoeal diseases include cholera, typhoid and dysentery, among others, all of them related with "faecal-oral" transmission. The majority of these deaths could be avoided with actions focused on drinking water, sewerage and sanitation.

It is estimated that by improving sanitation, the frequency of diarrhoeal diseases is reduced by 32%, whereas improvements in water supply have an impact of 25%. Improvements in water quality reduce diarrhoeal diseases by 31%.

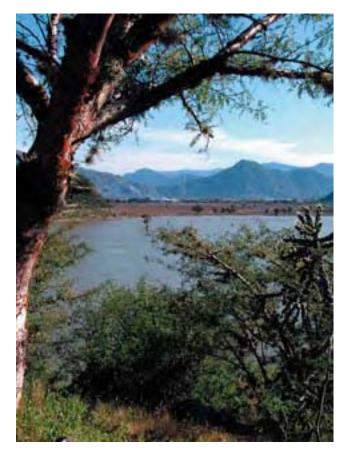
It should also be mentioned that water and sani-

tation actions, hygiene measures, among them education on the subject and the insistence on the habit of washing one's hands, reduce diarrhoeal diseases by 37%.

It is important to bear in mind that actions in the fields of water, sanitation and hygiene are closely related and produce a joint effect. The effect may vary according to local circumstances. As well as diarrhoeal diseases, intestinal nematode infections, malnutrition, schistosomiasis and Japanese encephalitis are the cause of death of approximately 800 000 additional people in the world every year. These diseases are related with the supply of drinking water and sanitation, and hygiene.

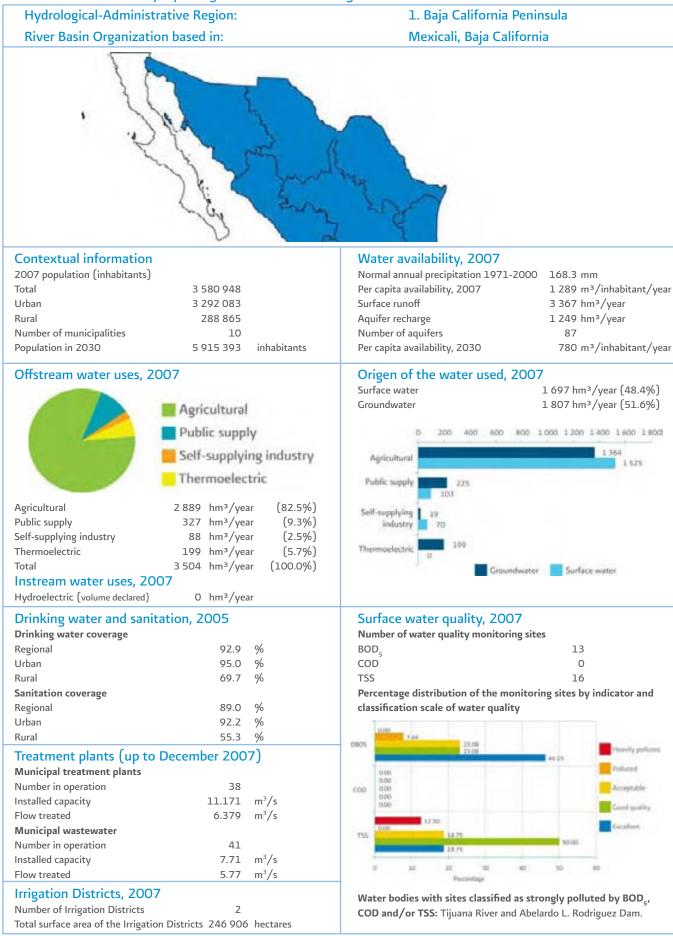
| Disease or problem                                              | Children 0-14<br>years old | Developed<br>countries | Developing<br>countries | Total |
|-----------------------------------------------------------------|----------------------------|------------------------|-------------------------|-------|
| Diarrhea                                                        | 1 370                      | 15                     | 1 508                   | 1 523 |
| Intestinal nematode infections                                  | 8                          | 0                      | 12                      | 12    |
| Malnutrition (only related to proteins and energy)              | 71                         | 0                      | 71                      | 71    |
| Consequences of malnutrition                                    | 792                        | 9                      | 783                     | 792   |
| Schistosomiasis                                                 | 0                          | 0                      | 15                      | 15    |
| Subtotal of water-, sanitation- and hygiene-related diseases    | 2 241                      | 24                     | 2 389                   | 2 413 |
| Malaria                                                         | 482                        | 0                      | 526                     | 526   |
| Dengue                                                          | 14                         | 0                      | 18                      | 18    |
| Japanese encephalitis                                           | 7                          | 0                      | 13                      | 13    |
| Subtotal of events owing to a lack of management of resources   | 503                        | 0                      | 557                     | 557   |
| Drowning                                                        | 106                        | 33                     | 244                     | 277   |
| Subtotal owing to a lack of security in appropriate water means | 106                        | 33                     | 244                     | 277   |
| Other types of contagious deaths                                | 162                        | 15                     | 312                     | 327   |
| Total deaths                                                    | 3 012                      | 72                     | 3 502                   | 3 574 |

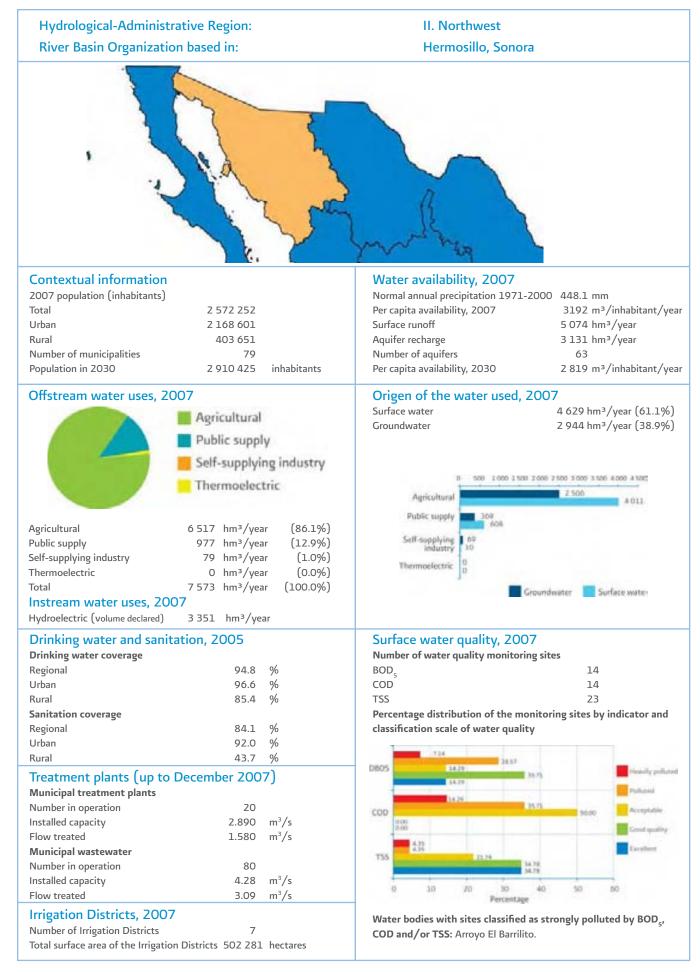
According to the WHO, the country with the largest number of deaths through water-related problems is Angola, with almost 25% of all its deaths. Mexico is ranked 128th out of 192 countries analyzed. In the following table the countries with the highest percentage of deaths through water-related diseases and problems are shown.

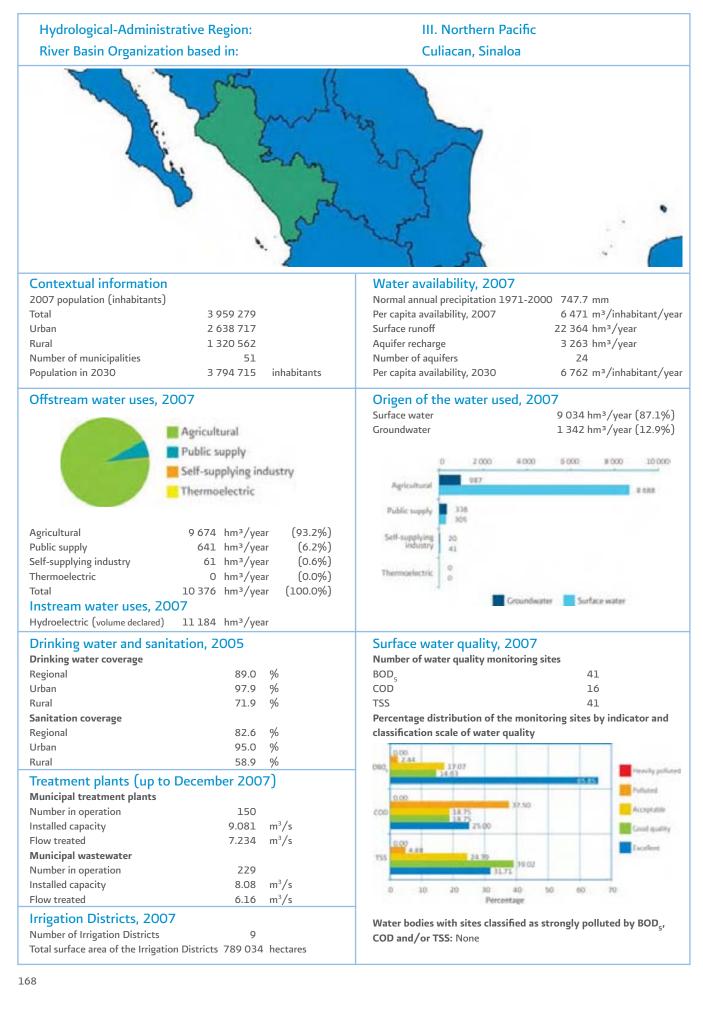

| No. Country               | % of water-related deaths | Number of deaths<br>(people) |
|---------------------------|---------------------------|------------------------------|
| 1 Angola                  | 24.1                      | 73 900                       |
| 2 Nigeria                 | 23.0                      | 56 200                       |
| 3 Mali                    | 20.9                      | 50 800                       |
| 4 Democratic Republic o   | Congo 20.4                | 201 300                      |
| 5 Burkina Faso            | 19.9                      | 49 800                       |
| 6 Madagascar              | 19.7                      | 39 600                       |
| 7 Sierra Leona            | 19.5                      | 25 700                       |
| 8 Benin                   | 19.0                      | 16 600                       |
| 9 Chad                    | 18.5                      | 27 500                       |
| 10 Liberia                | 17.8                      | 12 400                       |
| 11 Guinea                 | 17.7                      | 20 200                       |
| 12 Mauritania             | 17.7                      | 7 100                        |
| 13 Guinea-Bissau          | 17.0                      | 4 500                        |
| 14 Nigeria                | 16.7                      | 335 200                      |
| 15 Senegal                | 16.5                      | 17 000                       |
| 16 Afghanistan            | 16.2                      | 78 500                       |
| 17 Mozambique             | 16.2                      | 62 500                       |
| 18 Rwanda                 | 16.1                      | 21 200                       |
| 19 Yemen                  | 16.0                      | 27 500                       |
| 20 Uganda                 | 15.8                      | 61 600                       |
| 123 Brazil                | 2.3                       | 28 700                       |
| 126 Turkey                | 2.0                       | 8 600                        |
| 128 Mexico                | 1.9                       | 9 000                        |
| 160 United States of Amer | ca 0.4                    | 8 700                        |
| 180 France                | 0.2                       | 1 000                        |

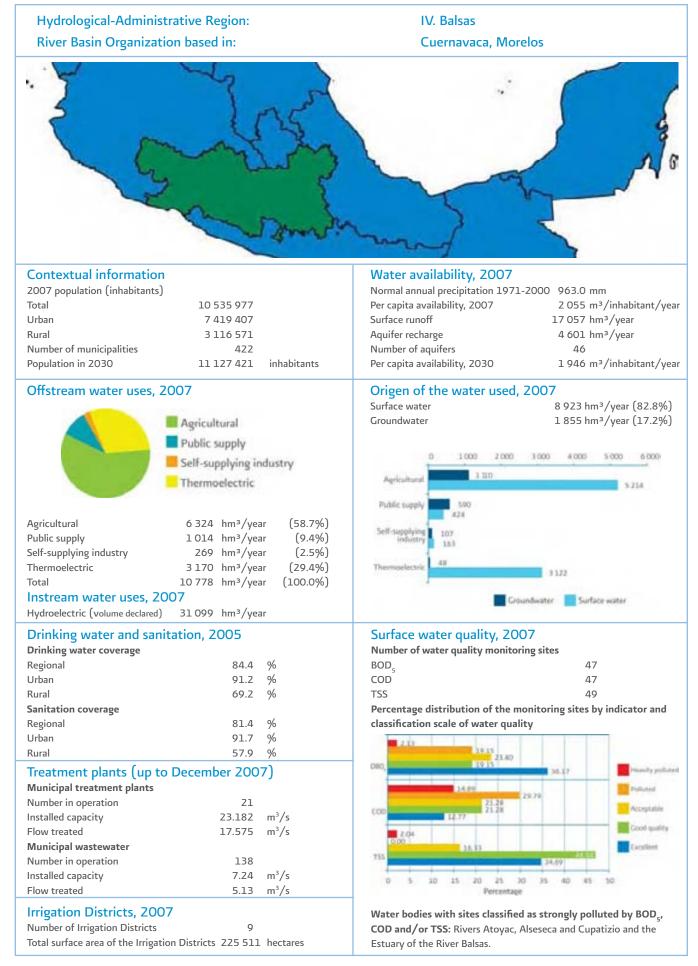
SOURCE: WHO, UNICEF. Safer water, better health. Costs, Benefits and Sustainability of Interventions to Protect and Promote Health. 2008

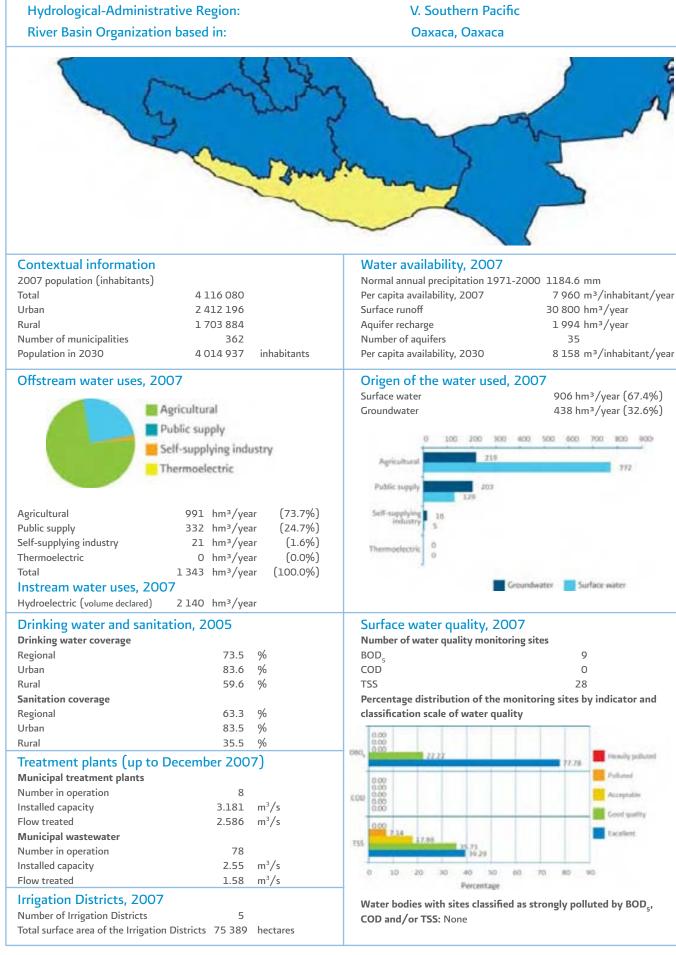
Investments in drinking water and sanitation have economic benefits that have been estimated worldwide at 7 billions dollars every year in savings in the costs of health service institutions and 340 million in individual expenses. 320 million productive days gained each year in the 15- to 59-year age group, an extra 272 million school attendance days a year, and an added 1.5 billion healthy days for children under five years of age, together would represent productivity gains of 9.9 billion dollars a year. As regards time savings resulting from nearby access to water, an estimated 63 billion dollars a year would be saved. Finally, avoiding deaths would have an impact amounting to 3.6 billion dollars a year, based on discounted future earnings. These figures added up give a total payback of 84 billion dollars a year, compared to 11.3 billion dollars in investments required to meet the Millennium Development Goals. All of the above information comes from the WHO.

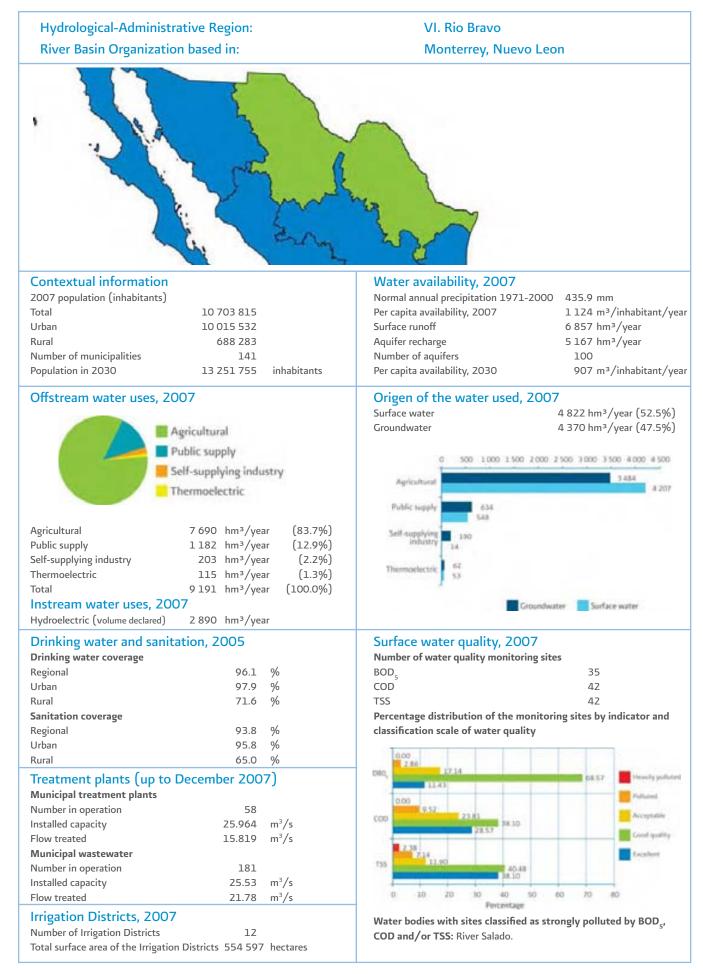




# Annexes

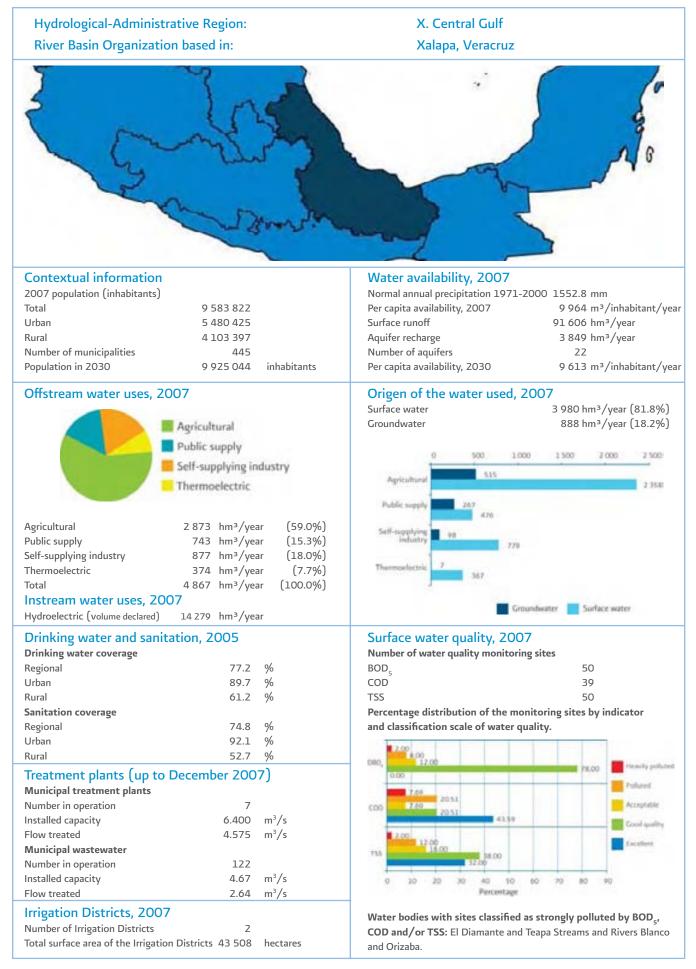

## Annex A: Relevant data by Hydrological-Administrative Region

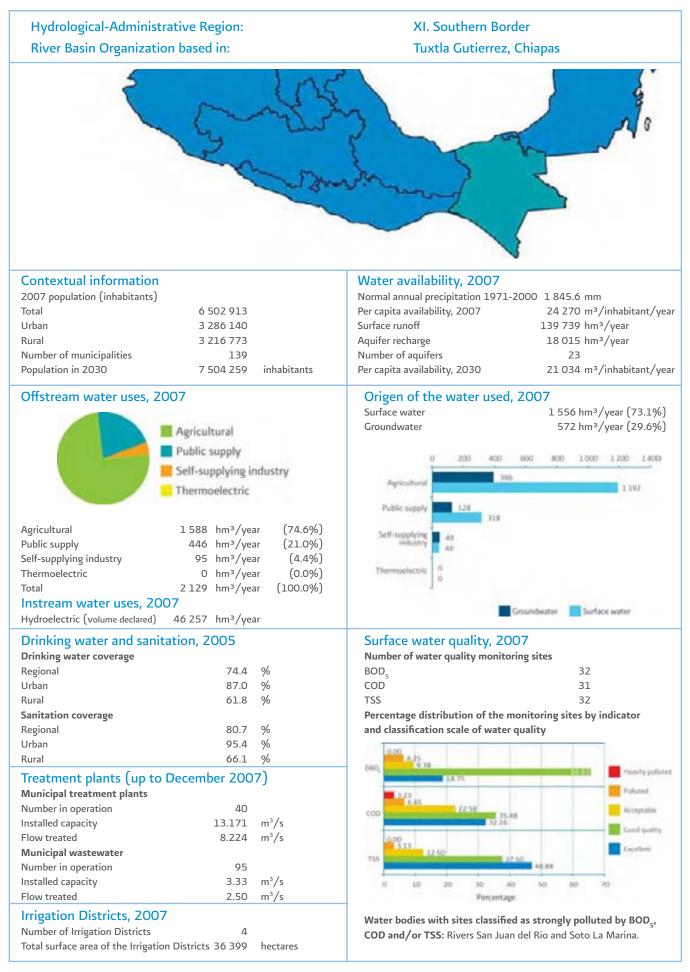


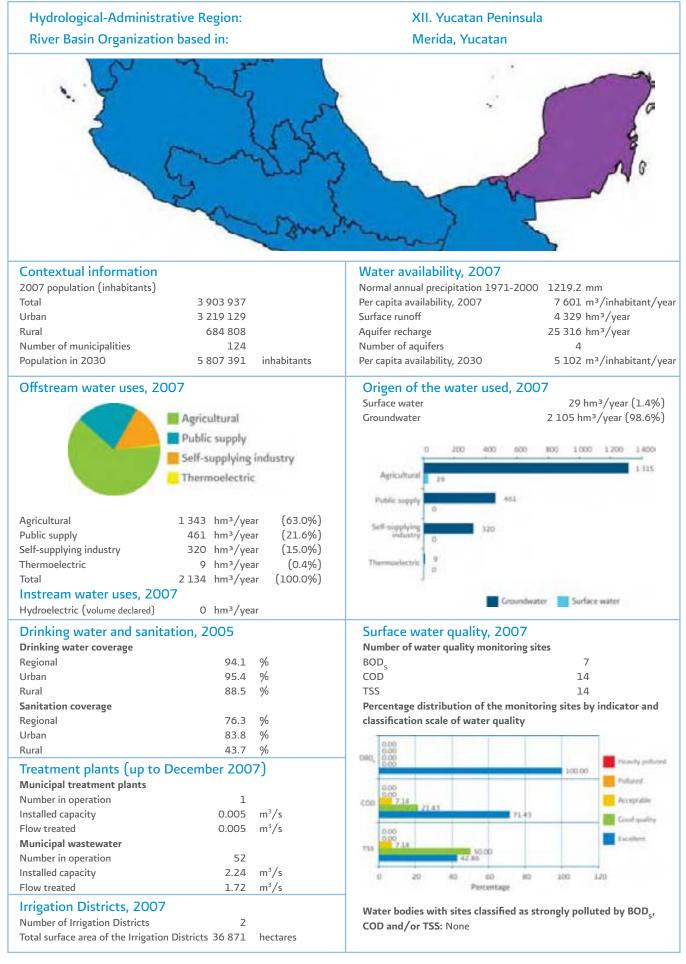


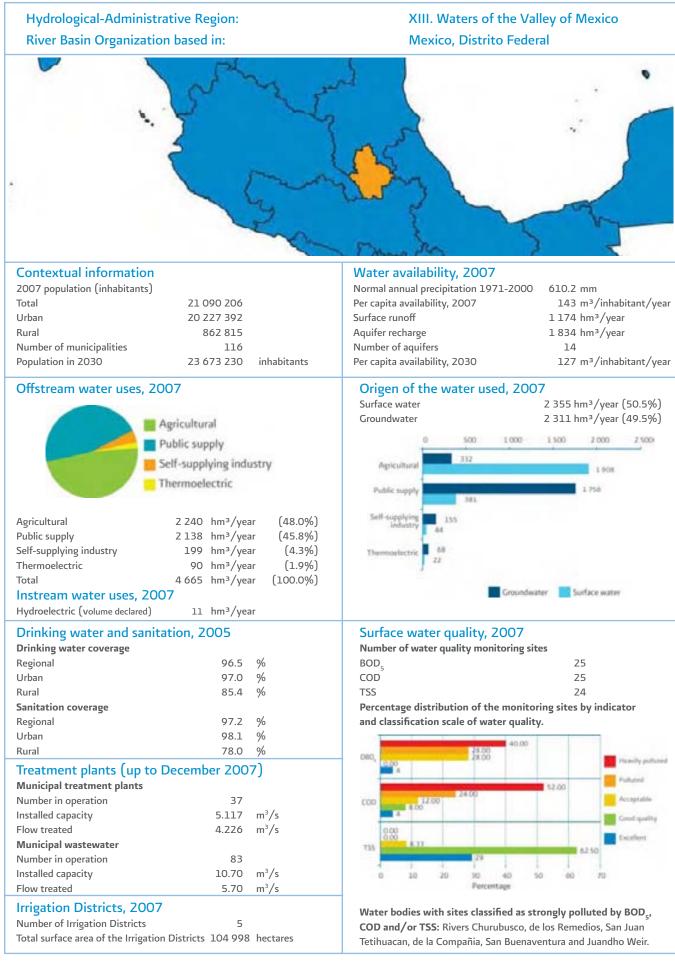






#### Hydrological-Administrative Region: VII. Central Basins of the North River Basin Organization based in: Torreon, Coahuila de Zaragoza **Contextual information** Water availability, 2007 2007 population (inhabitants) Normal annual precipitation 1971-2000 427.6 mm Total 4 120 949 Per capita availability, 2007 1 888 m<sup>3</sup>/inhabitant/year Urban 3 000 895 Surface runoff 5 506 hm<sup>3</sup>/year Rural Aquifer recharge 1 120 055 2 274 hm<sup>3</sup>/year Number of municipalities 83 Number of aquifers 68 Population in 2030 Per capita availability, 2030 1 702 m<sup>3</sup>/inhabitant/year 4 568 007 inhabitants Offstream water uses, 2007 Origen of the water used, 2007 Surface water 1 245 hm<sup>3</sup>/year (32.5%) Groundwater $2589 \text{ hm}^3/\text{year}(67.5\%)$ Agricultural Public supply 500 1000 1.100 7.000 2 500 Self-supplying industry 2 1 3 1 Agricultura Thermoelectric 363 Public supply 3 368 hm<sup>3</sup>/year (87.8%) Agricultural Public supply 370 hm<sup>3</sup>/year (9.7%) (1.5%) Self-supplying industry 58 hm³/year 38 hm<sup>3</sup>/year Thermoelectric (1.0%)Total 3 834 hm<sup>3</sup>/year (100.0%)Instream water uses, 2007 Groundwater Surface water Hydroelectric (volume declared) 0 hm<sup>3</sup>/year Drinking water and sanitation, 2005 Surface water quality, 2007 Drinking water coverage Number of water quality monitoring sites Regional 93.3 % BOD 20 Urban COD 98.8 % 20 TSS Rural 79.1 % 20 Sanitation coverage Percentage distribution of the monitoring sites by indicator and Regional 85.6 % classification scale of water quality. Urban % 95.6 Rural % 59.9 Treatment plants (up to December 2007) savity pulling Municipal treatment plants Number in operation 48 COD Acceptably Installed capacity 0.365 m³/s Flow treated 0.251 m<sup>3</sup>/s Municipal wastewater at the st 153 Number in operation 106 Installed capacity 5.15 m³/s -10 -Flow treated 4.01 m<sup>3</sup>/s Percentage Irrigation Districts, 2007 Water bodies with sites classified as strongly polluted by BOD<sub>5</sub>, Number of Irrigation Districts 1 COD and/or TSS: None Total surface area of the Irrigation Districts 116 577 hectares

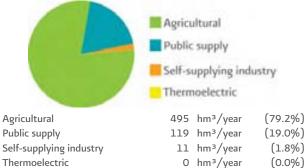

| Hydrological-Admini<br>River Basin Organiza                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VIII. Lerma-Santia<br>Guadalajara, Jalisc                                     |                                            |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| <b>.</b>                                                   | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                            | i                                          |
| Contextual informatio                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water availability, 2007                                                      |                                            |
| 2007 population (inhabitants                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal annual precipitation 1971-                                             | 2000 8179 mm                               |
| Total                                                      | 20 625 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Per capita availability, 2007                                                 | 1 650 m³/inhabitant/ye                     |
| Urban                                                      | 16 080 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surface runoff                                                                | 26 351 hm <sup>3</sup> /year               |
| Rural                                                      | 4 545 092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aquifer recharge                                                              | 7 686 hm³/year                             |
| Number of municipalities                                   | 329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of aquifers                                                            | 127                                        |
| Population in 2030                                         | 23 511 810 inhabitants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Per capita availability, 2030                                                 | 1 448 m³/inhabitant/ye                     |
| Offstream water uses,                                      | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Origen of the water used,                                                     | 2007                                       |
| onstream water uses,                                       | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface water                                                                 | 7 173 hm³/year (51.7%)                     |
|                                                            | Agricultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Groundwater                                                                   | 6 700 hm <sup>3</sup> /year (48.3%)        |
|                                                            | and the second se |                                                                               | , , ,                                      |
|                                                            | Public supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1000 2000 3                                                                 | 000 4000 5000 6000 7000                    |
|                                                            | Self-supplying industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | · · · · · · · · · · · · · · · · · · ·      |
|                                                            | Thermoelectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Agricultural                                                                  | 4 921 6 532                                |
|                                                            | Thermoeneeure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                            |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Public supply 503                                                             |                                            |
| Agricultural                                               | 11 444 hm³/year (82.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                            |
| Public supply                                              | 2 002 hm³/year (14.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Self-supplying 323-<br>industry 77                                            |                                            |
| Self-supplying industry                                    | 402 hm³/year (2.9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                            |
| Thermoelectric                                             | 24 hm³/year (0.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thermoelectric 0                                                              |                                            |
| Total                                                      | 13 873 hm³/year (100.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4                                                                           |                                            |
| Instream water uses, 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                            |
| Hydroelectric (volume declared                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gro                                                                           | undwater 📃 Surface water                   |
| Drinking water and sa                                      | nitation, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surface water quality, 200                                                    | )7                                         |
| Drinking water coverage                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of water quality monitori                                              | ng sites                                   |
| Regional                                                   | 93.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BOD <sub>5</sub>                                                              | 103                                        |
| Urban                                                      | 96.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COD                                                                           | 99                                         |
| Rural                                                      | 84.3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TSS                                                                           | 117                                        |
| Sanitation coverage                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percentage distribution of the mo                                             | onitoring sites by indicator and           |
| Regional                                                   | 90.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | classification scale of water quali                                           | ty.                                        |
| Urban                                                      | 96.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 610                                                                           |                                            |
| Rural                                                      | 69.3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 080                                                                           | za 14.                                     |
| Treatment plants (up 1                                     | o December 2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11313                                                                         | 41.75                                      |
| Municipal treatment plants                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1913                                                                          | 40.40                                      |
| Number in operation                                        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | END 17,17                                                                     | 20.20 Astronomic                           |
| Installed capacity                                         | 19.373 m³/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                           | E Good quality                             |
| Flow treated                                               | 12.112 m <sup>3</sup> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.42                                                                          | Eastern                                    |
| Municipal wastewater                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +12                                                                           | 14.15                                      |
| Number in operation                                        | 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                            |
| Installed capacity                                         | 22.55 m³/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 8 10 18 20 25                                                              | 83 35 40 45                                |
| Flow treated                                               | 17.27 m <sup>3</sup> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water bodies with sites classified                                            | as strongly polluted by DOD                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water bodies with sites classified                                            | as strongly polluted by BOD <sub>5</sub> , |
| Irrigation Districts 20                                    | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COD and /or TSS. Disease Content                                              | na Tamazula Calada Inter                   |
| Irrigation Districts, 20<br>Number of Irrigation Districts | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>COD and/or TSS:</b> Rivers Coahuaya<br>Turbio, Lerma, Armeria, Ayuquila, L |                                            |

| Hydrological-Administra                                      | -                                                                        | IX. Northern Gulf                                                                    | linas                             |
|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|
| River Basin Organization                                     | n based in:                                                              | Ciudad Victoria, Tamaı                                                               | inpas                             |
|                                                              | San y                                                                    | A A A                                                                                |                                   |
| Contextual information                                       |                                                                          | Water availability, 2007                                                             |                                   |
| 2007 population (inhabitants)                                |                                                                          | Normal annual precipitation 1971-2000                                                | 910.9 mm                          |
| Total                                                        | 4 941 244                                                                | Per capita availability, 2007                                                        | 5 162 m³/inhabitant/y             |
| Urban                                                        | 2 493 307                                                                | Surface runoff                                                                       | 24 227 hm <sup>3</sup> /year      |
| Rural                                                        | 2 447 937                                                                | Aquifer recharge                                                                     | 1 274 hm <sup>3</sup> /year       |
| Number of municipalities                                     | 154                                                                      | Number of aquifers                                                                   | 40                                |
| Population in 2030                                           | 5 099 143 inhabitants                                                    | Per capita availability, 2030                                                        | 5 000 m³/inhabitant/y             |
| Offstream water uses, 20                                     | 07                                                                       | Origen of the water used, 2007                                                       | 7                                 |
|                                                              |                                                                          | Surface water                                                                        | 3 665 hm³/year (78.3%             |
|                                                              | Agricultural                                                             | Groundwater                                                                          | 1017 hm <sup>3</sup> /year (21.7% |
|                                                              | Public supply                                                            |                                                                                      |                                   |
|                                                              |                                                                          | 0 500 1.000 1.500                                                                    | 2 000 2 500 3 000                 |
|                                                              | Self-supplying industry                                                  | 812                                                                                  |                                   |
|                                                              | Thermoelectric                                                           | Agricultural                                                                         | 2.810                             |
|                                                              |                                                                          | Public supply 160                                                                    |                                   |
|                                                              |                                                                          | 365                                                                                  |                                   |
| Agricultural                                                 | 3 631 hm <sup>3</sup> /year (77.6%)<br>525 hm <sup>3</sup> /year (11.2%) | Self-supplying 30                                                                    |                                   |
| Public supply<br>Self-supplying industry                     | 525 hm³/year (11.2%)<br>461 hm³/year (9.8%)                              | 421                                                                                  |                                   |
| Thermoelectric                                               | 66 hm <sup>3</sup> /year (1.4%)                                          | Thermoelectric 6                                                                     |                                   |
| Total                                                        | 4 681 hm <sup>3</sup> /year (100.0%)                                     |                                                                                      |                                   |
| Instream water uses, 200                                     |                                                                          | _                                                                                    | -                                 |
| Hydroelectric (volume declared)                              | 1 105 hm³/year                                                           | Grouedwate                                                                           | r Surface water                   |
| Drinking water and sanita                                    | ition, 2005                                                              | Surface water quality, 2007                                                          |                                   |
| Drinking water coverage                                      |                                                                          | Number of water quality monitoring site                                              | 25                                |
| Regional                                                     | 80.9 %                                                                   | BOD                                                                                  | 41                                |
| Urban                                                        | 96.6 %                                                                   | COD                                                                                  | 50                                |
| Rural                                                        | 65.3 %                                                                   | TSS                                                                                  | 45                                |
| Sanitation coverage                                          |                                                                          | Percentage distribution of the monitor                                               |                                   |
| Regional                                                     | 65.3 %                                                                   | and classification scale of water quality                                            |                                   |
| Urban                                                        | 88.Z %                                                                   | 9.00                                                                                 |                                   |
| Rural                                                        | 42.5 %                                                                   | X33<br>2.32                                                                          | Healty pole                       |
| Treatment plants (up to I                                    | December 2007)                                                           |                                                                                      | - 74.61                           |
| Municipal treatment plants                                   |                                                                          | COD 14 00 14 00 18 00                                                                | Pollated                          |
| Number in operation                                          | 40                                                                       | COD 16:00 28:00                                                                      | Acceptable                        |
| Installed capacity<br>Flow treated                           | $6.592 \text{ m}^3/\text{s}$                                             | 4500                                                                                 | Cood quality                      |
|                                                              | 5.829 m <sup>3</sup> /s                                                  | 7.22                                                                                 | Lacotleve                         |
| Municipal wastewater<br>Number in operation                  | 84                                                                       | 155 20.00 28.80                                                                      |                                   |
| Installed capacity                                           | 2.25 m <sup>3</sup> /s                                                   |                                                                                      |                                   |
| Flow treated                                                 | 1.95 m <sup>3</sup> /s                                                   | 0 10 20 30 40 50<br>Percentage                                                       | 60 70 80                          |
|                                                              |                                                                          |                                                                                      | and u polluted by POP             |
| Irrigation Districts 2007                                    |                                                                          |                                                                                      |                                   |
| Irrigation Districts, 2007<br>Number of Irrigation Districts | 13                                                                       | Water bodies with sites classified as str<br>COD and/or TSS: Rivers San Juan del Ric |                                   |










#### Annex B: Relevant data by State

## 1. Aguascalientes

| GENERAL DATA                       |            |             |
|------------------------------------|------------|-------------|
| 2007 population (inhabitants)      |            |             |
| Total                              | 1 115 304  |             |
| Urban                              | 906 333    |             |
| Rural                              | 208 971    |             |
| Number of municipalities           | 11         |             |
| Population in 2030                 | 1 460 232  | inhabitants |
| Normal annual precipitation 1971-2 | .000 512.5 | mm          |

### Offstream water uses, 2007



625 hm³/year

97.8

99.Z

9Z.0

96.9

98.8

88.4

%

%

%

%

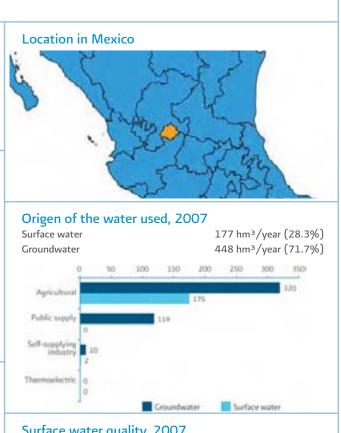
%

%

(100.0%)

## Drinking water and sanitation, 2005

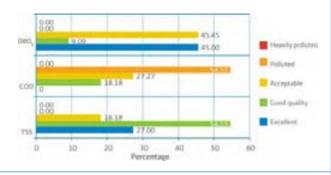
Drinking water coverage State-wide Urban Rural Sanitation coverage State-wide


Total

Urban

Rural

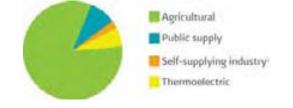
## Treatment plants (up to December 2007)


| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | Z     |      |
| Installed capacity         | 0.038 | m³/s |
| Flow treated               | 0.020 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 108   |      |
| Installed capacity         | 3.91  | m³∕s |
| Flow treated               | 3.03  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 46    |      |
| Installed capacity         | 0.23  | m³/s |
| Flow treated               | 0.11  | m³/s |



#### Surface water quality, 2007

| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD <sub>5</sub>                         | 11 |
| COD                                      | 11 |
| TSS                                      | 11 |


Percentage distribution of the monitoring sites by indicator and classification scale of water quality



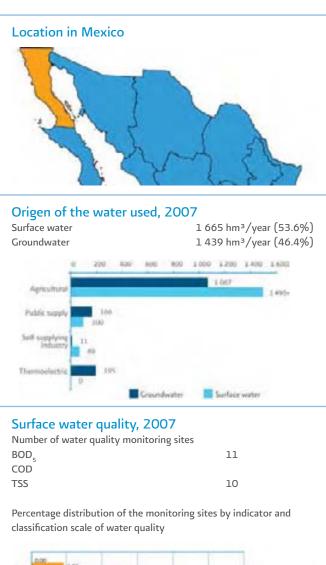
## 2. Baja California

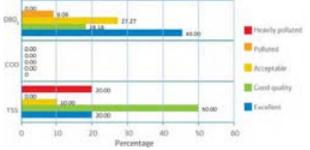
| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 3 036 393 |             |
| Urban                                         | 2 829 817 |             |
| Rural                                         | 206 576   |             |
| Number of municipalities                      | 5         |             |
| Population in 2030                            | 5 082 349 | inhabitants |
| Normal annual precipitation 1971-20           | 000 175.7 | mm          |

## Offstream water uses, 2007



| Agricultural            | Z 564 | hm³/year | (82.6%)  |
|-------------------------|-------|----------|----------|
| Public supply           | 266   | hm³/year | (8.6%)   |
| Self-supplying industry | 80    | hm³/year | (2.6%)   |
| Thermoelectric          | 195   | hm³/year | (6.3%)   |
| Total                   | 3 105 | hm³/year | (100.0%) |


## Drinking water and sanitation, 2005


Drinking water coverage

| State-wide          | 93.8 | % |
|---------------------|------|---|
| Urban               | 95.9 | % |
| Rural               | 67.5 | % |
| Sanitation coverage |      |   |
| State-wide          | 88.9 | % |
| Urban               | 91.8 | % |
| Rural               | 51.7 | % |
|                     |      |   |

## Treatment plants (up to December 2007)

| Municipal treatment plants |        | -    |  |
|----------------------------|--------|------|--|
| Number in operation        | 26     |      |  |
| Installed capacity         | 10.699 | m³∕s |  |
| Flow treated               | 6.016  | m³∕s |  |
| Municipal wastewater       |        |      |  |
| Number in operation        | 25     |      |  |
| Installed capacity         | 6.52   | m³∕s |  |
| Flow treated               | 4.93   | m³∕s |  |
| Industrial wastewater      |        |      |  |
| Number in operation        | 174    |      |  |
| Installed capacity         | 0.44   | m³/s |  |
| Flow treated               | 0.15   | m³/s |  |
|                            |        |      |  |



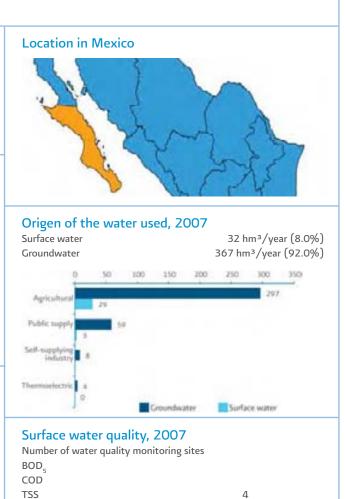


## 3. Baja California Sur

| GENERAL DATA<br>2007 population (inhabitants) |         |             |
|-----------------------------------------------|---------|-------------|
| Total                                         | 544 556 |             |
| Urban                                         | 462 267 |             |
| Rural                                         | 82 289  |             |
| Number of municipalities                      | 5       |             |
| Population in 2030                            | 833 044 | inhabitants |
| Normal annual precipitation 1971-2000         | 161.0   | mm          |

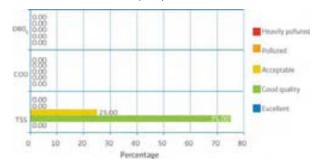
### Offstream water uses, 2007

|                               | Agricultural                                |
|-------------------------------|---------------------------------------------|
|                               | Public supply                               |
|                               | Self-supplying industry                     |
|                               | Thermoelectric                              |
| Agricultural<br>Public supply | 326 hm³/year (81.6%)<br>61 hm³/year (15.4%) |


| Public supply           | 61  | hm³/year | (15.4%)  |
|-------------------------|-----|----------|----------|
| Self-supplying industry | 8   | hm³/year | (2.1%)   |
| Thermoelectric          | 4   | hm³/year | (1.0%)   |
| Total                   | 399 | hm³/year | (100.0%) |
|                         |     |          |          |

## Drinking water and sanitation, 2005

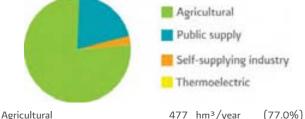
| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 87.7 | % |
| Urban                   | 89.9 | % |
| Rural                   | 75.3 | % |
| Sanitation coverage     |      |   |
| State-wide              | 89.7 | % |
| Urban                   | 94.3 | % |
| Rural                   | 64.6 | % |


## Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 12    |      |
| Installed capacity         | 0.473 | m³/s |
| Flow treated               | 0.363 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 16    |      |
| Installed capacity         | 1.20  | m³/s |
| Flow treated               | 0.84  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 7     |      |
| Installed capacity         | 0.01  | m³∕s |
| Flow treated               | 0.01  | m³∕s |



4


Percentage distribution of the monitoring sites by indicator and classification scale of water quality



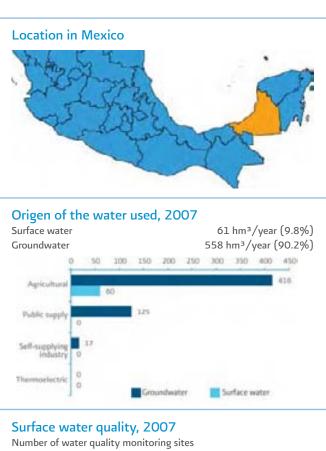
## 4. Campeche

| GENERAL DATA<br>2007 population (inhabitants) |         |             |
|-----------------------------------------------|---------|-------------|
| Total                                         | 782 130 |             |
| Urban                                         | 581 030 |             |
| Rural                                         | 201 100 |             |
| Number of municipalities                      | 11      |             |
| Population in 2030                            | 968 665 | inhabitants |
| Normal annual precipitation 1971-2000         | 1336.8  | mm          |

## Offstream water uses, 2007

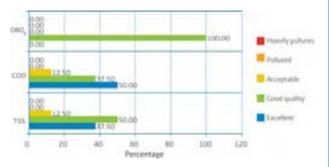


| Agricultural            | 477 | nm°/year | [//.0%]  |
|-------------------------|-----|----------|----------|
| Public supply           | 125 | hm³/year | (20.3%)  |
| Self-supplying industry | 17  | hm³/year | (2.7%)   |
| Thermoelectric          | 0   | hm³/year | (0.0%)   |
| Total                   | 619 | hm³/year | (100.0%) |


#### Drinking water and sanitation, 2005

Drinking water coverage

| State-wide          | 88.4 | % |
|---------------------|------|---|
| Urban               | 90.9 | % |
| Rural               | 81.1 | % |
| Sanitation coverage |      |   |
| State-wide          | 78.4 | % |
| Urban               | 89.1 | % |
| Rural               | 48.1 | % |
|                     |      |   |


## Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 2     |      |
| Installed capacity         | 0.025 | m³/s |
| Flow treated               | 0.023 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 10    |      |
| Installed capacity         | 0.08  | m³/s |
| Flow treated               | 0.05  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 49    |      |
| Installed capacity         | 0.50  | m³∕s |
| Flow treated               | 0.16  | m³/s |



| Number of water quality monitoring sites |   |
|------------------------------------------|---|
| BOD                                      | 1 |
| COD                                      | 8 |
| TSS                                      | 8 |
|                                          |   |

Percentage distribution of the monitoring sites by indicator and classification scale of water quality



## 5. Coahuila de Zaragoza

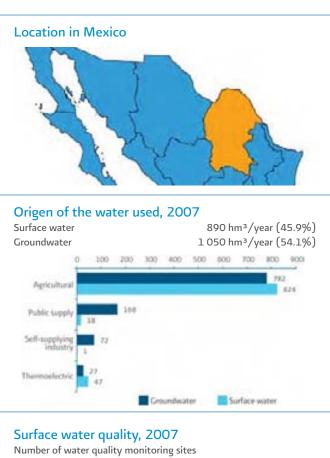
| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 2 587 917  |             |
| Urban                                         | 2 332 914  |             |
| Rural                                         | 255 003    |             |
| Number of municipalities                      | 38         |             |
| Population in 2030                            | 3 059 206  | inhabitants |
| Normal annual precipitation 1971-             | 2000 379.0 | mm          |

### Offstream water uses, 2007

|                         | Agrie                   | cultural   |         |
|-------------------------|-------------------------|------------|---------|
|                         | Public supply           |            |         |
|                         | Self-supplying industry |            |         |
|                         | Ther                    | moelectric |         |
| Agricultural            | 1 606                   | hm³/year   | (82.8%) |
| Public supply           | 185                     | hm³/year   | (9.6%)  |
| Self-supplying industry | 73                      | hm³/year   | (3.8%)  |
| Thermoelectric          | 75                      | hm³/year   | (3.9%)  |

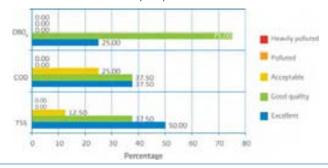
1940 hm³/year

(100.0%)


#### Drinking water and sanitation, 2005

Total

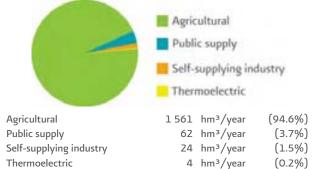
| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 97.3 | % |
| Urban                   | 98.7 | % |
| Rural                   | 84.8 | % |
| Sanitation coverage     |      |   |
| State-wide              | 91.5 | % |
| Urban                   | 94.7 | % |
| Rural                   | 62.7 | % |
|                         |      |   |


## Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 18    |      |
| Installed capacity         | 2.132 | m³∕s |
| Flow treated               | 1.707 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 20    |      |
| Installed capacity         | 3.77  | m³/s |
| Flow treated               | 2.97  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 70    |      |
| Installed capacity         | 0.95  | m³/s |
| Flow treated               | 0.64  | m³/s |



| Number of water quality monitoring sites |   |
|------------------------------------------|---|
| BOD                                      | 8 |
| COD                                      | 8 |
| TSS                                      | 8 |


Percentage distribution of the monitoring sites by indicator and classification scale of water quality



## 6. Colima

| GENERAL DATA                          |                     |
|---------------------------------------|---------------------|
| 2007 population (inhabitants)         |                     |
| Total                                 | 589 327             |
| Urban                                 | 517 524             |
| Rural                                 | 71 803              |
| Number of municipalities              | 10                  |
| Population in 2030                    | 734 269 inhabitants |
| Normal annual precipitation 1971-2000 | 946.4 mm            |

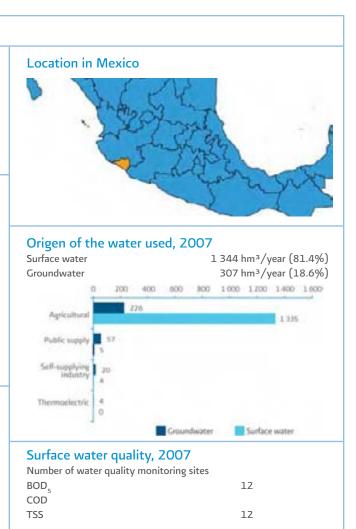
## Offstream water uses, 2007



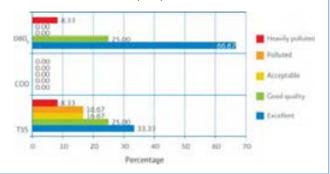
1651 hm³/year

(100.0%)

### Drinking water and sanitation, 2005


Drinking water coverage

Total


| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 97.8 | % |
| Urban                   | 99.1 | % |
| Rural                   | 88.7 | % |
| Sanitation coverage     |      |   |
| State-wide              | 98.Z | % |
| Urban                   | 98.8 | % |
| Rural                   | 94.Z | % |
|                         |      |   |

## Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 25    |      |
| Installed capacity         | 0.009 | m³∕s |
| Flow treated               | 0.005 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 50    |      |
| Installed capacity         | 1.44  | m³∕s |
| Flow treated               | 0.95  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 8     |      |
| Installed capacity         | 0.44  | m³∕s |
| Flow treated               | 0.31  | m³∕s |



Percentage distribution of the monitoring sites by indicator and classification scale of water quality



#### 7. Chiapas

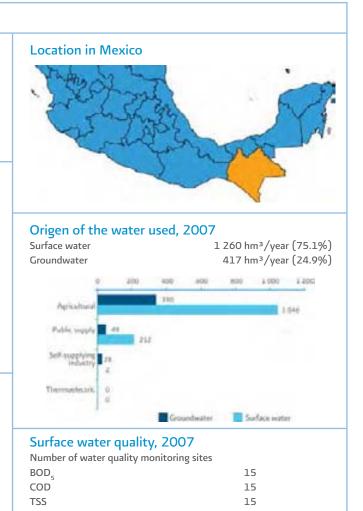
Total

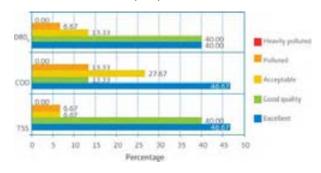
| GENERAL DATA                      |             |             |
|-----------------------------------|-------------|-------------|
| 2007 population (inhabitants)     |             |             |
| Total                             | 4 435 911   |             |
| Urban                             | 2 145 041   |             |
| Rural                             | Z 290 870   |             |
| Number of municipalities          | 118         |             |
| Population in 2030                | 5 297 905   | inhabitants |
| Normal annual precipitation 1971- | 2000 1763.9 | mm          |

## Offstream water uses, 2007

|                         | <ul> <li>Agricultural</li> <li>Public supply</li> <li>Self-supplying industry</li> <li>Thermoelectric</li> </ul> |          |         |
|-------------------------|------------------------------------------------------------------------------------------------------------------|----------|---------|
| Agricultural            | 1 386                                                                                                            | hm³/year | (82.7%) |
| Public supply           | 261                                                                                                              | hm³/year | (15.6%) |
| Self-supplying industry | 29                                                                                                               | hm³/year | (1.8%)  |
| Thermoelectric          | 0                                                                                                                | hm³/year | (0.0%)  |

1 677 hm³/year

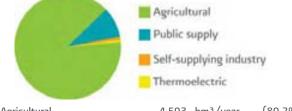

(100.0%)


#### Drinking water and sanitation, 2005

| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 73.5 | % |
| Urban                   | 86.Z | % |
| Rural                   | 61.9 | % |
| Sanitation coverage     |      |   |
| State-wide              | 74.7 | % |
| Urban                   | 94.1 | % |
| Rural                   | 57.0 | % |
|                         |      |   |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 4     |      |
| Installed capacity         | 4.500 | m³/s |
| Flow treated               | 2.510 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 24    |      |
| Installed capacity         | 1.51  | m³/s |
| Flow treated               | 1.18  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 18    |      |
| Installed capacity         | 0.69  | m³∕s |
| Flow treated               | 0.69  | m³∕s |





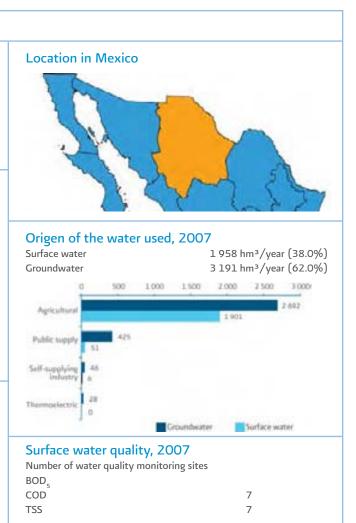

#### 8. Chihuahua

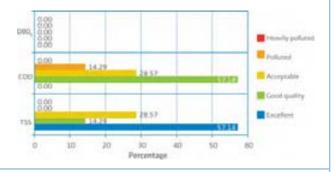
| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 3 343 408 |             |
| Urban                                         | 2 833 519 |             |
| Rural                                         | 509 890   |             |
| Number of municipalities                      | 67        |             |
| Population in 2030                            | 3 843 745 | inhabitants |
| Normal annual precipitation 1971-20           | 000 462.0 | mm          |

#### Offstream water uses, 2007



| Agricultural            | 4 593 | hm³/year | (89.Z%)  |
|-------------------------|-------|----------|----------|
| Public supply           | 476   | hm³/year | (9.Z%)   |
| Self-supplying industry | 52    | hm³/year | (1.0%)   |
| Thermoelectric          | 28    | hm³/year | (0.5%)   |
| Total                   | 5148  | hm³/year | (100.0%) |


# Drinking water and sanitation, 2005


| Drinking water | coverage |
|----------------|----------|
| State-wide     |          |

| State-wide          | 92.9 | % |
|---------------------|------|---|
| Urban               | 98.1 | % |
| Rural               | 65.6 | % |
| Sanitation coverage |      |   |
| State-wide          | 89.8 | % |
| Urban               | 96.5 | % |
| Rural               | 54.4 | % |
|                     |      |   |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 4     |      |
| Installed capacity         | 0.650 | m³/s |
| Flow treated               | 0.380 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 119   |      |
| Installed capacity         | 8.72  | m³/s |
| Flow treated               | 6.31  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 20    |      |
| Installed capacity         | 0.66  | m³/s |
| Flow treated               | 0.29  | m³/s |





## 9. Federal District

| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 8 832 734 |             |
| Urban                                         | 8 800 994 |             |
| Rural                                         | 31 741    |             |
| Number of municipalities                      | 16        |             |
| Population in 2030                            | 8 587 531 | inhabitants |
| Normal annual precipitation 1971-2            | 000 937.4 | mm          |

#### Offstream water uses, 2007

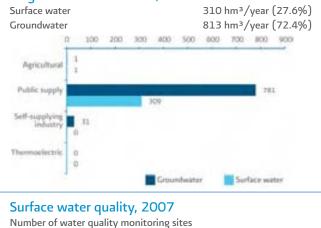
| 6                       | Pu<br>Se | ricultural<br>iblic supply<br>If-supplying i<br>ermoelectric | ndustry. |
|-------------------------|----------|--------------------------------------------------------------|----------|
| Agricultural            | 1        | hm³/year                                                     | (0.1%)   |
| Public supply           | 1090     | hm³/year                                                     | (97.1%)  |
| Self-supplying industry | 32       | hm³/year                                                     | (Z.8%)   |
| Thermoelectric          | 0        | hm³/year                                                     | (0.0%)   |

1123 hm³/year

(100.0%)

#### Drinking water and sanitation, 2005

Total


| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 97.6 | % |
| Urban                   | 97.8 | % |
| Rural                   | 41.7 | % |
| Sanitation coverage     |      |   |
| State-wide              | 98.6 | % |
| Urban                   | 98.6 | % |
| Rural                   | 86.6 | % |

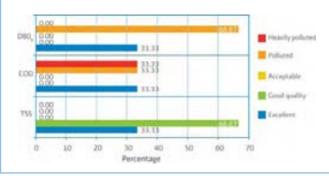
#### Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 33    |      |
| Installed capacity         | 3.657 | m³/s |
| Flow treated               | 3.009 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 27    |      |
| Installed capacity         | 6.48  | m³∕s |
| Flow treated               | 2.81  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 123   |      |
| Installed capacity         | 0.42  | m³∕s |
| Flow treated               | 0.41  | m³∕s |



#### Origen of the water used, 2007

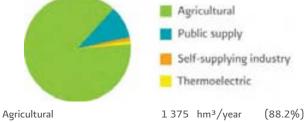



Number of water quality monitoring sites BOD<sub>5</sub> COD TSS

Percentage distribution of the monitoring sites by indicator and classification scale of water quality

3

3


3



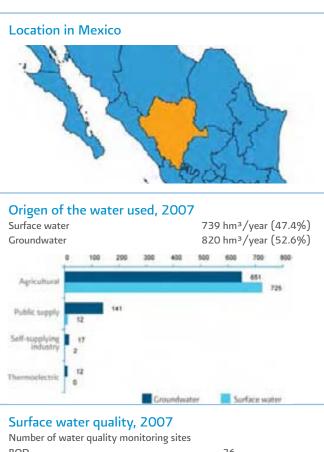
# 10. Durango

| GENERAL DATA<br>2007 population (inhabitants) |              |             |
|-----------------------------------------------|--------------|-------------|
| Total                                         | 1 541 433    |             |
| Urban                                         | 1 051 355    |             |
| Rural                                         | 490 078      |             |
| Number of municipalities                      | 39           |             |
| Population in 2030                            | 1 582 932    | inhabitants |
| Normal annual precipitation 1973              | L-2000 570.6 | mm          |

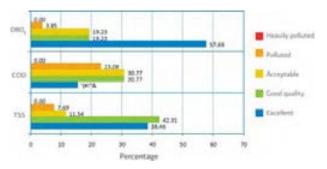
# Offstream water uses, 2007



| Agricultulai            | TJJJ  | mm-/year | [00.270] |
|-------------------------|-------|----------|----------|
| Public supply           | 153   | hm³/year | (9.8%)   |
| Self-supplying industry | 19    | hm³/year | (1.2%)   |
| Thermoelectric          | 12    | hm³/year | (0.7%)   |
| Total                   | 1 559 | hm³/year | (100.0%) |


#### Drinking water and sanitation, 2005

Drinking water coverage


| State-wide          | 90.9 | % |
|---------------------|------|---|
| Urban               | 98.9 | % |
| Rural               | 74.8 | % |
| Sanitation coverage |      |   |
| State-wide          | 82.6 | % |
| Urban               | 95.4 | % |
| Rural               | 56.9 | % |
|                     |      |   |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       | -    |
|----------------------------|-------|------|
| Number in operation        | 30    |      |
| Installed capacity         | 0.030 | m³∕s |
| Flow treated               | 0.022 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 165   |      |
| Installed capacity         | 3.53  | m³∕s |
| Flow treated               | 2.58  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 33    |      |
| Installed capacity         | 0.68  | m³∕s |
| Flow treated               | 0.34  | m³∕s |



| BOD | 26 |
|-----|----|
| COD | 26 |
| TSS | 26 |
|     |    |



#### 11. Guanajuato

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 5 008 063  |             |
| Urban                                         | 3 520 249  |             |
| Rural                                         | 1 487 014  |             |
| Number of municipalities                      | 46         |             |
| Population in 2030                            | 5 278 030  | inhabitants |
| Normal annual precipitation 1971-2            | .000 596.8 | mm          |

#### Offstream water uses, 2007

|                         | 📕 Ag                    | ricultural   |          |
|-------------------------|-------------------------|--------------|----------|
|                         | Public supply           |              |          |
|                         | Self-supplying industry |              |          |
|                         | Th                      | ermoelectric |          |
|                         |                         | 1 7/         | (07.70/) |
| Agricultural            |                         | hm³/year     | (83.7%)  |
| Public supply           | 587                     | hm³/year     | (14.5%)  |
| Self-supplying industry | 56                      | hm³/year     | (1.4%)   |
| Thermoelectric          | 21                      | hm³/year     | (0.5%)   |

4 059 hm³/year

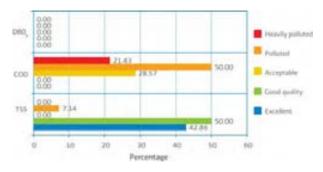
(100.0%)

#### Drinking water and sanitation, 2005

Total


| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 93.4 | % |
| Urban                   | 96.8 | % |
| Rural                   | 85.7 | % |
| Sanitation coverage     |      |   |
| State-wide              | 85.8 | % |
| Urban                   | 96.6 | % |
| Rural                   | 61.1 | % |
|                         |      |   |

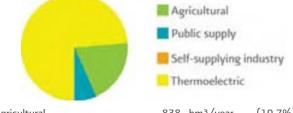
# Treatment plants (up to December 2007)


| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 9     |      |
| Installed capacity         | 0.337 | m³∕s |
| Flow treated               | 0.279 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 36    |      |
| Installed capacity         | 5.74  | m³∕s |
| Flow treated               | 4.26  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 45    |      |
| Installed capacity         | 0.40  | m³∕s |
| Flow treated               | 0.18  | m³∕s |



#### Origen of the water used, 2007




| BOD |  | _ |    |
|-----|--|---|----|
| COD |  |   | 14 |
| TSS |  |   | 14 |



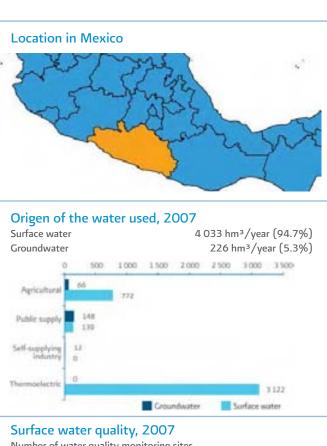
# 12. Guerrero

| GENERAL DATA<br>2007 population (inhabitants) |             |             |
|-----------------------------------------------|-------------|-------------|
| Total                                         | 3 147 680   |             |
| Urban                                         | 1 806 389   |             |
| Rural                                         | 1 341 291   |             |
| Number of municipalities                      | 81          |             |
| Population in 2030                            | 2 887 844   | inhabitants |
| Normal annual precipitation 1971-2            | 2000 1195.0 | mm          |

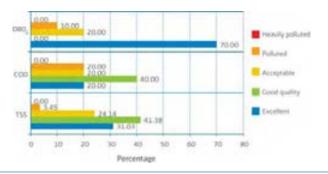
# Offstream water uses, 2007



| Agricultural            | 838     | hm³/year | (19.7%)  |
|-------------------------|---------|----------|----------|
| Public supply           | 287     | hm³/year | (6.7%)   |
| Self-supplying industry | 13      | hm³/year | (0.3%)   |
| Thermoelectric          | 3 1 2 2 | hm³/year | (73.3%)  |
| Total                   | 4 260   | hm³/year | (100.0%) |


# Drinking water and sanitation, 2005

| Drinking w | ater cover | age |
|------------|------------|-----|
|------------|------------|-----|


| State-wide          | 68.0 | % |  |
|---------------------|------|---|--|
| Urban               | 81.3 | % |  |
| Rural               | 50.4 | % |  |
| Sanitation coverage |      |   |  |
| State-wide          | 64.Z | % |  |
| Urban               | 85.0 | % |  |
| Rural               | 36.6 | % |  |
|                     |      |   |  |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 11    |      |
| Installed capacity         | 3.278 | m³/s |
| Flow treated               | 2.973 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 35    |      |
| Installed capacity         | 1.94  | m³∕s |
| Flow treated               | 1.07  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 7     |      |
| Installed capacity         | 0.05  | m³∕s |
| Flow treated               | 0.04  | m³∕s |



| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 10 |
| COD                                      | 10 |
| TSS                                      | 29 |
|                                          |    |



## 13. Hidalgo

Total

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 2 402 682  |             |
| Urban                                         | 1 279 780  |             |
| Rural                                         | 1 122 902  |             |
| Number of municipalities                      | 84         |             |
| Population in 2030                            | 2 573 581  | inhabitants |
| Normal annual precipitation 1971-             | 2000 831.8 | mm          |

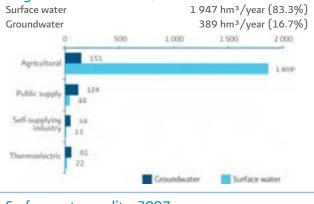
#### Offstream water uses, 2007

| Agrie | cultural                                    |                                                                                                                                                                                            |
|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Publ  | ic supply                                   |                                                                                                                                                                                            |
| Self- | supplying in                                | dustry                                                                                                                                                                                     |
| Ther  | moelectric                                  |                                                                                                                                                                                            |
| 2 020 | hm³/year                                    | (86.4%)                                                                                                                                                                                    |
| 168   | hm³/year                                    | (7.2%)                                                                                                                                                                                     |
| 66    | hm³/year                                    | (Z.8%)                                                                                                                                                                                     |
| 83    | hm³/year                                    | (3.5%)                                                                                                                                                                                     |
|       | Publ<br>Self-<br>Ther<br>2 020<br>168<br>66 | Agricultural<br>Public supply<br>Self-supplying into<br>Thermoelectric<br>2 020 hm <sup>3</sup> /year<br>168 hm <sup>3</sup> /year<br>66 hm <sup>3</sup> /year<br>83 hm <sup>3</sup> /year |

2 337  $\,hm^3/year$ 

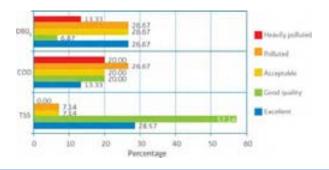
(100.0%)

# Drinking water and sanitation, 2005


| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 87.Z | % |
| Urban                   | 96.3 | % |
| Rural                   | 77.5 | % |
| Sanitation coverage     |      |   |
| State-wide              |      |   |
| Urban                   | 94.8 | % |
| Rural                   | 62.1 | % |
|                         |      |   |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 2     |      |
| Installed capacity         | 0.130 | m³/s |
| Flow treated               | 0.130 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 12    |      |
| Installed capacity         | 0.22  | m³/s |
| Flow treated               | 0.21  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 41    |      |
| Installed capacity         | 1.65  | m³∕s |
| Flow treated               | 0.98  | m³/s |

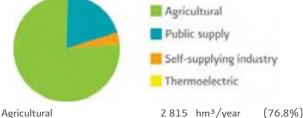



# Origen of the water used, 2007



# Surface water quality, 2007

| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 15 |
| COD                                      | 15 |
| TSS                                      | 14 |
|                                          |    |




Rural

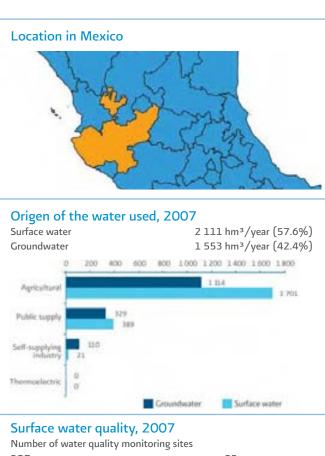
#### 14. Jalisco

| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 6 931 957 |             |
| Urban                                         | 6 006 660 |             |
| Rural                                         | 925 297   |             |
| Number of municipalities                      | 125       |             |
| Population in 2030                            | 7 799 254 | inhabitants |
| Normal annual precipitation 1971-2            | 000 893.1 | mm          |

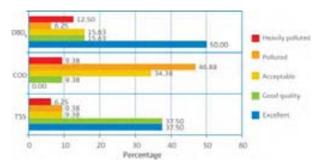
# Offstream water uses, 2007



| Agricultural            | 2 815 | hm³/year | (76.8%)  |
|-------------------------|-------|----------|----------|
| Public supply           | 718   | hm³/year | (19.6%)  |
| Self-supplying industry | 131   | hm³/year | (3.6%)   |
| Thermoelectric          | 0     | hm³/year | (0.0%)   |
| Total                   | 3 664 | hm³/year | (100.0%) |


#### Drinking water and sanitation, 2005

| <b>J</b>                |      |   |
|-------------------------|------|---|
| Drinking water coverage |      |   |
| State-wide              | 93.3 | % |
| Urban                   | 95.8 | % |
| Rural                   | 77.9 | % |
| Sanitation coverage     |      |   |
| State-wide              | 95.8 | % |
| Urban                   | 98.Z | % |


#### Treatment plants (up to December 2007)

81.0 %

| Municipal treatment plants |        |      |
|----------------------------|--------|------|
| Number in operation        | 24     |      |
| Installed capacity         | 16.197 | m³/s |
| Flow treated               | 9.490  | m³/s |
| Municipal wastewater       |        |      |
| Number in operation        | 96     |      |
| Installed capacity         | 3.77   | m³/s |
| Flow treated               | 3.39   | m³/s |
| Industrial wastewater      |        |      |
| Number in operation        | 33     |      |
| Installed capacity         | 1.51   | m³/s |
| Flow treated               | 1.51   | m³/s |



| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 32 |
| COD                                      | 32 |
| TSS                                      | 32 |
|                                          |    |



## 15. State of Mexico

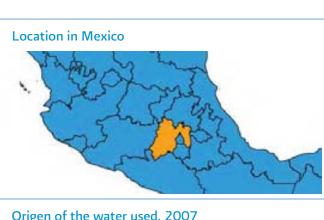
| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 14 536 860 |             |
| Urban                                         | 12 691 665 |             |
| Rural                                         | 1 845 195  |             |
| Number of municipalities                      | 125        |             |
| Population in 2030                            | 18 114 304 | inhabitants |
| Normal annual precipitation 1971-2            | 2000 850.6 | mm          |

#### Offstream water uses, 2007

|                         | Agric                   | ultural    |         |
|-------------------------|-------------------------|------------|---------|
|                         | Public supply           |            |         |
|                         | Self-supplying industry |            |         |
|                         | Ther                    | moelectric |         |
| Agricultural            | 1 250                   | hm³/year   | (45.4%) |
| Public supply           | 1 338                   | hm³/year   | (48.6%) |
| Self-supplying industry | 156                     | hm³/year   | (5.7%)  |
| Thermoelectric          | 7                       | hm³/year   | (0.3%)  |

2 752 hm³/year

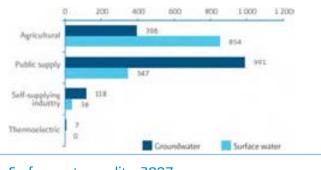
(100.0%)


#### Drinking water and sanitation, 2005

Total

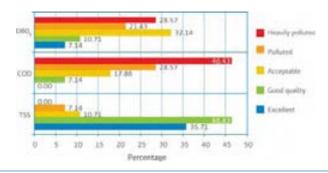
| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 93.Z | % |
| Urban                   | 95.6 | % |
| Rural                   | 77.4 | % |
| Sanitation coverage     |      |   |
| State-wide              | 91.Z | % |
| Urban                   | 96.0 | % |
| Rural                   | 59.9 | % |
|                         |      |   |

#### Treatment plants (up to December 2007)


| Municipal treatment plants |        |      |  |
|----------------------------|--------|------|--|
| Number in operation        | 10     |      |  |
| Installed capacity         | 22.144 | m³/s |  |
| Flow treated               | 16.719 | m³/s |  |
| Municipal wastewater       |        |      |  |
| Number in operation        | 75     |      |  |
| Installed capacity         | 7.22   | m³/s |  |
| Flow treated               | 4.90   | m³/s |  |
| Industrial wastewater      |        |      |  |
| Number in operation        | 292    |      |  |
| Installed capacity         | 3.75   | m³/s |  |
| Flow treated               | 2.75   | m³∕s |  |
|                            |        |      |  |



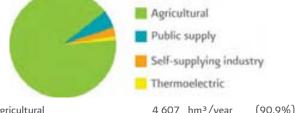
#### Origen of the water used, 2007 Surface water


Groundwater

1 240 hm³/year (45.1%) 1 512 hm³/year (54.9%)



# Surface water quality, 2007


| 3 |
|---|
| 3 |
| 3 |
|   |



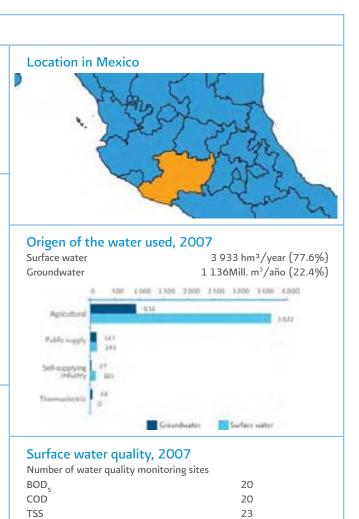
#### 16. Michoacan de Ocampo

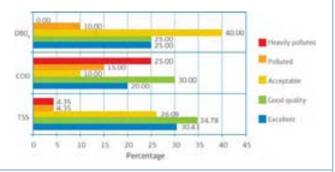
| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 3 984 577  |             |
| Urban                                         | 2 714 286  |             |
| Rural                                         | 1 270 291  |             |
| Number of municipalities                      | 113        |             |
| Population in 2030                            | 3 538 187  | inhabitants |
| Normal annual precipitation 1971-             | 2000 911.1 | mm          |

# Offstream water uses, 2007



| Agricultural            | 4 607 | hm³/year | (90.9%)  |
|-------------------------|-------|----------|----------|
| Public supply           | 272   | hm³/year | (5.4%)   |
| Self-supplying industry | 142   | hm³/year | (Z.8%)   |
| Thermoelectric          | 48    | hm³/year | (1.0%)   |
| Total                   | 5 069 | hm³/year | (100.0%) |


#### Drinking water and sanitation, 2005


| Drinking | water | coverage |  |
|----------|-------|----------|--|
| DINKING  | water | coverage |  |

| 5                   | 5 |      |   |
|---------------------|---|------|---|
| State-wide          |   | 89.4 | % |
| Urban               |   | 95.1 | % |
| Rural               |   | 77.7 | % |
| Sanitation coverage |   |      |   |
| State-wide          |   | 84.Z | % |
| Urban               |   | 93.0 | % |
| Rural               |   | 66.1 | % |
|                     |   |      |   |

#### Treatment plants (up to December 2007)

| the second se |       | -    |  |
|-----------------------------------------------------------------------------------------------------------------|-------|------|--|
| Municipal treatment plants                                                                                      |       |      |  |
| Number in operation                                                                                             | 6     |      |  |
| Installed capacity                                                                                              | 2.945 | m³/s |  |
| Flow treated                                                                                                    | 2.495 | m³/s |  |
| Municipal wastewater                                                                                            |       |      |  |
| Number in operation                                                                                             | 25    |      |  |
| Installed capacity                                                                                              | 3.52  | m³/s |  |
| Flow treated                                                                                                    | 2.47  | m³/s |  |
| Industrial wastewater                                                                                           |       |      |  |
| Number in operation                                                                                             | 45    |      |  |
| Installed capacity                                                                                              | 3.55  | m³/s |  |
| Flow treated                                                                                                    | 2.47  | m³/s |  |
|                                                                                                                 |       |      |  |





# 17. Morelos

| GENERAL DATA                     |            |             |
|----------------------------------|------------|-------------|
| 2007 population (inhabitants)    |            |             |
| Total                            | 1 655 138  |             |
| Urban                            | 1 429 951  |             |
| Rural                            | 225 188    |             |
| Number of municipalities         | 33         |             |
| Population in 2030               | 1 858 697  | inhabitants |
| Normal annual precipitation 1971 | 2000 981.4 | mm          |

#### Offstream water uses, 2007

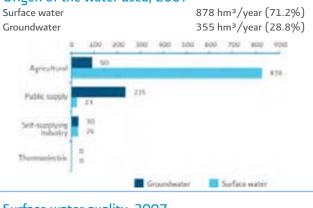
|                         | Publ | cultural<br>ic supply<br>supplying in | dustry  |
|-------------------------|------|---------------------------------------|---------|
|                         | Ther | moelectric                            |         |
| Agricultural            | 916  | hm³/year                              | (74.3%) |
| Public supply           | 258  | hm³/year                              | (21.0%) |
| Self-supplying industry | 59   | hm³/year                              | (4.8%)  |
| Thermoelectric          | 0    | hm³/year                              | (0.0%)  |

1 234 hm³/year

(100.0%)

# Drinking water and sanitation, 2005

Total


| Drinking water coverage |              |     |
|-------------------------|--------------|-----|
| State-wide              | 91.6         | %   |
| Urban                   | 94.8         | %   |
| Rural                   | 72.4         | %   |
| Sanitation coverage     |              |     |
| State-wide              | 92.6         | 0/0 |
| State-wide              | 92.0         | /0  |
| Urban                   | 92.0<br>95.1 | ,   |
|                         |              | %   |

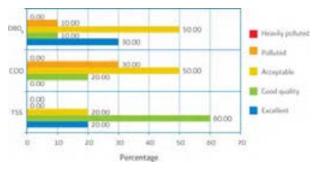
# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |  |
|----------------------------|-------|------|--|
| Number in operation        | 0     |      |  |
| Installed capacity         | 0.000 | m³∕s |  |
| Flow treated               | 0.000 | m³∕s |  |
| Municipal wastewater       |       |      |  |
| Number in operation        | 27    |      |  |
| Installed capacity         | 1.33  | m³/s |  |
| Flow treated               | 1.06  | m³∕s |  |
| Industrial wastewater      |       |      |  |
| Number in operation        | 80    |      |  |
| Installed capacity         | 2.83  | m³/s |  |
| Flow treated               | 2.72  | m³/s |  |
|                            |       |      |  |



#### Origen of the water used, 2007

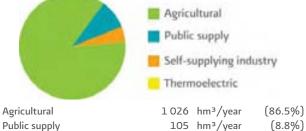



10

10

10

# Surface water quality, 2007


| Number of water quality monitoring sites |
|------------------------------------------|
| BOD                                      |
| COD                                      |
| TSS                                      |



## 18. Nayarit

| GENERAL DATA<br>2007 population (inhabitants) |         |             |
|-----------------------------------------------|---------|-------------|
| Total                                         | 965 641 |             |
| Urban                                         | 652 950 |             |
| Rural                                         | 312 691 |             |
| Number of municipalities                      | 20      |             |
| Population in 2030                            | 987 760 | inhabitants |
| Normal annual precipitation 1971-2000         | 1185.8  | mm          |

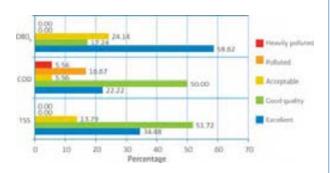
# Offstream water uses, 2007



|       | , , , , , , , , , , , , , , , , , , , , | [00.570]                                                   |
|-------|-----------------------------------------|------------------------------------------------------------|
| 105   | hm³/year                                | (8.8%)                                                     |
| 56    | hm³/year                                | (4.7%)                                                     |
| 0     | hm³/year                                | (0.0%)                                                     |
| 1 187 | hm³/year                                | (100.0%)                                                   |
|       | 105<br>56<br>0                          | 105 hm³/year<br>56 hm³/year<br>0 hm³/year<br>1187 hm³/year |

# Drinking water and sanitation, 2005

|          | -     |          |  |
|----------|-------|----------|--|
| Drinking | water | coverage |  |


| State-wide          | 91.4 | % |  |
|---------------------|------|---|--|
| Urban               | 96.5 | % |  |
| Rural               | 81.Z | % |  |
| Sanitation coverage |      |   |  |
| State-wide          | 90.9 | % |  |
| Urban               | 97.7 | % |  |
| Rural               | 77.6 | % |  |
|                     |      |   |  |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 0     |      |
| Installed capacity         | 0.000 | m³/s |
| Flow treated               | 0.000 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 60    |      |
| Installed capacity         | 1.96  | m³∕s |
| Flow treated               | 1.20  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 4     |      |
| Installed capacity         | 0.16  | m³∕s |
| Flow treated               | 0.16  | m³/s |

<figure>

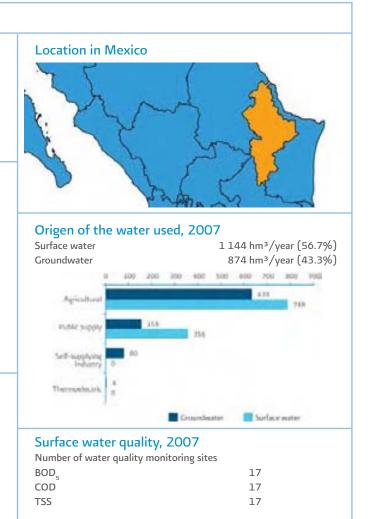
| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 29 |
| COD                                      | 18 |
| TSS                                      | 29 |
|                                          |    |

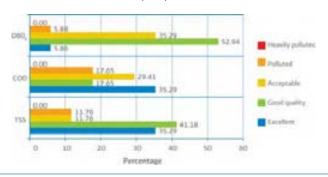


#### 19. Nuevo Leon

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 4 365 090  |             |
| Urban                                         | 4 124 946  |             |
| Rural                                         | 240 144    |             |
| Number of municipalities                      | 51         |             |
| Population in 2030                            | 5 406 220  | inhabitants |
| Normal annual precipitation 1971-2            | 2000 584.5 | mm          |

#### Offstream water uses, 2007


|                         | Agr                     | icultural   |          |
|-------------------------|-------------------------|-------------|----------|
|                         | Public supply           |             |          |
|                         | Self-supplying industry |             |          |
|                         | The                     | rmoelectric |          |
| Agricultural            | 1422                    | hm³/year    | (70.5%)  |
| Public supply           | 512                     | hm³/year    | (25.4%)  |
| Self-supplying industry | 80                      | hm³/year    | (4.0%)   |
| Thermoelectric          | 4                       | hm³/year    | (0.2%)   |
| Total                   | 2018                    | hm³/year    | (100.0%) |


#### Drinking water and sanitation, 2005

| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 95.6 | % |
| Urban                   | 97.7 | % |
| Rural                   | 60.5 | % |
| Sanitation coverage     |      |   |
| State-wide              | 95.3 | % |
| Urban                   | 97.5 | % |
| Rural                   | 57.8 | % |

#### Treatment plants (up to December 2007)

| Municipal treatment plants |        |      |  |
|----------------------------|--------|------|--|
| Number in operation        | 8      |      |  |
| Installed capacity         | 14.404 | m³/s |  |
| Flow treated               | 7.149  | m³/s |  |
| Municipal wastewater       |        |      |  |
| Number in operation        | 61     |      |  |
| Installed capacity         | 13.09  | m³/s |  |
| Flow treated               | 11.87  | m³/s |  |
| Industrial wastewater      |        |      |  |
| Number in operation        | 83     |      |  |
| Installed capacity         | 4.13   | m³/s |  |
| Flow treated               | 3.00   | m³∕s |  |
|                            |        |      |  |





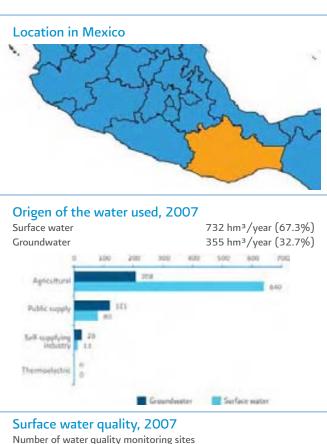

### 20. Oaxaca

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 3 552 685  |             |
| Urban                                         | 1 687 230  |             |
| Rural                                         | 1 865 455  |             |
| Number of municipalities                      | 570        |             |
| Population in 2030                            | 3 402 505  | inhabitants |
| Normal annual precipitation 1971-20           | 000 1181.8 | mm          |

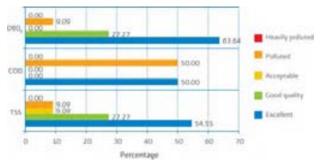
# Offstream water uses, 2007



| Agricultulai            | 040  | iiiii / yeai | (77.970) |
|-------------------------|------|--------------|----------|
| Public supply           | 201  | hm³/year     | (18.5%)  |
| Self-supplying industry | 39   | hm³/year     | (3.6%)   |
| Thermoelectric          | 0    | hm³/year     | (0.0%)   |
| Total                   | 1088 | hm³/year     | (100.0%) |


#### Drinking water and sanitation, 2005

Drinking water coverage


| State-wide          | 73.3 | % |
|---------------------|------|---|
| Urban               | 84.7 | % |
| Rural               | 63.4 | % |
| Sanitation coverage |      |   |
| State-wide          | 60.0 | % |
| Urban               | 84.0 | % |
| Rural               | 39.Z | % |
|                     |      |   |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       | -    |
|----------------------------|-------|------|
| Number in operation        | 6     |      |
| Installed capacity         | 1.291 | m³/s |
| Flow treated               | 0.771 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 65    |      |
| Installed capacity         | 0.91  | m³∕s |
| Flow treated               | 0.69  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 13    |      |
| Installed capacity         | 1.08  | m³∕s |
| Flow treated               | 0.76  | m³/s |



| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 11 |
| COD                                      | Z  |
| TSS                                      | 11 |
|                                          |    |



# 21. Puebla

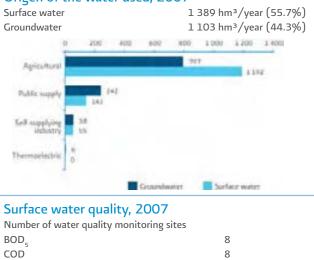
| GENERAL DATA                        |           |             |
|-------------------------------------|-----------|-------------|
| 2007 population (inhabitants)       |           |             |
| Total                               | 5 567 191 |             |
| Urban                               | 3 985 93Z |             |
| Rural                               | 1 581 259 |             |
| Number of municipalities            | 217       |             |
| Population in 2030                  | 6 536 966 | inhabitants |
| Normal annual precipitation 1971-20 | 00 1034.1 | mm          |

#### Offstream water uses, 2007

|                         | Agri                      | cultural   |          |
|-------------------------|---------------------------|------------|----------|
|                         | Public supply             |            |          |
|                         | E Self-supplying industry |            |          |
|                         | The                       | moelectric |          |
| Agricultural            | 1989                      | hm³/year   | (79.8%)  |
| Public supply           | 383                       | hm³/year   | (15.4%)  |
| Self-supplying industry | 114                       | hm³/year   | (4.6%)   |
| Thermoelectric          | 6                         | hm³/year   | (0.3%)   |
| Total                   | Z 49Z                     | hm³/year   | (100.0%) |

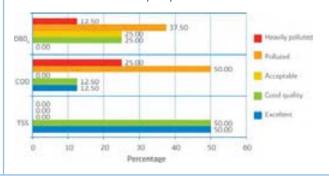
#### Drinking water and sanitation, 2005

| Drinking water coverage |      |   |  |
|-------------------------|------|---|--|
| State-wide              | 85.4 | % |  |
| Urban                   | 90.3 | % |  |
| Rural                   | 74.0 | % |  |
| Sanitation coverage     |      |   |  |
| State-wide              | 79.0 | % |  |
| Urban                   | 89.9 | % |  |
| Rural                   | 53.6 | % |  |
|                         |      |   |  |


# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 4     |      |
| Installed capacity         | 0.715 | m³/s |
| Flow treated               | 0.545 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 67    |      |
| Installed capacity         | 3.02  | m³/s |
| Flow treated               | 2.42  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 97    |      |
| Installed capacity         | 0.62  | m³/s |
| Flow treated               | 0.43  | m³∕s |




#### Origen of the water used, 2007

TSS



Percentage distribution of the monitoring sites by indicator and classification scale of water quality

8



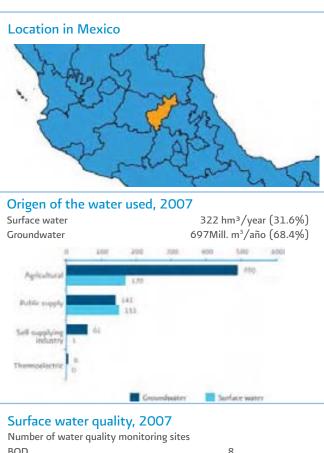
#### 22. Queretaro Arteaga

| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 1 674 737 |             |
| Urban                                         | 1 183 163 |             |
| Rural                                         | 491 574   |             |
| Number of municipalities                      | 18        |             |
| Population in 2030                            | 2 306 838 | inhabitants |
| Normal annual precipitation 1971-20           | 000 724.4 | mm          |

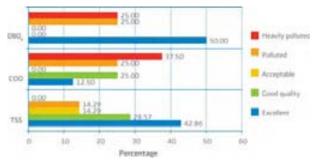
# Offstream water uses, 2007



|                         |      | , , , , , , , , , , , , , , , , , , , , | (,-)     |
|-------------------------|------|-----------------------------------------|----------|
| Public supply           | 292  | hm³/year                                | (28.6%)  |
| Self-supplying industry | 61   | hm³/year                                | (6.0%)   |
| Thermoelectric          | 6    | hm³/year                                | (0.6%)   |
| Total                   | 1019 | hm³/year                                | (100.0%) |


# Drinking water and sanitation, 2005

| Drinking | wator | coverage |  |
|----------|-------|----------|--|
| Drinking | water | coverage |  |


| 5                   |      |   |
|---------------------|------|---|
| State-wide          | 93.7 | % |
| Urban               | 97.9 | % |
| Rural               | 84.3 | % |
| Sanitation coverage |      |   |
| State-wide          | 85.6 | % |
| Urban               | 95.1 | % |
| Rural               | 64.1 | % |
|                     |      |   |

# Treatment plants (up to December 2007)

| 6     |                                                     |
|-------|-----------------------------------------------------|
| 0.269 | m³/s                                                |
| 0.212 | m³/s                                                |
|       |                                                     |
| 63    |                                                     |
| 1.11  | m³∕s                                                |
| 0.71  | m³∕s                                                |
|       |                                                     |
| 128   |                                                     |
| 1.11  | m³/s                                                |
| 0.51  | m³∕s                                                |
|       | 0.269<br>0.212<br>63<br>1.11<br>0.71<br>128<br>1.11 |



| BOD | 8 |
|-----|---|
| COD | 8 |
| TSS | 7 |
|     |   |



# 23. Quintana Roo

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 1 243 989  |             |
| Urban                                         | 1075724    |             |
| Rural                                         | 168 265    |             |
| Number of municipalities                      | 8          |             |
| Population in 2030                            | Z 454 389  | inhabitants |
| Normal annual precipitation 1971-2            | 000 1234.4 | mm          |

#### Offstream water uses, 2007

Thermoelectric

Total

|                         | E Self-su | ltural<br>supply<br>upplying indu<br>oelectric | istry   |
|-------------------------|-----------|------------------------------------------------|---------|
| Agricultural            | 93        | hm³/year                                       | (20.2%) |
| Public supply           | 91        | hm³/year                                       | (19.8)  |
| Self-supplying industry | 276       | hm³/year                                       | (60.0)  |

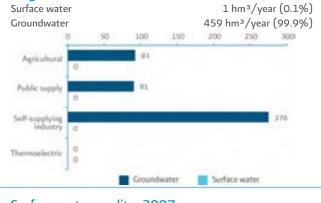
0 hm³/year

460 hm³/year

(0.0%)

(100.0%)

### Drinking water and sanitation, 2005


| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 94.5 | % |
| Urban                   | 96.1 | % |
| Rural                   | 85.8 | % |
| Sanitation coverage     |      |   |
| State-wide              | 89.5 | % |
| Urban                   | 95.9 | % |
| Rural                   | 53.9 | % |
|                         |      |   |

# Treatment plants (up to December 2007)

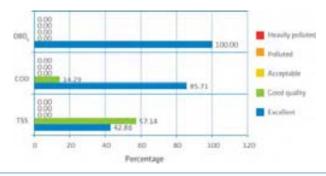
| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 0     |      |
| Installed capacity         | 0.000 | m³∕s |
| Flow treated               | 0.000 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 29    |      |
| Installed capacity         | 2.08  | m³∕s |
| Flow treated               | 1.60  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | Z     |      |
| Installed capacity         | 0.01  | m³∕s |
| Flow treated               | 0.01  | m³/s |



#### Origen of the water used, 2007



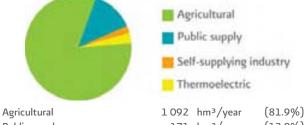
#### Surface water quality, 2007


Number of water quality monitoring sites BOD<sub>5</sub> COD TSS

Percentage distribution of the monitoring sites by indicator and classification scale of water quality

7

7


7



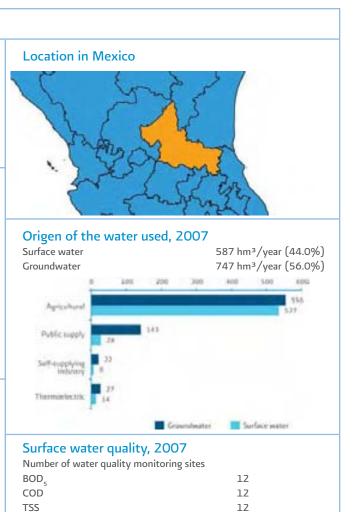
#### 24. San Luis Potosi

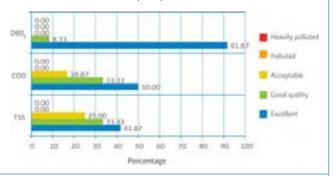
| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 2 467 651 |             |
| Urban                                         | 1 559 547 |             |
| Rural                                         | 908 104   |             |
| Number of municipalities                      | 58        |             |
| Population in 2030                            | 2 598 934 | inhabitants |
| Normal annual precipitation 1971-20           | 00 692.5  | mm          |

# Offstream water uses, 2007



| Agriculturur            | 1072  | min / year | (01.770) |
|-------------------------|-------|------------|----------|
| Public supply           | 171   | hm³/year   | (12.8%)  |
| Self-supplying industry | 29    | hm³/year   | (2.2%)   |
| Thermoelectric          | 41    | hm³/year   | (3.1%)   |
| Total                   | 1 333 | hm³/year   | (100.0%) |


#### Drinking water and sanitation, 2005


| Drinking | water | coverage |  |
|----------|-------|----------|--|

| State-wide          | 82.7 | % |  |
|---------------------|------|---|--|
| Urban               | 97.5 | % |  |
| Rural               | 58.Z | % |  |
| Sanitation coverage |      |   |  |
| State-wide          | 74.Z | % |  |
| Urban               | 93.Z | % |  |
| Rural               | 42.8 | % |  |
|                     |      |   |  |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 14    |      |
| Installed capacity         | 1.135 | m³∕s |
| Flow treated               | 0.819 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 19    |      |
| Installed capacity         | 2.10  | m³/s |
| Flow treated               | 1.73  | m³∕s |
| Industrial wastewater      |       |      |
| Number in operation        | 74    |      |
| Installed capacity         | 1.36  | m³/s |
| Flow treated               | 0.63  | m³∕s |

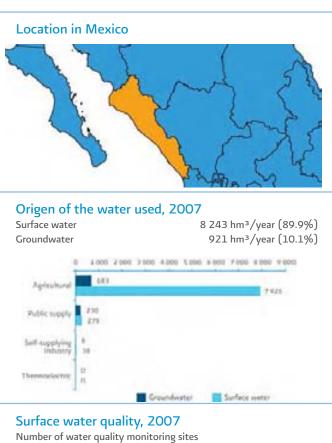




# 25. Sinaloa

| GENERAL DATA                     |             |             |
|----------------------------------|-------------|-------------|
| 2007 population (inhabitants)    |             |             |
| Total                            | Z 645 933   |             |
| Urban                            | 1 881 246   |             |
| Rural                            | 764 688     |             |
| Number of municipalities         | 18          |             |
| Population in 2030               | 2 612 436   | inhabitants |
| Normal annual precipitation 1971 | -2000 730.1 | mm          |
|                                  |             |             |

# Offstream water uses, 2007

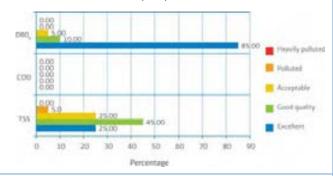

|                         | Agric                     | ultural    |          |  |
|-------------------------|---------------------------|------------|----------|--|
|                         | Public supply             |            |          |  |
|                         | E Self-supplying industry |            |          |  |
|                         | Ther                      | moelectric |          |  |
| Agricultural            | 8 608                     | hm³/year   | (93.9%)  |  |
| Public supply           | 510                       | hm³/year   | (5.6%)   |  |
| Self-supplying industry | 46                        | hm³/year   | (0.5%)   |  |
| Thermoelectric          | 0                         | hm³/year   | (0.0%)   |  |
| Total                   | 9 164                     | hm³/year   | (100.0%) |  |

#### Drinking water and sanitation, 2005

| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 93.1 | % |
| Urban                   | 98.3 | % |
| Rural                   | 80.6 | % |
| Sanitation coverage     |      |   |
| State-wide              | 86.4 | % |
| Urban                   | 94.8 | % |
| Rural                   | 66.3 | % |
|                         |      |   |

#### Treatment plants (up to December 2007)

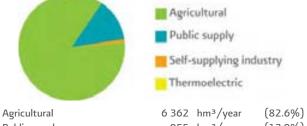
| Municipal treatment plants |       |      |  |
|----------------------------|-------|------|--|
| Number in operation        | 142   |      |  |
| Installed capacity         | 9.067 | m³/s |  |
| Flow treated               | 7.224 | m³/s |  |
| Municipal wastewater       |       |      |  |
| Number in operation        | 120   |      |  |
| Installed capacity         | 5.02  | m³/s |  |
| Flow treated               | 4.18  | m³/s |  |
| Industrial wastewater      |       |      |  |
| Number in operation        | 42    |      |  |
| Installed capacity         | 8.82  | m³/s |  |
| Flow treated               | 0.46  | m³∕s |  |
|                            |       |      |  |




Number of water quality monitoring sites BOD<sub>5</sub> COD TSS

Percentage distribution of the monitoring sites by indicator and classification scale of water quality

20


20



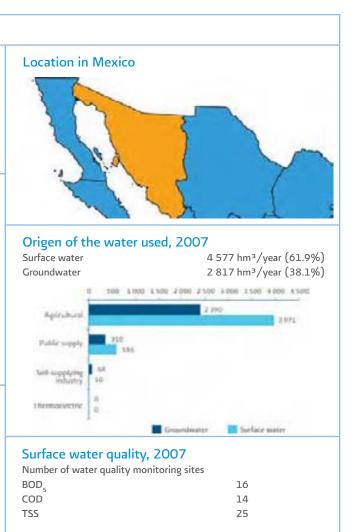
#### 26. Sonora

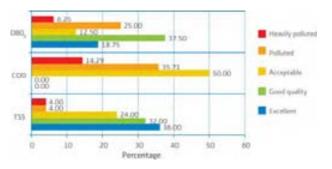
| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 2 475 568 |             |
| Urban                                         | 2 132 045 |             |
| Rural                                         | 343 613   |             |
| Number of municipalities                      | 72        |             |
| Population in 2030                            | 2 845 433 | inhabitants |
| Normal annual precipitation 1971-2            | 000 421.2 | mm          |

# Offstream water uses, 2007



| righteureara            | 0 502 | min / year | (02.070) |
|-------------------------|-------|------------|----------|
| Public supply           | 955   | hm³/year   | (12.9%)  |
| Self-supplying industry | 78    | hm³/year   | (1.1%)   |
| Thermoelectric          | 0     | hm³/year   | (0.0%)   |
| Total                   | 7 394 | hm³/year   | (100.0%) |


# Drinking water and sanitation, 2005


|          | -              |  |
|----------|----------------|--|
| Drinking | water coverage |  |

| 2                   |      |   |  |
|---------------------|------|---|--|
| State-wide          | 95.Z | % |  |
| Urban               | 96.6 | % |  |
| Rural               | 87.0 | % |  |
| Sanitation coverage |      |   |  |
| State-wide          | 85.4 | % |  |
| Urban               | 92.3 | % |  |
| Rural               | 44.3 | % |  |
|                     |      |   |  |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       | -    |
|----------------------------|-------|------|
| Number in operation        | 20    |      |
| Installed capacity         | 2.890 | m³∕s |
| Flow treated               | 1.580 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 66    |      |
| Installed capacity         | 4.19  | m³∕s |
| Flow treated               | 3.00  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 23    |      |
| Installed capacity         | 0.36  | m³/s |
| Flow treated               | 0.16  | m³∕s |





# 27. Tabasco

Thermoelectric

Total

| GENERAL DATA                          |           |             |
|---------------------------------------|-----------|-------------|
| 2007 population (inhabitants)         |           |             |
| Total 2                               | 2 034 507 |             |
| Urban 1                               | 120 726   |             |
| Rural                                 | 913 782   |             |
| Number of municipalities              | 17        |             |
| Population in 2030 2                  | 2 168 004 | inhabitants |
| Normal annual precipitation 1971-2000 | 2 102.0   | mm          |

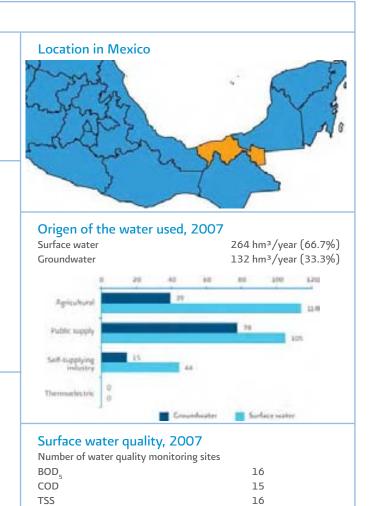
# Offstream water uses, 2007

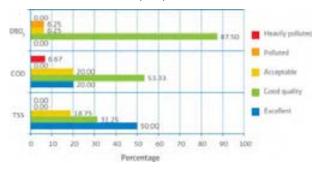
|                         | <ul> <li>Agricultural</li> <li>Public supply</li> <li>Self-supplying indu</li> <li>Thermoelectric</li> </ul> | stry    |
|-------------------------|--------------------------------------------------------------------------------------------------------------|---------|
| Agricultural            | 154 hm³/year                                                                                                 | (38.8%) |
| Public supply           | 183 hm³/year                                                                                                 | (46.2%) |
| Self-supplying industry | 59 hm³/year                                                                                                  | (14.9%) |

0 hm³/year

395 hm³/year

(0.0%)

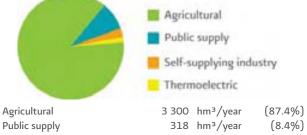

(100.0%)


# Drinking water and sanitation 2005

| Difficing water and samtation, 2005 |      |   |  |  |  |
|-------------------------------------|------|---|--|--|--|
| Drinking water coverage             |      |   |  |  |  |
| State-wide                          | 76.4 | / |  |  |  |
| Urban                               | 88.7 | % |  |  |  |
| Rural                               | 61.5 | % |  |  |  |
| Sanitation coverage                 |      |   |  |  |  |
| State-wide                          | 93.4 | % |  |  |  |
| Urban                               | 97.8 | % |  |  |  |
| Rural                               | 88.1 | % |  |  |  |
|                                     |      |   |  |  |  |

# Treatment plants (up to December 2007)

| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 35    |      |
| Installed capacity         | 8.651 | m³/s |
| Flow treated               | 5.696 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 70    |      |
| Installed capacity         | 1.81  | m³∕s |
| Flow treated               | 1.32  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 108   |      |
| Installed capacity         | 0.61  | m³∕s |
| Flow treated               | 0.15  | m³/s |





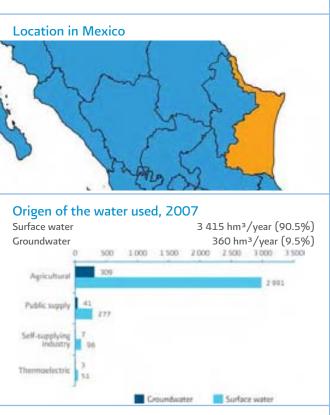

## 28. Tamaulipas

| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 3 135 501 |             |
| Urban                                         | 2 746 579 |             |
| Rural                                         | 388 922   |             |
| Number of municipalities                      | 43        |             |
| Population in 2030                            | 3 829 639 | inhabitants |
| Normal annual precipitation 1971-20           | 000 763.6 | mm          |

# Offstream water uses, 2007

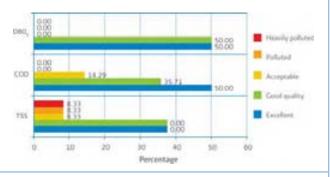


| 318   | hm³/year  | (8.4%)                                                                                                            |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------|
| 104   | hm³/year  | (2.7%)                                                                                                            |
| 54    | hm³/year  | (1.4%)                                                                                                            |
| 3 776 | hm³/year  | (100.0%)                                                                                                          |
|       | 104<br>54 | 318 hm <sup>3</sup> /year<br>104 hm <sup>3</sup> /year<br>54 hm <sup>3</sup> /year<br>3 776 hm <sup>3</sup> /year |


# Drinking water and sanitation, 2005

|          | -     |          |
|----------|-------|----------|
| Drinking | water | coverage |

| Drinking match coverage |      |   |  |
|-------------------------|------|---|--|
| State-wide              | 94.7 | % |  |
| Urban                   | 97.8 | % |  |
| Rural                   | 74.3 | % |  |
| Sanitation coverage     |      |   |  |
| State-wide              | 82.4 | % |  |
| Urban                   | 90.5 | % |  |
| Rural                   | 27.7 | % |  |
|                         |      |   |  |


# Treatment plants (up to December 2007)

| Municipal treatment plants |             |  |
|----------------------------|-------------|--|
| Number in operation        | 55          |  |
| Installed capacity         | 14 222 m³/s |  |
| Flow treated               | 11 492 m³/s |  |
| Municipal wastewater       |             |  |
| Number in operation        | 33          |  |
| Installed capacity         | 3.63 m³/s   |  |
| Flow treated               | 3.57 m³/s   |  |
| Industrial wastewater      |             |  |
| Number in operation        | 46          |  |
| Installed capacity         | 1.60 m³/s   |  |
| Flow treated               | 0.83 m³/s   |  |



#### Surface water quality, 2007

| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 22 |
| COD                                      | 28 |
| TSS                                      | 24 |
|                                          |    |



# 29. Tlaxcala

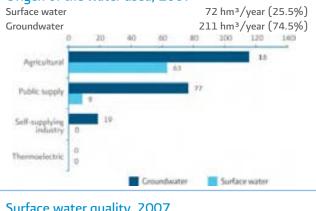
| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 1 112 200 |             |
| Urban                                         | 874 844   |             |
| Rural                                         | 237 356   |             |
| Number of municipalities                      | 60        |             |
| Population in 2030                            | 1 408 991 | inhabitants |
| Normal annual precipitation 1971-2            | 000 700   | mm          |

#### Offstream water uses, 2007

|              | Agricultural                      |
|--------------|-----------------------------------|
|              | Public supply                     |
|              | Self-supplying industry           |
|              | Thermoelectric                    |
| Agricultural | 179 hm <sup>3</sup> /year (63.1%) |

| Agricultural            | 179 | hm³/year | (63.1%)  |
|-------------------------|-----|----------|----------|
| Public supply           | 85  | hm³/year | (30.1%)  |
| Self-supplying industry | 19  | hm³/year | (6.8%)   |
| Thermoelectric          | 0   | hm³/year | (0.0%)   |
| Total                   | 284 | hm³/year | (100.0%) |

# Drinking water and sanitation, 2005


| 97.3 | %                                            |
|------|----------------------------------------------|
| 97.9 | %                                            |
| 95.3 | %                                            |
|      |                                              |
| 90.6 | %                                            |
| 92.8 | %                                            |
| 82.8 | %                                            |
|      | 97.3<br>97.9<br>95.3<br>90.6<br>92.8<br>82.8 |

# Treatment plants (up to December 2007)

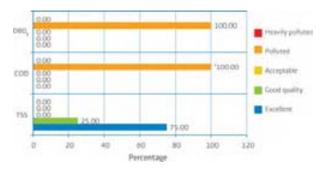
| Number in operation 0                     |  |
|-------------------------------------------|--|
|                                           |  |
| Installed capacity 0.000 m³/s             |  |
| Flow treated $0.000 \text{ m}^3/\text{s}$ |  |
| Municipal wastewater                      |  |
| Number in operation 52                    |  |
| Installed capacity 1.23 m <sup>3</sup> /s |  |
| Flow treated $0.87 \text{ m}^3/\text{s}$  |  |
| Industrial wastewater                     |  |
| Number in operation 107                   |  |
| Installed capacity 0.30 m <sup>3</sup> /s |  |
| Flow treated 0.26 m <sup>3</sup> /s       |  |



#### Origen of the water used, 2007



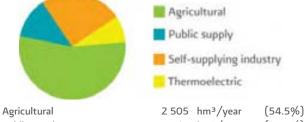
# Surface water quality, 2007


Number of water quality monitoring sites BOD COD TSS

Percentage distribution of the monitoring sites by indicator and classification scale of water quality

4

4


4



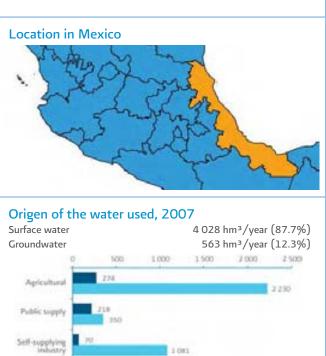
# 30. Veracruz de Ignacio de la Llave

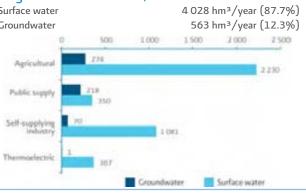
| GENERAL DATA<br>2007 population (inhabitants) |             |             |
|-----------------------------------------------|-------------|-------------|
| Total                                         | 7 251 626   |             |
| Urban                                         | 4 434 093   |             |
| Rural                                         | 2 817 533   |             |
| Number of municipalities                      | 212         |             |
| Population in 2030                            | 7 373 459   | inhabitants |
| Normal annual precipitation 1971-             | 2000 1610.6 | mm          |

# Offstream water uses, 2007



| Agricultulai            | 2 000   | ппп / усаг | (04.070) |
|-------------------------|---------|------------|----------|
| Public supply           | 568     | hm³/year   | (12.4%)  |
| Self-supplying industry | 1 1 5 1 | hm³/year   | (25.1%)  |
| Thermoelectric          | 368     | hm³/year   | (8.0%)   |
| Total                   | 4 592   | hm³/year   | (100.0%) |


#### Drinking water and sanitation, 2005


Drinking water coverage

| State-wide          | 76.3 | % |
|---------------------|------|---|
| Urban               | 89.Z | % |
| Rural               | 56.7 | % |
| Sanitation coverage |      |   |
| State-wide          | 77.7 | % |
| Urban               | 93.3 | % |
| Rural               | 54.0 | % |
|                     |      |   |

# Treatment plants (up to December 2007)


| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 8     |      |
| Installed capacity         | 6.600 | m³/s |
| Flow treated               | 4.760 | m³/s |
| Municipal wastewater       |       |      |
| Number in operation        | 87    |      |
| Installed capacity         | 4.68  | m³/s |
| Flow treated               | 2.65  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 160   |      |
| Installed capacity         | 11.63 | m³/s |
| Flow treated               | 8.64  | m³/s |





# Surface water quality, 2007

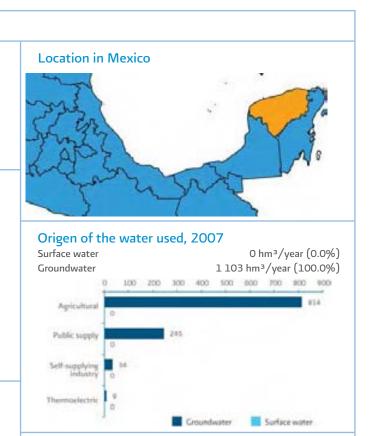
| Number of water quality monitoring sites |    |
|------------------------------------------|----|
| BOD                                      | 52 |
| COD                                      | 44 |
| TSS                                      | 55 |
|                                          |    |



#### 31. Yucatan

| GENERAL DATA<br>2007 population (inhabitants) |            |             |
|-----------------------------------------------|------------|-------------|
| Total                                         | 1 886 161  |             |
| Urban                                         | 1 565 456  |             |
| Rural                                         | 320 705    |             |
| Number of municipalities                      | 106        |             |
| Population in 2030                            | 2 391 751  | inhabitants |
| Normal annual precipitation 1971-2            | 000 1066.6 | mm          |

#### Offstream water uses, 2007

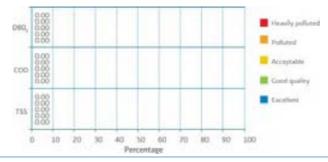

|                         | Age                     | icultural    |          |
|-------------------------|-------------------------|--------------|----------|
|                         | Public supply           |              |          |
|                         | Self-supplying industry |              |          |
|                         | The                     | ermoelectric |          |
| Agricultural            | 814                     | hm³/year     | (73.9%)  |
| Public supply           | 245                     | hm³/year     | (22.2%)  |
| Self-supplying industry | 34                      | hm³/year     | (3.1%)   |
| Thermoelectric          | 9                       | hm³/year     | (0.9%)   |
| Total                   | 1 103                   | hm³/year     | (100.0%) |

#### Drinking water and sanitation, 2005

| Drinking water coverage |      |   |
|-------------------------|------|---|
| State-wide              | 96.1 | % |
| Urban                   | 96.7 | % |
| Rural                   | 93.7 | % |
| Sanitation coverage     |      |   |
| State-wide              | 68.Z | % |
| Urban                   | 74.9 | % |
| Rural                   | 36.5 | % |
|                         |      |   |

# Treatment plants (up to December 2007)

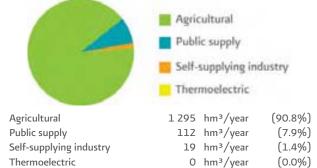
| Municipal treatment plants |       |      |   |
|----------------------------|-------|------|---|
| Number in operation        | 0     |      |   |
| Installed capacity         | 0.000 | m³/s |   |
| Flow treated               | 0.000 | m³/s |   |
| Municipal wastewater       |       |      |   |
| Number in operation        | 13    |      |   |
| Installed capacity         | 0.08  | m³/s |   |
| Flow treated               | 0.07  | m³/s |   |
| Industrial wastewater      |       |      |   |
| Number in operation        | 36    |      |   |
| Installed capacity         | 0.11  | m³/s |   |
| Flow treated               | 0.07  | m³/s |   |
|                            |       |      | _ |




#### Surface water quality, 2007

Number of water quality monitoring sites BOD<sub>5</sub> COD TSS

Percentage distribution of the monitoring sites by indicator and classification scale of water quality


In this State, there in no relevant surface runoff.



#### 32. Zacatecas

| GENERAL DATA<br>2007 population (inhabitants) |           |             |
|-----------------------------------------------|-----------|-------------|
| Total                                         | 1 381 991 |             |
| Urban                                         | 799 686   |             |
| Rural                                         | 582 306   |             |
| Number of municipalities                      | 58        |             |
| Population in 2030                            | 1 280 431 | inhabitants |
| Normal annual precipitation 1971-200          | 460.8     | mm          |

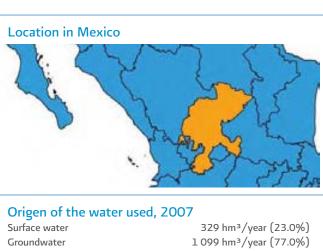
# Offstream water uses, 2007

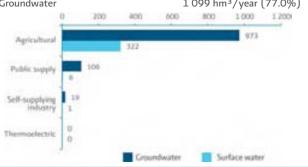


1 427 hm<sup>3</sup>/year

(100.0%)

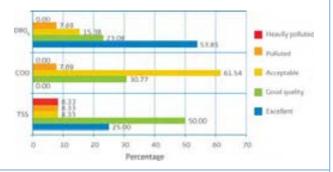
#### Drinking water and sanitation, 2005


Drinking water coverage


Total

| Drinking water coverage |      |   |  |
|-------------------------|------|---|--|
| State-wide              | 92.8 | % |  |
| Urban                   | 98.6 | % |  |
| Rural                   | 85.Z | % |  |
| Sanitation coverage     |      |   |  |
| State-wide              | 84.Z | % |  |
| Urban                   | 96.1 | % |  |
| Rural                   | 68.4 | % |  |
|                         |      |   |  |

# Treatment plants (up to December 2007)


| Municipal treatment plants |       |      |
|----------------------------|-------|------|
| Number in operation        | 25    |      |
| Installed capacity         | 0.005 | m³∕s |
| Flow treated               | 0.005 | m³∕s |
| Municipal wastewater       |       |      |
| Number in operation        | 35    |      |
| Installed capacity         | 0.48  | m³∕s |
| Flow treated               | 0.42  | m³/s |
| Industrial wastewater      |       |      |
| Number in operation        | 7     |      |
| Installed capacity         | 0.15  | m³/s |
| Flow treated               | 0.04  | m³/s |





#### Surface water quality, 2007

| 13 |
|----|
| 13 |
| 12 |
|    |



# Annex C. Characteristics of the hydrological regions

In the following table a series of characteristics of Mexico's 37 hydrological regions is shown.

| Hydrological region                 | Continental<br>land<br>extension<br>(km²) | Normal<br>annual<br>precipitation<br>1971-2000<br>(mm) | Mean natural<br>internal sur-<br>face runoff<br>(hm³/year) | Imports (+)<br>or exports (-)<br>from other<br>countries<br>(hm³/year) | Total mean<br>natural sur-<br>face runoff<br>(hm³/year) | Number of<br>watersheds |
|-------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|
| 1. Baja California Northwest        | 28 492                                    | 249.4                                                  | 359                                                        |                                                                        | 359                                                     | 16                      |
| 2. Baja California Central-West     | 44 314                                    | 100.9                                                  | 449                                                        |                                                                        | 449                                                     | 16                      |
| 3. Baja California Southwest        | 29 722                                    | 184.7                                                  | 318                                                        |                                                                        | 318                                                     | 15                      |
| 4. Baja California Northeast        | 14 418                                    | 180.7                                                  | 105                                                        |                                                                        | 105                                                     | 8                       |
| 5. Baja California Central-East     | 13 626                                    | 100.5                                                  | 54                                                         |                                                                        | 54                                                      | 15                      |
| 6. Baja California Southeast        | 11 558                                    | 284.7                                                  | 219                                                        |                                                                        | 219                                                     | 14                      |
| 7. Colorado River                   | 6911                                      | 100.3                                                  | 13                                                         | 1850                                                                   | 1863                                                    | 1                       |
| 8. Sonora North                     | 61 429                                    | 301.2                                                  | 139                                                        |                                                                        | 139                                                     | 5                       |
| 9. Sonora South                     | 139 370                                   | 507.2                                                  | 4 935                                                      |                                                                        | 4 935                                                   | 16                      |
| 10. Sinaloa                         | 103 483                                   | 715.9                                                  | 14 408                                                     |                                                                        | 14 408                                                  | 23                      |
| 11. Presidio-San Pedro <sup>a</sup> | 51 717                                    | 815.2                                                  | 7 956                                                      |                                                                        | 7 956                                                   | 23                      |
| 12. Lerma-Santiago                  | 132 916                                   | 723.2                                                  | 13 637                                                     |                                                                        | 13 637                                                  | 58                      |
| 13. River Huicicila <sup>a</sup>    | 5 225                                     | 1 396.2                                                | 1 277                                                      |                                                                        | 1 277                                                   | 6                       |
| 14. River Amecaª                    | 12 255                                    | 1 022.7                                                | 2 236                                                      |                                                                        | 2 236                                                   | 9                       |
| 15. Jalisco Coast                   | 12 967                                    | 1 185.5                                                | 3 684                                                      |                                                                        | 3 684                                                   | 11                      |
| 16. Armeria-Coahuayana <sup>a</sup> | 17 628                                    | 911.3                                                  | 3 882                                                      |                                                                        | 3 882                                                   | 10                      |
| 17. Michoacan Coast <sup>a</sup>    | 9 205                                     | 890.9                                                  | 1 635                                                      |                                                                        | 1 635                                                   | 6                       |
| 18. Balsas                          | 118 268                                   | 949.7                                                  | 17 057                                                     |                                                                        | 17 057                                                  | 15                      |
| 19. Greater Guerrero Coast          | 12 132                                    | 1 232.0                                                | 6 091                                                      |                                                                        | 6 091                                                   | 28                      |
| 20. Lower Guerrero Coast            | 39 936                                    | 1 393.1                                                | 18 714                                                     |                                                                        | 18 714                                                  | 32                      |
| 21. Oaxaca Coast                    | 10 514                                    | 971.2                                                  | 3 389                                                      |                                                                        | 3 389                                                   | 19                      |
| 22. Tehuantepec                     | 16 363                                    | 824.9                                                  | 2 606                                                      |                                                                        | 2 606                                                   | 15                      |
| 23. Chiapas Coast                   | 12 293                                    | 2 352.7                                                | 9 604                                                      | 2 950                                                                  | 12 554                                                  | 25                      |
| 24. Bravo-Conchos                   | 229 740                                   | 448.5                                                  | 5 588                                                      | - 432                                                                  | 5 156                                                   | 37                      |
| 25. San Fernando-Soto La Marina     | 54961                                     | 758.5                                                  | 4 328                                                      |                                                                        | 4 328                                                   | 45                      |
| 26. Panuco                          | 96 989                                    | 889.Z                                                  | 20 329                                                     |                                                                        | 20 329                                                  | 77                      |
| 27. North of Veracruz               | 26 592                                    | 1 423.2                                                | 14 306                                                     |                                                                        | 14 306                                                  | 12                      |
| 28. Papaloapan                      | 57 355                                    | 1 447.1                                                | 49 951                                                     |                                                                        | 49 951                                                  | 18                      |
| 29. Coatzacoalcos                   | 30 217                                    | 1 953.8                                                | 39 482                                                     |                                                                        | 39 482                                                  | 15                      |
| 30. Grijalva-Usumacinta             | 102 465                                   | 1 708.9                                                | 73 466                                                     | 44 080                                                                 | 117 546                                                 | 83                      |
| 31. Yucatan West                    | 25 443                                    | 1 227.4                                                | 591                                                        |                                                                        | 591                                                     | Z                       |
| 32. Yucatan North                   | 58 135                                    | 1092.4                                                 | 0                                                          |                                                                        | 0                                                       | 0                       |
|                                     |                                           |                                                        |                                                            |                                                                        |                                                         |                         |

| Hydrological region                                                                               | Continental<br>land<br>extension<br>(km²) | Normal<br>annual<br>precipitation<br>1971-2000<br>(mm) | Mean natural<br>internal sur-<br>face runoff<br>(hm³/year) | Imports (+)<br>or exports (-)<br>from other<br>countries<br>(hm <sup>3</sup> /year) | Total mean<br>natural sur-<br>face runoff<br>(hm³/year) | Number of<br>watersheds |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|--|--|
| 33. Yucatan East                                                                                  | 38 308                                    | 1 239.8                                                | 1 125                                                      | 864                                                                                 | 1 989                                                   | 1                       |  |  |
| 34. Closed Catchments of the North                                                                | 90 829                                    | 407.8                                                  | 1 701                                                      |                                                                                     | 1 701                                                   | 22                      |  |  |
| 35. Mapimiª                                                                                       | 62 639                                    | 355.7                                                  | 957                                                        |                                                                                     | 957                                                     | 6                       |  |  |
| 36. Nazas-Aguanavalª                                                                              | 93 032                                    | 422.1                                                  | 1912                                                       |                                                                                     | 1912                                                    | 16                      |  |  |
| 37. El Salado <sup>ª</sup>                                                                        | 87 801                                    | 428.2                                                  | 2 637                                                      |                                                                                     | 2 637                                                   | 8                       |  |  |
| Total                                                                                             | 1 959 248                                 | 759.6                                                  | 329 137                                                    | 49 312                                                                              | 378 449                                                 | 728                     |  |  |
| NOTE: This information refers to the mean data determined through the latest Studies carried out. |                                           |                                                        |                                                            |                                                                                     |                                                         |                         |  |  |

<sup>a</sup> In these regions, the availability studies have not yet been concluded. SOURCE: CONAGUA. Deputy Director General's Office for Technical Affairs.

# Annex D. List of overexploited aquifers

In the following table, Mexico's aquifers in a state of overexploitation are listed, up to December 31<sup>st</sup>, 2007.

| No. | Hydrological-Administrative Region | Code of the aquifer | Hydrogeological unit<br>(aquifer) | Withdrawal / recharge<br>ratio |
|-----|------------------------------------|---------------------|-----------------------------------|--------------------------------|
| 1   | I Baja California Peninsula        | 0208                | Ojos Negros                       | 1.34                           |
| 2   | I Baja California Peninsula        | 0210                | Mexicali Valley                   | 1.16                           |
| 3   | I Baja California Peninsula        | 0212                | Maneadero                         | 1.47                           |
| 4   | I Baja California Peninsula        | 0221                | San Quintin                       | 1.28                           |
| 5   | I Baja California Peninsula        | 0246                | San Simon                         | 1.66                           |
| 6   | I Baja California Peninsula        | 0306                | Santo Domingo                     | 1.67                           |
| 7   | I Baja California Peninsula        | 0323                | Los Planes                        | 1.17                           |
| 8   | ll Northwest                       | 2601                | San Luis Colorado River Valley    | 1.53                           |
| 9   | ll Northwest                       | 2603                | Sonoyta-Puerto Peñasco            | 1.12                           |
| 10  | II Northwest                       | 2605                | Caborca                           | 1.26                           |
| 11  | ll Northwest                       | 2606                | Los Chirriones                    | 1.81                           |
| 12  | II Northwest                       | 2609                | Busani                            | 1.29                           |
| 13  | II Northwest                       | 2619                | Hermosillo Coast                  | 1.72                           |
| 14  | II Northwest                       | 2620                | Sahuaral                          | 1.16                           |
| 15  | II Northwest                       | 2621                | Mesa del Seri-La Victoria         | 1.64                           |
| 16  | II Northwest                       | 2624                | River Sonora                      | 1.12                           |
| 17  | II Northwest                       | 2626                | River Zanjon                      | 1.22                           |
| 18  | II Northwest                       | 2627                | River Bacoachi                    | 1.25                           |
| 19  | II Northwest                       | 2635                | Guaymas Valley                    | 1.17                           |

| No.      | Hyd        | rological-Administrative Region                            | Code of the aquifer | Hydrogeological unit<br>(aquifer)                     | Withdrawal / recharge<br>ratio |
|----------|------------|------------------------------------------------------------|---------------------|-------------------------------------------------------|--------------------------------|
| 20       | Ш          | Northwest                                                  | 2636                | San Jose de Guaymas                                   | 1.80                           |
| 21       | Ш          | Northern Pacific                                           | 1001                | Santiaguillo                                          | 1.18                           |
| 22       | 111        | Northern Pacific                                           | 1003                | Guadiana Valley                                       | 1.11                           |
| 23       | IV         | Balsas                                                     | 1704                | Tepalcingo-Axochiapan                                 | 1.52                           |
| 24       | IV         | Balsas                                                     | 2101                | Tecamachalco Valley                                   | 1.78                           |
| 25       | VI         | Rio Bravo                                                  | 0507                | Monclova                                              | 3.60                           |
| 26       | VI         | Rio Bravo                                                  | 0510                | Saltillo-Ramos Arizpe                                 | 1.27                           |
| 27       | VI         | Rio Bravo                                                  | 0511                | Manzanera-Zapaliname Region                           | 1.26                           |
| 28       | VI         | Rio Bravo                                                  | 0801                | Ascension                                             | 1.45                           |
| 29       | VI         | Rio Bravo                                                  | 0803                | Baja Babicora                                         | 1.48                           |
| 30       | VI         | Rio Bravo                                                  | 0804                | Buenaventura                                          | 1.56                           |
| 31       | VI         | Rio Bravo                                                  | 0805                | Cuauhtemoc                                            | 1.66                           |
| 32       | VI         | Rio Bravo                                                  | 0806                | Casas Grandes                                         | 1.11                           |
| 33       | VI         | Rio Bravo                                                  | 0807                | El Sauz-Encinillas                                    | 1.11                           |
| 34       | VI         | Rio Bravo                                                  | 0821                | Flores Magon-Villa Ahumada                            | 1.13                           |
| 35       | VI         | Rio Bravo                                                  | 0830                | Chihuahua-Sacramento                                  | 1.90                           |
| 36       | VI         | Rio Bravo                                                  | 0831                | Meoqui-Delicias                                       | 1.56                           |
| 37       | VI         | Rio Bravo                                                  | 0832                | Jimenez-Camargo                                       | 1.43                           |
|          |            |                                                            |                     |                                                       |                                |
| 38       | VI         | Rio Bravo                                                  | 0835                | Tabaloapa-Aldama                                      | 1.19                           |
| 39       | VI         | Rio Bravo                                                  | 1908                | Campo Mina                                            | 1.47                           |
| 40       | VII        | Central Basins of the North<br>Central Basins of the North | 0509<br>0523        | La Paila<br>Principal-Lagunera Region                 | 2.79                           |
| 42       | VII        | Central Basins of the North                                | 1023                | Ceballos                                              | 1.65                           |
| 43       | VII        | Central Basins of the North                                | 1024                | Oriente Aguanaval                                     | 1.29                           |
| 44       | VII        | Central Basins of the North                                | 1026                | Vicente Suarez                                        | 4.85                           |
| 45       | VII        | Central Basins of the North                                | 1916                | Navidad-Potosi-Raices                                 | 1.47                           |
| 46<br>47 | VII<br>VII | Central Basins of the North<br>Central Basins of the North | 2401<br>2402        | Vanegas-Catorce<br>El Barril                          | 1.29                           |
| 47       | VII        | Central Basins of the North                                | 2402                | Salinas de Hidalgo                                    | 1.52                           |
| 49       | VII        | Central Basins of the North                                | 2407                | Cedral-Matehuala                                      | 1.24                           |
| 50       | VII        | Central Basins of the North                                | 2408                | Villa de Arista                                       | 1.55                           |
| 51       | VII        | Central Basins of the North                                | 2409                | Villa Hidalgo                                         | 1.30                           |
| 52       | VII        | Central Basins of the North<br>Central Basins of the North | 2411                | San Luis Potosi                                       | 1.45                           |
| 53<br>54 | VII        | Central Basins of the North                                | 2412<br>2413        | Jaral de Berrios-Villa de Reyes<br>Matehuala-Huizache | 1.61                           |
| 55       | VII        | Central Basins of the North                                | 3210                | Benito Juarez                                         | 1.14                           |
| 56       | VII        | Central Basins of the North                                | 3214                | Aguanaval                                             | 1.19                           |
| 57       | VII        | Central Basins of the North                                | 3215                | Abrego                                                | 1.11                           |
| 58       | VII        | Central Basins of the North                                | 3223                | Guadalupe de las Corrientes                           | 2.72                           |
| 59       | VII        | Central Basins of the North                                | 3224                | Puerto Madero                                         | 2.08                           |

| No. | Hyd  | rological-Administrative Region     | Code of the<br>aquifer | Hydrogeological unit<br>(aquifer) | Withdrawal / recharg<br>ratio |
|-----|------|-------------------------------------|------------------------|-----------------------------------|-------------------------------|
| 60  | VII  | Central Basins of the North         | 3225                   | Calera                            | 1.49                          |
| 61  | VII  | Central Basins of the North         | 3226                   | Chupaderos                        | 1.90                          |
| 62  | VII  | Central Basins of the North         | 3228                   | La Blanca                         | 1.44                          |
| 63  | VII  | Central Basins of the North         | 3229                   | Loreto                            | 1.55                          |
| 64  | VIII | Lerma-Santiago-Pacific              | 0101                   | Aguascalientes Valley             | 1.83                          |
| 65  | VIII | Lerma-Santiago-Pacific              | 0102                   | Chicalote Valley                  | 1.37                          |
| 66  | VIII | Lerma-Santiago-Pacific              | 0103                   | El Llano                          | 1.60                          |
| 67  | VIII | Lerma-Santiago-Pacific              | 0104                   | Venadero                          | 1.16                          |
| 68  | VIII | Lerma-Santiago-Pacific              | 0105                   | Calvillo Valley                   | 1.60                          |
| 69  | VIII | Lerma-Santiago-Pacific              | 0614                   | Ixtlahuacan Valley                | 1.33                          |
| 70  | VIII | Lerma-Santiago-Pacific              | 1104                   | Dry Lagoon                        | 3.10                          |
| 71  | VIII | Lerma-Santiago-Pacific              | 1106                   | Dr. Mora-San Jose Iturbide        | 1.81                          |
| 72  | VIII | Lerma-Santiago-Pacific              | 1107                   | San Miguel de Allende             | 1.78                          |
| 73  | VIII | Lerma-Santiago-Pacific              | 1108                   | Upper River Laja Basin            | 2.95                          |
| 74  | VIII | Lerma-Santiago-Pacific              | 1110                   | Silao-Romita                      | 1.50                          |
| 75  | VIII | Lerma-Santiago-Pacific              | 1111                   | La Muralla                        | 1.10                          |
| 76  | VIII | Lerma-Santiago-Pacific              | 1113                   | Leon Valley                       | 1.31                          |
| 77  | VIII | Lerma-Santiago-Pacific              | 1114                   | River Turbio                      | 1.35                          |
| 78  | VIII | Lerma-Santiago-Pacific              | 1115                   | Celaya Valley                     | 2.07                          |
| 79  | VIII | Lerma-Santiago-Pacific              | 1116                   | Valley of the Cuevita             | 1.44                          |
| 80  | VIII | Lerma-Santiago-Pacific              | 1117                   | Acambaro Valley                   | 1.19                          |
| 81  | VIII | Lerma-Santiago-Pacific              | 1118                   | Salvatierra-Acambaro              | 1.33                          |
| 8Z  | VIII | Lerma-Santiago-Pacific              | 1119                   | Irapuato-Valle                    | 1.12                          |
| 83  | VIII | Lerma-Santiago-Pacific              | 1120                   | Penjamo-Abasolo                   | 1.96                          |
| 84  | VIII | Lerma-Santiago-Pacific              | 1122                   | Prieta-Moroleon Marsh             | 1.68                          |
| 85  | VIII | Lerma-Santiago-Pacific              | 1408                   | La Barca                          | 1.26                          |
| 86  | VIII | Lerma-Santiago-Pacific              | 1422                   | Encarnacion                       | 1.15                          |
| 87  | VIII | Lerma-Santiago-Pacific              | 1501                   | Toluca Valley                     | 1.25                          |
| 88  | VIII | Lerma-Santiago-Pacific              | 1502                   | Ixtlahuaca-Atlacomulco            | 1.75                          |
| 89  | VIII | Lerma-Santiago-Pacific              | 1602                   | Morelia-Querendaro                | 1.41                          |
| 90  | VIII | Lerma-Santiago-Pacific              | 1605                   | Pastor Ortiz-La Piedad            | 1.19                          |
| 91  | VIII | Lerma-Santiago-Pacific              | 1609                   | Briseñas-Yurecuaro                | 1.27                          |
| 92  | VIII | Lerma-Santiago-Pacific              | 2201                   | Queretaro Valley                  | 1.57                          |
| 93  | VIII | Lerma-Santiago-Pacific              | 2202                   | Amazcala Valley                   | 1.18                          |
| 94  | VIII | Lerma-Santiago-Pacific              | 3211                   | Villanueva                        | 1.28                          |
| 95  | VIII | Lerma-Santiago-Pacific              | 3212                   | Ojocaliente                       | 1.41                          |
| 96  | IX   | Northern Gulf                       | 1317                   | Tulancingo Valley                 | 2.85                          |
| 97  | IX   | Northern Gulf                       | 2203                   | San Juan del Rio Valley           | 1.48                          |
| 98  | XIII | Waters of the Valley of Mexico      | 0901                   | Metropolitan Zone of Mexico City  | 1.82                          |
| 99  | XIII | ,<br>Waters of the Valley of Mexico | 1506                   | Chalco-Amecameca                  | 1.73                          |
| 100 | XIII | ,<br>Waters of the Valley of Mexico | 1507                   | Техсосо                           | 9.58                          |
| 101 | XIII | ,<br>Waters of the Valley of Mexico | 1508                   | Cuautitlan-Pachuca                | 2.38                          |

# Annex E. Characteristics of the Technical Groundwater Committees (COTAS)

In the following table, information is presented on the 78 Technical Groundwater Committees (COTAS) established nationwide, up to December 31<sup>st</sup>, 2007. From January to June 2008, no additional COTAS was set up.

| No.    | Code      | COTAS                                                                       | Date of establishment     | State               | Ну  | drological-Administrative<br>Region |
|--------|-----------|-----------------------------------------------------------------------------|---------------------------|---------------------|-----|-------------------------------------|
| 1      | 0101      | Comondu Technical Groundwater Committee<br>(Formerly Santo Domingo Valley)  | Apr 23 <sup>rd</sup> , 98 | Baja California Sur | I   | Baja California Peninsula           |
| Z      | 0102      | Los Planes Valley                                                           | Apr 24 <sup>th</sup> , 98 | Baja California Sur | 1   | Baja California Peninsula           |
| 3      | 0103      | La Paz-Carrizal Aquifer Technical Groundwater<br>Committee                  | Jul 07 <sup>th</sup> , 98 | Baja California Sur | I   | Baja California Peninsula           |
| 4      | 0104      | San Jose del Cabo                                                           | Oct 21 <sup>st</sup> , 98 | Baja California Sur | I   | Baja California Peninsula           |
| 5      | 0105      | Vizcaino Valley                                                             | Mar 18 <sup>th</sup> , 99 | Baja California Sur | - I | Baja California Peninsula           |
| 6      | 0106      | Todos Santos-El Pescadero Valley                                            | Mar 30 <sup>th</sup> , 00 | Baja California Sur | I   | Baja California Peninsula           |
| 7      | 0107      | Mulege Valley                                                               | Nov 29 <sup>th</sup> , 01 | Baja California Sur | I   | Baja California Peninsula           |
| 8      | 0201      | Camalu Aquifer                                                              | May 06 <sup>th</sup> , 99 | Baja California     | I.  | Baja California Peninsula           |
| 9      | 0202      | Colonia Vicente Guerrero Aquifer                                            | May 06 <sup>th</sup> ,99  | Baja California     | I   | Baja California Peninsula           |
| 10     | 0203      | San Quintin Aquifer                                                         | May 06 <sup>th</sup> , 99 | Baja California     | I   | Baja California Peninsula           |
| 11     | 0204      | San Simon Aquifer                                                           | May 06 <sup>th</sup> , 99 | Baja California     | I   | Baja California Peninsula           |
| 12     | 0205      | San Rafael COTAS                                                            | Aug 11 <sup>th</sup> , 99 | Baja California     | I   | Baja California Peninsula           |
| 13     | 0206      | San Telmo Aquifer                                                           | Aug 11 <sup>th</sup> , 99 | Baja California     | I   | Baja California Peninsula           |
| 14     | 0207      | San Vicente Aquifer COTAS                                                   | Aug 11 <sup>th</sup> , 99 | Baja California     | - I | Baja California Peninsula           |
| 15     | 0208      | Santo Tomas Aquifer                                                         | Aug 11 <sup>th</sup> , 99 | Baja California     | I.  | Baja California Peninsula           |
| 16     | 0209      | Technical Groundwater Committee of the<br>Maneadero Aquifer                 | Oct 28 <sup>th</sup> , 99 | Baja California     | Ι   | Baja California Peninsula           |
| 17     | 0210      | Technical Groundwater Committee of the<br>Guadalupe Valley                  | Oct 28 <sup>th</sup> , 99 | Baja California     | I   | Baja California Peninsula           |
| 18     | 0211      | Technical Groundwater Committee of the Ojos<br>Negros Aquifer               | Feb 07 <sup>th</sup> , 03 | Baja California     | I   | Baja California Peninsula           |
| 19     | 0212      | Trinidad Valley Water Technical Committee                                   | Feb 07 <sup>th</sup> , 03 | Baja California     | - I | Baja California Peninsula           |
| Baia C | alifornia | a Peninsula subtotal: 19 COTAS established                                  |                           |                     |     |                                     |
| 20     | 0301      | Zanjon Aquifer Technical Groundwater Committee                              | Apr 05 <sup>th</sup> , 01 | Sonora              | Ш   | Northwest                           |
| 21     | 0302      | San Miguel River Aquifer                                                    | Jun 03 <sup>rd</sup> , 01 | Sonora              | 11  | Northwest                           |
| 22     | 0303      | Technical Groundwater Committee of the Mesa<br>del Seri-La Victoria Aquifer | Jun 22 <sup>nd</sup> , 01 | Sonora              | 11  | Northwest                           |
| 23     | 0401      | Guerrero Yepomera Technical Groundwater<br>Committee                        | May 26 <sup>th</sup> , 06 | Chihuahua           | II  | Northwest                           |
| 24     | 0402      | Technical Groundwater Committee of the San<br>Jose de Guaymas Aquifer       | Aug 10 <sup>th</sup> , 07 | Sonora              | II  | Northwest                           |
| North  | west su   | btotal: 5 COTAS established                                                 |                           |                     |     |                                     |
| 25     | 0801      | Aquifer Vicente Guerrero-Poanas Technical<br>Groundwater Committee          | Apr 04 <sup>th</sup> , 03 | Durango             |     | Northern Pacific                    |
| 26     | 0802      | Canatlan Valley Aquifer Technical Groundwater<br>Committee                  | Apr 29 <sup>th</sup> , 03 | Durango             |     | Northern Pacific                    |
| 27     | 0803      | Guadiana Valley Aquifer Technical Groundwater<br>Committee                  | Oct 14 <sup>th</sup> , 03 | Durango             |     | Northern Pacific                    |
| 28     | 0804      | Aquifer 1005 Madero Victoria Technical<br>Groundwater Committee             | Jan 14 <sup>th</sup> , 05 | Durango             | 111 | Northern Pacific                    |

| No.CodeCOTASDate of<br>establishmentStateHydrological-Adminis<br>Region290805Santiaguillo Valley Technical Groundwater<br>committeeJan 18th, 05DurangoIIINorthern PacificNorthern Pacific Subtotal: 5 COTAS establishedInternational Groundwater300901Tecamachalco Aquifer Technical Groundwater<br>committeeJun 01sth, 01PueblaIVBalsas310902Huamantla-Libres-Oriental-Perote Aquifer<br>Technical Groundwater CommitteeJul 06th, 01Tlaxcala-Puebla-VeracruzIVBalsas320903Technical Water Committee of the Alto Atoyac<br>AquiferNov 07th, 01Puebla and TlaxcalaIVBalsasBalsasSubtotal: 1 COTAS establishedSubtotal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| NortherCommitteeCommitteeImage: Committee300901Tecamachalco Aquifer Technical Groundwater<br>CommitteeJun 01st, 01PueblaIVBalsas310902Huamantla-Libres-Oriental-Perote Aquifer<br>Technical Groundwater CommitteeJul 06th, 01Tlaxcala-Puebla-VeracruzIVBalsas320903Technical Groundwater CommitteeNov 07th, 01Puebla and TlaxcalaIVBalsas320903Technical Water Committee of the Alto Atoyac<br>AquiferNov 07th, 01Puebla and TlaxcalaIVBalsasBalsassubtotal: 1 COTAS establishedSoutherr Pacific subtotal: 1 COTAS establishedSoutherr Pacific subtotal: 1 COTAS establishedJul 04th, 02OaxacaVSoutherr PacificSoutherr Pacific subtotal: 1 COTAS establishedJul 04th, 02OaxacaVSoutherr PacificSubtotal: 1 COTAS establishedJul 04th, 02OaxacaVSoutherr PacificSubtotal: 1 COTAS establishedJul 04th, 02OaxacaVSoutherr PacificSubtotal: 1 COTAS establishedJul 201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05th, 01ChihuahuaVIRio BravoSubtotal: 1 201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeAug 30th, 02ChihuahuaVIRio BravoSubtotal: 1 202Cuauhte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rative    |  |
| 300901Tecamachalco Aquifer Technical Groundwater<br>CommitteeJun 01st, 01PueblaIVBalsas310902Huamantla-Libres-Oriental-Perote Aquifer<br>Technical Groundwater CommitteeJul 06th, 01Tlaxcala-Puebla-VeracruzIVBalsas320903Technical Water Committee of the Alto Atoyac<br>AquiferNov 07th, 01Puebla and TlaxcalaIVBalsasBalsas subtotal: 3 COTAS established331101Central Valley Technical Groundwater Committee<br>(Formerly Zimatlan Valley)Jul 04th, 02OaxacaVSouthern PacificSouther Pacific subtotal: 1 COTAS establishedVIRio Bravo341201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05th, 01ChihuahuaVIRio Bravo351202Cuauhtemoc Aquifer Technical Groundwater<br>Committee, ChihuahuaAug 30th, 02ChihuahuaVIRio Bravo361203Ascension Aquifer Technical GroundwaterSep 30th, 02ChihuahuaVIRio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |
| Image: CommitteeCommitteeImage: Committee310902Huamantla-Libres-Oriental-Perote Aquifer<br>Technical Groundwater CommitteeJul 06 <sup>th</sup> , 01Tlaxcala-Puebla-VeracruzIVBalsas320903Technical Water Committee of the Alto Atoyac<br>AquiferNov 07 <sup>th</sup> , 01Puebla and TlaxcalaIVBalsasBalsas: subcost: 3 COTAS establishedSubcost: 3 COTAS establishedSubcost: 3 COTAS establishedSubcost: 1 COTAS established <td cols<="" td=""><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <td></td> |  |
| Technical Groundwater CommitteeIndian of the Alto Atoyac<br>AquiferNov 07th, 01Puebla and TlaxcalaIVBalsasBalsas subtotal:3 COTAS establishedSouthern PacificSouthern Pacific331101Central Valley Technical Groundwater Committee<br>(Formerly Zimatlan Valley)Jul 04th, 02OaxacaVSouthern Pacific50utberr Pacific subtotal:1 COTAS establishedVSouthern PacificSouthern Pacific341201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05th, 01ChihuahuaVIRio Bravo351202Cuauhtemoc Aquifer Technical Groundwater<br>Committee, ChihuahuaAug 30th, 02ChihuahuaVIRio Bravo361203Ascension Aquifer Technical GroundwaterSep 30th, 02ChihuahuaVIRio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |
| AquiferAquiferInitial AquiferBalsas subcolSouthern Pacific331101Central Valley Technical Groundwater Committee<br>(Formerly Zimatlan Valley)Jul 04th, 02OaxacaVSouthern PacificSouthern Pacific Subtotal: 1 COTAS establishedSouthern Pacific Subtotal: 1 COTAS established341201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05th, 01ChihuahuaVIRio Bravo351202Guauhtemoc Aquifer Technical Groundwater<br>Committee, ChihuahuaAug 30th, 02ChihuahuaVIRio Bravo361203Ascension Aquifer Technical GroundwaterSep 30th, 02ChihuahuaVIRio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
| 331101Central Valley Technical Groundwater Committee<br>(Formerly Zimatlan Valley)Jul 04th, 02OaxacaVSouthern PacificSouthern Pacific subtotal: 1 COTAS established341201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05th, 01ChihuahuaVIRio Bravo351202Cuauhtemoc Aquifer Technical Groundwater<br>Committee, ChihuahuaAug 30th, 02ChihuahuaVIRio Bravo361203Ascension Aquifer Technical GroundwaterSep 30th, 02ChihuahuaVIRio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| Image: constraint of the second sec |           |  |
| 341201Jimenez-Camargo Aquifer Technical Groundwater<br>CommitteeDec 05 <sup>th</sup> , 01ChihuahuaVIRio Bravo351202Cuauhtemoc Aquifer Technical Groundwater<br>Committee, ChihuahuaAug 30 <sup>th</sup> , 02ChihuahuaVIRio Bravo361203Ascension Aquifer Technical GroundwaterSep 30 <sup>th</sup> , 02ChihuahuaVIRio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |
| Committee     Committee       35     1202     Cuauhtemoc Aquifer Technical Groundwater<br>Committee, Chihuahua     Aug 30 <sup>th</sup> , 02     Chihuahua     VI     Rio Bravo       36     1203     Ascension Aquifer Technical Groundwater     Sep 30 <sup>th</sup> , 02     Chihuahua     VI     Rio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
| Committee, Chihuahua     Sep 30 <sup>th</sup> , 02     Chihuahua       36     1203     Ascension Aquifer Technical Groundwater     Sep 30 <sup>th</sup> , 02     Chihuahua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |
| 37     1204     Casas Grandes Aquifer Technical Groundwater     Nov 08 <sup>th</sup> , 02     Chihuahua     VI     Rio Bravo       Committee, Chihuahua     Kino Bravo     Kino Bravo     Kino Bravo     Kino Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |
| 38     1205     Janos Aquifer Technical Groundwater Committee     Nov 15 <sup>th</sup> , 02     Chihuahua     VI     Rio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
| 39     1206     Cañon del Derramadero Aquifer Technical     May 30 <sup>th</sup> , 02     Coahuila de Zaragoza     VI     Rio Bravo       Groundwater Committee     Kana Santa Sant                                                                            |           |  |
| 40 1207 Buenaventura Aquifer Technical Groundwater Dec 05 <sup>th</sup> , 03 Chihuahua VI Rio Bravo<br>Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |
| 41     1208     Baja Babicora Aquifer Technical Groundwater     Dec 06 <sup>th</sup> , 03     Chihuahua     VI     Rio Bravo       Committee     Committee     Committee     Committee     Committee     Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |  |
| 42 1209 Tarabillas Valley Aquifer Technical Groundwater Dec 03 <sup>rd</sup> , 03 Chihuahua VI Rio Bravo<br>Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |  |
| 43     1210     Cuatrocienega-Ocampo Aquifer Technical     Mar 28 <sup>th</sup> , 07     Coahuila de Zaragoza     VI     Rio Bravo       Groundwater Committee     Kin 28 <sup>th</sup> , 07     Coahuila de Zaragoza     VI     Rio Bravo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |
| Rio Bravo subtotal: 10 COTAS established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |
| 44       1301       Technical Groundwater Committee of the Main       Sep 05 <sup>th</sup> , 00       Coahuila de Zaragoza -       VII       Central Basins of the         Aquifer of the Comarca Lagunera       Durango       VII       Central Basins of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
| 45 1302 Aguanaval Aquifer Technical Groundwater Nov 24 <sup>th</sup> , 00 Zacatecas VII Central Basins of th Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| 46 1303 Cepeda-Sauceda General Aquifer May 30 <sup>th</sup> , 02 Coahuila de Zaragoza - VII Central Basins of th<br>Durango                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |
| 47       1401       Cedral-Matehuala Aquifer Technical Groundwater       Sep 20 <sup>th</sup> , 00       San Luis Potosi       VII       Central Basins of th         Committee       Committee       Committee       Committee       Committee       Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |
| 48       1402       El Barril Aquifer Technical Groundwater Committee,<br>in the State of San Luis Potosi       Sep 20 <sup>th</sup> , 00       San Luis Potosi       VII       Central Basins of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |  |
| 49     1403     San Luis Potosi Valley Aquifer Technical     Sep 20 <sup>th</sup> ,00     San Luis Potosi     VII     Central Basins of th       Groundwater Committee     Groundwater Committee     Groundwater Committee     Groundwater Committee     Groundwater Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
| 50     1404     Arista Valley Aquifer Technical Water Committee     Sep 20 <sup>th</sup> ,00     San Luis Potosi     VII     Central Basins of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North     |  |
| 51       1405       Calera Aquifer Technical Groundwater Committee       Nov 24 <sup>th</sup> , 00       Zacatecas       VII       Central Basins of the second                                                           |           |  |
| 52     1406     Chupaderos Aquifer Technical Groundwater     Nov 24 <sup>th</sup> , 00     Zacatecas and San Luis     VII     Central Basins of th       Committee     Potosi     Potosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North     |  |
| Central Basins of the North subtotal: 9 COTAS established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |

| No.                                                                                          | Code    | COTAS                                                                              | Date of establishment     | State                                | Нус  | drological-Administrative<br>Region |
|----------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------|---------------------------|--------------------------------------|------|-------------------------------------|
| 53                                                                                           | 1501    | Celaya Technical Water Council                                                     | Nov 28 <sup>th</sup> , 97 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 54                                                                                           | 1502    | Dry Lagoon Technical Water Council                                                 | Nov 28 <sup>th</sup> , 97 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 55                                                                                           | 1503    | Queretaro Valley Aquifer Technical Groundwater<br>Committee                        | Feb 20 <sup>th</sup> , 98 | Queretaro Arteaga                    | VIII | Lerma-Santiago-Pacific              |
| 56                                                                                           | 1504    | Amazcala Aquifer Technical Groundwater<br>Committee                                | Sep 25 <sup>th</sup> , 98 | Queretaro Arteaga                    | VIII | Lerma-Santiago-Pacific              |
| 57                                                                                           | 1505    | Leon Technical Water Council                                                       | Oct 01 <sup>st</sup> , 98 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 58                                                                                           | 1506    | Silao-Romita Technical Water Council                                               | Oct 01 <sup>st</sup> , 98 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 59                                                                                           | 1507    | Irapuato-Santiago Valley Technical Water Council                                   | Nov 06 <sup>th</sup> , 98 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 60                                                                                           | 1508    | Penjamo-Abasolo Technical Water Council                                            | Nov 06 <sup>th</sup> , 98 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 61                                                                                           | 1509    | Huimilpan Aquifer Technical Groundwater<br>Committee                               | Dec 10 <sup>th</sup> , 98 | Queretaro Arteaga                    | VIII | Lerma-Santiago-Pacific              |
| 62                                                                                           | 1510    | Salvatierra-La Cuevita Technical Water Council                                     | Jan 07 <sup>th</sup> , 99 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 63                                                                                           | 1511    | River Turbio Technical Water Council                                               | Jun 01 <sup>st</sup> , 99 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 64                                                                                           | 1512    | Acambaro-Cuitzeo Technical Water Council                                           | Aug 25 <sup>th</sup> , 99 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 65                                                                                           | 1513    | Moroleon-Cienega Prieta Technical Water Council                                    | Aug 31 <sup>st</sup> , 99 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 66                                                                                           | 1514    | River Laja Technical Groundwater Council                                           | Oct 01 <sup>st</sup> , 99 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| 67                                                                                           | 1515    | Toluca Valley Aquifer Technical Groundwater<br>Committee                           | Jul 30 <sup>th</sup> , 03 | State of Mexico                      | VIII | Lerma-Santiago-Pacific              |
| 68                                                                                           | 1601    | Ojocaliente Interstate Aguascalientes Encarnacion<br>Groundwater Committee Aquifer | Apr 18 <sup>th</sup> , 00 | Aguascalientes-Jalisco-<br>Zacatecas | VIII | Lerma-Santiago-Pacific              |
| 69                                                                                           | 1602    | Ocampo Technical Groundwater Council                                               | Feb 17 <sup>th</sup> , 06 | Guanajuato                           | VIII | Lerma-Santiago-Pacific              |
| Lerma                                                                                        | -Santia | go-Pacific subtotal: 17 COTAS established                                          |                           |                                      |      |                                     |
| 70                                                                                           | 1901    | Jaral de Berrios-Villa de Reyes Interstate Aquifer<br>Technical Water Committee    | Nov 23 <sup>th</sup> , 99 | Guanajuato- San Luis<br>Potosi       | IX   | Northern Gulf                       |
| 71                                                                                           | 1902    | Huichapan-Tecozautla-Nopala Aquifer Technical<br>Groundwater Committee             | Sep 12 <sup>th</sup> , 00 | Hidalgo                              | IX   | Northern Gulf                       |
| 72                                                                                           | 1903    | Tulancingo Valley Aquifer Technical Groundwater<br>Committee                       | Jul 25 <sup>th</sup> , 02 | Hidalgo                              | IX   | Northern Gulf                       |
| 73                                                                                           | 1904    | Rioverde Aquifer Technical Groundwater<br>Committee                                | Oct 08 <sup>th</sup> , 04 | San Luis Potosi                      | IX   | Northern Gulf                       |
| 74                                                                                           | 1905    | Valle de San Juan del Rio Aquifer Technical<br>Groundwater Committee               | Oct 21 <sup>st</sup> ,04  | Queretaro Arteaga                    | IX   | Northern Gulf                       |
| 75                                                                                           | 1906    | Sierra Gorda Technical Water Council                                               | Oct 14 <sup>th</sup> , 05 | Guanajuato                           | IX   | Northern Gulf                       |
| Northern Gulf subtotal: 6 COTAS established                                                  |         |                                                                                    |                           |                                      |      |                                     |
| 76                                                                                           | 2101    |                                                                                    | Jul 17 <sup>th</sup> , 01 | Puebla                               | Х    | Central Gulf                        |
| 77                                                                                           | 2102    | Los Naranjos Aquifer Technical Groundwater<br>Committee                            | Jun 23 <sup>th</sup> , 06 | Veracruz de Ignacio de<br>la Llave   | Х    | Central Gulf                        |
| Central Gulf subtotal: 2 COTAS established                                                   |         |                                                                                    |                           |                                      |      |                                     |
|                                                                                              | 2601    | Cuautitlan-Pachuca Aquifer Technical<br>Groundwater Committee                      | Nov 24 <sup>th</sup> , 06 | State of Mexico, Hidalgo             | XIII | Waters of the Valley of<br>Mexico   |
| Valley of Mexico subtotal: 1 COTAS established                                               |         |                                                                                    |                           |                                      |      |                                     |
| Total: 78 COTAS established                                                                  |         |                                                                                    |                           |                                      |      |                                     |
| SOURCE: CONAGUA. General Coordination for Attention to Emergencies and River Basin Councils. |         |                                                                                    |                           |                                      |      |                                     |

# Annex F. Bibliography for the production of Statistics on Water in Mexico 2008

#### Chapter 1

CONAGUA, Analysis of the Water Information in the Censuses from 1990 to 2005. 2007.

CONEVAL. Poverty Maps in Mexico. 2007.

Elbers, C, J. Lanjouw and P. Lanjouw, Micro-Level Estimation of Poverty and Inequality. 2003.

International Monetary Fund, World Economic Outlook, United States of America, 2008.

INEGI, Economic Censuses 2006, INEGI, Mexico 2007.

INEGI, Census of Population and Housing. Information published in various formats.

INEGI, Municipal Geostatistical Framework 3.1.1., Mexico 2008.

INEGI. System of Economic and Ecological Accounts in Mexico 1999-2004. 2006.

SEDESOL, CONAPO and INEGI. Limits of the Metropolitan Zones in Mexico 2005. Mexico 2007.

SEGOB-Official Government Gazette, Territorial Constituency of the River Basin Organizations of the National Water Commission, Mexico, December 12<sup>th</sup>, 2007.

# Chapter 2

CONAPO, Population Projections in Mexico 2005-2050, Mexico 2007.

National Weather Service of the United States of America.

www.nhc.noaa.gov/aboutsshs.shtml. June 2007.

SEMARNAT, CONAGUA, PROFEPA, SEMAR, SECTUR and COFE-PRIS, Clean Beach Program. Mexico 2007.

INEGI-INE-CONAGUA 2007. Map of the Mexico's Catchments scale 1:250 000. Digital Cartography. Mexico, 2007.

#### Chapter 3

CFE, www.cfe.gob.mx/es/LaEmpresa/igenerecionelectricidad. Mexico 2008.

CONAGUA, Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube. 2008.

INEGI, II Census of Capture, Treatment and Water Supply. Mexico 2004.

IUCN, IWMI, RAMSAR, WRI, Water Resources, Watersheds of the World: Global Maps, 2007.

#### Chapter 4

CONAGUA, Analysis of the Water Information in the Censuses from 1990 to 2005. 2007.

CONAGUA, Portable Information Cubes. 2008, Population, Housing and Water, Uses of Water and Hypercube. 2008.

CONAGUA, Agricultural Statistics of the Irrigation Districts, Agricultural Year 2005-2006, Mexico 2007.

CONAGUA, Statistics on Water 2007, Region XIII, Waters of the Valley of Mexico. Waters of the Valley of Mexico River Basin Organization. Mexico 2007.

CONAGUA, National Inventory of Municipal Drinking Water and Wastewater Treatment Plants in Operation, 2007.

INEGI, Census of Population and Housing. Information published in various formats.

SEGOB, Official Government Gazette.- National Water Law.-December 1<sup>st</sup>, 1992- Revised on April 29<sup>th</sup>, 2004.

#### **Chapter 5**

CONAGUA, Federal Duties Law 2008. Dispositions Applicable for the Nation's Waters, Mexico 2008.

CONAGUA, Official Mexican Standards, Mexico 2006.

CONAGUA, National Water Program 2007-2012, Mexico 2008 CONAGUA, Situation of the Drinking Water, Sewerage and Sanitation Sub-sector. 2007 Edition, Mexico 2007.

Official Gazette of the Federal District, Financial Codes of the DF, 2007 and 2008, Published on December 30th, 2006 and December 27<sup>th</sup>, 2007.

INEGI, II Census of Capture, Treatment and Water Supply. Mexico 2004.

SEGOB, Official Government Gazette.- National Water Law.-December 1<sup>st</sup>, 1992- Revised on April 29<sup>th</sup>, 2004.

#### Chapter 6

INEGI, Charter for Use of Soil and Vegetation, Series III, Mexico 2003.

SEMARNAT, Geographic Atlas of the Environment and Natural Resources, Mexico 2006.

SEMARNAT, Compendium of Environmental Statistics 2006, Mexico 2006.

SEMARNAT, Report on the Environment in Mexico, Compendium of Environmental Statistics 2005, Mexico 2005.

#### Chapter 7

CONAGUA, National Water Program 2007-2012, Mexico 2007. CONAGUA, National Water Program 2007-2012, This is how we're doing... Progress 2007 and Targets for 2008, Mexico 2007. CONAPO, Population Projections in Mexico 2005-2050, Mexico 2007.

INEGI, II Census of Population and Housing 2005. Mexico 2006. Office of the President of Mexico, National Development Plan 2007-2012, Mexico 2007.

Office of the President of Mexico, 2030 Vision, The Mexico that we want, Mexico 2007.

SEDESOL, CONAPO and INEGI. Limits of the Metropolitan Zones in Mexico 2005. Mexico 2006.

SEMARNAT, National Environment and Natural Resources Program 2007-2012, Mexico 2008.

#### **Chapter 8**

Clarke, Robin and King, Jannet, The Water Atlas, United States of America, 2004.

CONAPO, Population Projections in Mexico 2005-2050. Mexico 2007.

FAO, Information System on Water and Agriculture, Aquastat. www. fao.org/AG/AGL/aglw/aquastat/main/index.stml. June 2008. Global Water Intelligence. 2007.

Hoekstra, Arjen Y., Globalization of Water: Sharing the Planet's Freshwater Resources. 2008.

ICOLD, World Register of Dams. France, 2003.

International Monetary Fund. World Economic Outlook. Housing and the Business Cycle. 2008.

WMO, UNDP, IPCC. Climate Change 2007. Synthesis Report. 2008.

SEDESOL, CONAPO and INEGI. Limits of the Metropolitan Zones in Mexico 2005. Mexico 2006.

UNESCO-WWAP, Water, a Shared Responsibility. 2<sup>nd</sup> World Water Development Report, UNESCO-WWAP and Berghahns Books, France, 2006.

WHO, UNICEF, Joint Monitoring Programme for Water Supply and Sanitation, Switzerland, 2006.

WHO, UNICEF. Safer water, better health. Costs, benefits and sustainability of interventions to protect and promote health. 2008.

World Climate. www.worldclimate.com. June 2008.

World Commission on Dams. Dams and Development: A New Framework for Decision-making, Annex V, South Africa, 2000. World Population Prospects. The 2007 Revision. 2008.

| Annex G. Glossary                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agricultural use                                   | For the purpose of this document, this concept includes the agricultural use, for livestock and aquaculture, according to the definitions of the National Water Law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aquifer                                            | Any geological formation or group of hydraulically connected geological formations, through which subsoil waters flow or are stored that may be withdrawn for use and whose lateral and vertical limits are conventionally defined for the purpose of evaluation, management and administration of the nation's subsoil waters. NWL Article 3 Section II. The country has been divided into 653 aquifers of hydrogeological units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Blue water                                         | The quantity of water withdrawn from the country's rivers, lakes, streams and aquifers for various uses, both offstream and instream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Catchment / River basin<br>("cuenca hidrografica") | A natural unit defined by the existence of a division of waters in any given territory. Catchments are morphological surface units. Their limits are established by the main geographical division of the waters from precipitation; also known as "water-divide". Their limits are established by the main geographical division of rainwater, also known as the "water-divide". The water-divide, theoretically, is an imaginary line that unites the highest relative points between two adjacent but opposite facing slopes; from the highest part of the catchment to its exit point, in the hypsometrically lowest point. In Mexico, 1 471 catchments have been identified (INEGI-INECONAGUA. Map of Mexico's Catchments scale 1:250 000. Digital Cartography). Throughout this document, the terms "catchment" and "river basin" are used as synonyms, to translate the Spanish term "cuenca hidrografica". |
| Climate station                                    | A given area of open-air ground, representative of the area's particular climate, intended to measure the climatological parameters. Equipped with tools and sensors exposed to the air, for the measurement of precipitation, temperature, evaporation, wind direction and speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Concession                                         | A deed granted by the Federal Executive Branch, through the CONAGUA or the corresponding River Basin<br>Organization, according to their respective areas of competence, in order to carry out the use of the nation's<br>waters, and of their inherent state property, to public and private individuals or organizations, except for allocation<br>deeds. NWL Article 3 Section XIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Discharge                                          | The action of pouring, infiltrating, depositing or infusing wastewater into a receiver body. NWL Article 3 Section XXII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Discharge permits                                  | Deeds granted by the Federal Executive Branch through the CONAGUA or the corresponding River Basin<br>Organization, in accordance with their respective areas of competence, for the discharge of wastewater into<br>national receiver bodies, granted to private or public individuals or organizations. NWL Article 3 Section XL b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drinking water coverage                            | Percentage of the population living in private homes who have running water within the home or on the lot or who<br>have access to a public water tap or hydrant. This information is determined by means of censuses conducted by<br>the INEGI and estimates from the CONAGUA for intermediate years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Drinking Water and Sanitation<br>System            | A series of works and actions that allow the provision of public drinking water and sanitation services, including sewerage, meaning the piping, treatment, removal and discharge of wastewater. NWL Article 3 Section L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Environmental Services                             | The benefits of social interest generated or derived from watersheds and their components, such as climate regulation, conservation of hydrological cycles, erosion control, flood control, aquifer recharge, maintenance of runoff in quality and quantity, soil formation, carbon catchment, water body purification, as well as the conservation and protection of biodiversity. For the application of this concept in the 2004 National Water Law, water resources and their link with forest resources are mainly considered. NWL- Article 3 Section XLIX.                                                                                                                                                                                                                                                                                                                                                   |
| Exploitation                                       | Application of water for activities with the aim of withdrawing dissolved chemical or organic elements from it, after which it is returned to its original source without significant consumption.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Green water                                        | The quantity of water that is part of the soil humidity and that is used for rainfed crops and general vegetation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Groundwater                                        | Water that completely permeates the leeks or cracks in the subsoil. It is therefore the water that constitutes the permeated zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hydrological-Administrative<br>Region              | A territorial area defined according to hydrological criteria, made up of one or several hydrological regions, in which<br>the watershed is considered as the basic unit for water resources management and the municipality represents, as<br>is the case in other legal tools, the minimal administrative unit for the country. NWL Article 3 Section XVI b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hydrological region                                | A territorial area comprised according to its morphological, orographical and hydrological features, in which the watershed is considered as the basic unit for water management, the aim of which is to group together and systematize the information, analysis, diagnosis, programs and actions as regards the occurrence of water in quantity and quality, as well as its use. A hydrological region is normally made up of one or several watersheds. The limits of the hydrological region are therefore in general different from the political division by States, Federal District and municipalities. One or several hydrological regions make up a Hydrological-Administrative Region. NWL Article 3 Section XVIA.                                                                                                                                                                                      |

| Irrigation area                           | An area entitled to irrigation services.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Irrigation Districts                      | Geographical areas where irrigation services are provided by means of hydro-agricultural infrastructure works such as reservoirs, direct diversions, pumping plants, wells, canals, and paths, among others.                                                                                                                                                                                                                                                                                                                         |  |  |
| Irrigation lamina                         | The quantity of water, measured in longitudinal units, that is applied to a crop growth so that it may meet its physiological needs during the entire growth cycle, in addition to soil evaporation (offstream use = evaporation + water in plant tissues).                                                                                                                                                                                                                                                                          |  |  |
| Irrigation Unit                           | An agricultural area with irrigation infrastructure and systems, different from an irrigation district and commonly of a lesser area than the latter; it may be made up of user associations or other organized groups of producers who are freely gathered together to provide irrigation services with autonomous management systems and to operate the hydraulic infrastructure works to catch, divert, pipe, regulate, distribute and remove the nation's waters destined for agricultural irrigation. NWL Article 3 Section LI. |  |  |
| Lake, lagoon or marsh vessel              | The natural tank of the nation's waters bordered by the crest of the maximum ordinary crescent. NWL Article 3 Section LXI.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Large dams                                | Dams whose height above the riverbed is greater than 15 m or which have a height of between 10 and 15 m, wit a crest length of over 500 m or when the capacity of the reservoir formed by the dam is not less than 1 million cubic meters of maximum extraordinary water. Definition from the International Commission on Large Dams (ICOLD).                                                                                                                                                                                        |  |  |
| Locality                                  | A place occupied by one or more homes, which may or may not be occupied; this place is recognized either by law<br>or custom. According to their characteristics and for statistical purposes, they are classified as either urban or rura                                                                                                                                                                                                                                                                                           |  |  |
| Main tailing dam                          | One of the systems for the final disposal of solid waste generated through minerals, which should comply with conditions of maximum security, in order to guarantee the protection of the population, economic and social activities, and in general, the ecological balance.                                                                                                                                                                                                                                                        |  |  |
| Marsh                                     | Low marshy ground, that is usually filled by rainwater or overflows from a stream, a nearby lagoon or the sea.<br>NWL Article 3 Section XXVI.                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Mean annual groundwater<br>availability   | The annual mean volume of groundwater that can be allocated to be withdrawn from a hydrogeological unit or aquifer for various uses, in addition to the withdrawal already allocated and to the natural committed discharge, without placing the balance of the ecosystem in danger. NWL Article 3 Section XXIV.                                                                                                                                                                                                                     |  |  |
| Mean annual precipitation                 | The precipitation calculated over any period of at least ten years, starting on January 1st of the first year and ending on December 31st of the final one.                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Mean annual surface water<br>availability | The difference calculated between the annual mean volume of downstream runoff of a basin or watershed and the current annual mean committed volume downstream. NWL Article 3 Section XXIII.                                                                                                                                                                                                                                                                                                                                          |  |  |
| Mean aquifer recharge                     | The annual mean water volume that enters an aquifer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Mean natural availability                 | Total volume of renewable surface water and groundwater that naturally occurs in a region.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Mean natural surface runoff               | The part of mean historical precipitation that occurs in the form of flows into a watercourse.                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Meteorological station                    | A given area of open-air ground, intended to measure the surface meteorological parameters. Equipped with tools to measure precipitation, temperature, wind direction and speed, relative humidity, atmospheric pressure and sola radiation.                                                                                                                                                                                                                                                                                         |  |  |
| Nation's waters                           | Waters that are the property of the nation, according to the terms of paragraph 5 of article 27 of the Political Constitution of the United Mexican States. NWL Article 3 Section I.                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Normal precipitation                      | The precipitation measured for a uniform and relatively long period, which must contain at least 30 years of information, which is considered as a minimal representative climatological period. It must start on January 1st of year ending in one and finishing on December 31st of a year ending in zero.                                                                                                                                                                                                                         |  |  |
| Offstream use                             | The volume of water of a specific quality consumed when carrying out a given activity, which is determined as the difference between the volume of a specific quality that is withdrawn, minus the volume also of specific quality that is discharged, which is indicated in the respective deed. NWL Article 3 Section LV.                                                                                                                                                                                                          |  |  |

| Overexploited aquifer                                                                                                                                                                                                                                                                                                                                                                                                  | Any aquifer in which the groundwater withdrawal is greater than the volume of mean annual recharge, in such<br>a way that the persistence of this condition for long periods of time brings about one or several of the following<br>environmental impacts: exhaustion or disappearance of springs, lakes, wetlands; decrease or disappearance of<br>the base flow in rivers; undefined subsidence in the level of groundwater; formation of cracks; differential ground<br>settlements; salt-water intrusion in coastal aquifers; bad-quality water migration. These impacts can cause<br>economic losses to the users and to society. |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Particular discharge conditions                                                                                                                                                                                                                                                                                                                                                                                        | The series of physical, chemical and biological parameters, and of their maximum permitted levels in wastewater discharges, determined by the CONAGUA or by the corresponding River Basin Organization, according to their respective areas of competence, for each user, for a specific use or user groups of a specific receiver body, with the purpose of conserving and controlling the quality of the waters, in accordance with the 2004 National Water Law and the By-Laws derived from that Law. NWL Article 3 Section XIV.                                                                                                     |  |  |
| Perennial crops                                                                                                                                                                                                                                                                                                                                                                                                        | Crops whose growth cycle is more than one year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Permits                                                                                                                                                                                                                                                                                                                                                                                                                | Permits granted by the Federal Executive Branch through the CONAGUA or the corresponding River Basin Organization, in accordance with their respective areas of competence, for the use of the nation's waters, as well for the construction of hydraulic works and others of diverse origins related with water and government property referred to in Article 113 of the 2004 National Water Law. These permits are provisional in the case of the use of the nation's waters from the period in which the deeds are issued. NWL Article 3 Section XL a.                                                                              |  |  |
| Physical irrigated area                                                                                                                                                                                                                                                                                                                                                                                                | An area that receives at least a watering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Population center                                                                                                                                                                                                                                                                                                                                                                                                      | A group of one or more municipalities in which the population is concentrated mainly in urban localities. The<br>Metropolitan Zones are considered population centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Productivity of water in<br>Irrigation Districts                                                                                                                                                                                                                                                                                                                                                                       | The quantity of agricultural produce of all crops of the Irrigation Districts to which irrigation was applied, divided by the quantity of water applied to them. It is expressed in kg/m <sup>3</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Prohibition zone Those specific areas of hydrological regions, river basins or aquifers, in which no additional use of wa<br>authorized, other than those legally established, which are controlled through specific rules, owing t<br>deterioration in water quantity or quality, through the affectation to hydrological sustainability, or t<br>damage to surface or groundwater bodies. NWL Article 3 Section LXV. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Protection zone                                                                                                                                                                                                                                                                                                                                                                                                        | The strip of land immediately around dams, hydraulic structures and other hydraulic infrastructure and connected installations, when these works are the property of the nation, in the extension defined in each case by the CONAGUA or the corresponding River Basin Organization, in accordance with their respective areas of competence, for their protection and appropriate operation, conservation and observation. NWL Article 3 Section LXII.                                                                                                                                                                                 |  |  |
| Public Registry of Water Duties<br>(REPDA)                                                                                                                                                                                                                                                                                                                                                                             | A Registry that provides information and legal security to the users of the nation's waters and inherent properties through the registration of the concession and allocation deeds and discharge permits, as well as the modification made to the characteristics of the latter.                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Receiver body                                                                                                                                                                                                                                                                                                                                                                                                          | The current or natural water tank, dam, irrigation channel, salt-water zone or government property into which wastewater is discharged, as well as the grounds into which this water filters or infuses, when it can pollute soils, subsoils or aquifers. NWL Article 3 Section XVII.                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Regulated zone                                                                                                                                                                                                                                                                                                                                                                                                         | Those specific areas of aquifers, watersheds, or hydrological regions, which by their characteristics of deterioratio hydrological imbalance, risks or damage to water bodies or to the environment, fragility of the vital ecosystems, overexploitation, as well as for their reorganization and recovery, require specific water management to guarantee hydrological sustainability. NWL Article 3 Section LXIII.                                                                                                                                                                                                                    |  |  |
| Reserve zone                                                                                                                                                                                                                                                                                                                                                                                                           | Those specific areas of aquifers, rivers basins, or hydrological regions, in which use limits are established for a portion or all of the water available, with the aim of providing a public service, introducing a recovery, conservation or preservation program, or when the state resolves to use said waters for the public good. NWL Article 3 Section LXIV.                                                                                                                                                                                                                                                                     |  |  |
| Reuse                                                                                                                                                                                                                                                                                                                                                                                                                  | The use of wastewater with or without prior treatment. NWL Article 3 Section XLVI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| River                                                                                                                                                                                                                                                                                                                                                                                                                  | A stream of natural water, perennial or intermittent, that flows into other currents, into a natural or artificial reservoir, or the sea. NWL Article 3 Section XLVIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| River Basin Commission                                                                                                                                                                                                                                                                                                                                                                                                 | Collegiate entities of mixed membership, not subordinate to the CONAGUA or the River Basin Organizations. An auxiliary organization of the River Basin Councils at the sub-basin level. NWL Article 13 BIS 1.                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

| River Basin Council                         | Collegiate entities of mixed membership, an instrument for coordination and consultation, support, consultation<br>and advice, between the "Commission", including the corresponding River Basin Organization, and the agencies<br>and entities at federal, state and municipal levels, and representatives of water users' associations and organized<br>society, of the respective watershed or hydrological region. NWLArticle 3 Section XV. Their purpose is to design<br>and carry out programs and actions geared to improving water management, develop hydraulic infrastructure and<br>related services, and preserve the river basin's resources. NWL Article 13. |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| River Basin Organization                    | A specialized technical, administrative and legal unit, autonomous in nature, directly appointed by the head of the CONAGUA, whose attributions are established in the 2004 National Water Law and its By-Laws, and whose specific resources and budget are determined by the CONAGUA. NWL Article 3 Section XXXIX. Formerly known as Regional Departments.                                                                                                                                                                                                                                                                                                                |
| Rural locality                              | A locality with a population of less than 2 500 inhabitants, which is not a municipal seat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Salt-water intrusion                        | A phenomenon in which salt-water enters the subsoil towards the inner land mass, causing groundwater salinization. This occurs when the withdrawal of water causes groundwater levels to be lower than the level of seawater, thus altering the dynamic natural balance between the seawater and freshwater.                                                                                                                                                                                                                                                                                                                                                               |
| Sanitation coverage                         | Percentage of the population living in private housing connected to the public sanitation network or a septic tank, a river, lake or sea, overflow, ravine, crevice. This information is determined through the Censuses carried out by INEGI and estimates from the CONAGUA for intermediate years.                                                                                                                                                                                                                                                                                                                                                                       |
| Streambed                                   | The natural or artificial channel with the necessary capacity for waters of the maximum ordinary crescent to run off<br>without overflowing. When streams overflow, the natural channel is considered as an irrigation channel, while no<br>channel work is built; at the origin of any current, it is considered as an irrigation channel in the strict sense, when<br>the runoff is concentrated towards a topographic depression and forms a channel, as a result of the action of the<br>water flowing over the ground. NWL Article 3 Section XI.                                                                                                                      |
| Sustainable development                     | As regards water resources, this is the process which is analyzable through water, economic, social and environmental criteria and indicators, which aims to improve the standard of living and the productivity of its people, based on the necessary measures for the preservation of hydrological balance, the use and protection of water resources, in such a way that future generations' water needs are not compromised.                                                                                                                                                                                                                                           |
| Technical Groundwater<br>Committees (COTAS) | Collegiate entities of mixed membership, not subordinate to the CONAGUA or to the River Basin Organizations.<br>They develop their activities in relation with a specific aquifer or group of aquifers – as deemed necessary. NWL<br>Article 13 BIS 1.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Technified Rainfed District                 | Geographical areas, normally intended for agricultural activities lacking irrigation infrastructure, in which, through<br>the use of certain techniques and works, the damage on production caused by periods of strong rain in zones<br>with abundant, prolonged rainfall is mitigated – also known as drainage districts – or in conditions of scarcity, rain<br>and humidity are used with greater efficiency in agricultural grounds. The technified rainfed district is made up of<br>rainfed units. NWL Article 3 Section XXV b.                                                                                                                                     |
| Total capacity of a dam                     | Volume of water that a dam can store at the Normal Pool Elevation (NAMO in Spanish).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Urban locality                              | A locality with a population equal to or more than 2 500 inhabitants or a municipal seat, regardless of the number of inhabitants it has according to the last census.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Use for public supply                       | For the purpose of this document, this concept is the volume of water employed for public urban and domestic uses, according to the definitions of the National Water Law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Use for self-supplying industry             | For the purpose of this document, this concept is the volume of water employed for industrial, agro-industrial, service and commercial uses, according to the definitions of the National Water Law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Virtual water                               | The sum of the quantity of water employed in the productive process for the elaboration of a product.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Wastewater                                  | Waters of varied composition coming from discharges from public urban, domestic, industrial, commercial, service, agricultural, livestock, from treatment plants and in general from any other use, as well as any combination of them. NWL Article 3 Section VI.                                                                                                                                                                                                                                                                                                                                                                                                          |
| Water footprint                             | The sum of the quantity of water used by each person for their different activities and which is necessary to produce the goods and services that he or she consumes. Includes both blue and green water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water stress                                | A percentage indicator of the stress placed on water resources, calculated by the quotient between the total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Annex G. Glossary                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Watershed<br>("cuenca hidrologica") | A territorial unit, differentiated from other units, normally bordered on one side by waters or dividing waters – the polygonal line formed by the most elevated points in said unit – in which water occurs in various forms, and is stored or flows to an exit point that may be the sea or an inner receiver body, through a hydrographic network of irrigation channels that come together into one main channel, or the territory in which waters form an autonomous unit or differentiated from others, even without them pouring out into the sea. In this space surrounded by a topographic diversity, water resources, soil, flora, fauna, other natural resources related with the latter and the environment co-exist. The watershed, in conjunction with the aquifers, constitutes the management unit of water resources. NWL Article 3 Section XVI. For the purpose of the publication of availability, as per NOM.011-CNA-2000, the limits of 728 watersheds in Mexico have been established. |  |  |
| Wetlands                            | Transition zones between aquatic and terrestrial systems that constitute temporary or permanent flood areas, subject or not to the influence of tides, such as swamps, marshes and mudflats, the limits of which are made up of a type of moisture-absorbing vegetation, either permanent or seasonal; areas in which the soil is predominantly water-based; and lake areas or of permanently humid soils through natural aquifer discharge. NWL Article 3 Section XXX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Withdrawal index                    | The result of dividing the volume of groundwater withdrawal by the volume of the total mean annual recharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

| BANOBRAS | National Bank of Public Works and Services                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------|
| CEAS     | State Water and Sanitation Commission                                                                                 |
| CFE      | Federal Commission for Electricity                                                                                    |
| COFEPRIS | Federal Commission for the Protection against Health Risks                                                            |
| CONAFOVI | National Commission for Housing Promotion                                                                             |
| CONAGUA  | National Water Commission                                                                                             |
| CONAPO   | National Population Council                                                                                           |
| CONEVAL  | National Council for the Evaluation of Social Development Policies                                                    |
| COTAS    | Technical Groundwater Committee                                                                                       |
| D.R.     | Irrigation District                                                                                                   |
| BOD₅     | Five-day Biochemical Oxygen Demand                                                                                    |
| DOF      | Official Government Gazette                                                                                           |
| COD      | Chemical Oxygen Demand                                                                                                |
| FONDEN   | National Fund for Natural Disasters                                                                                   |
| WQI      | Water Quality Index                                                                                                   |
| ICOLD    | International Commission on Large Dams                                                                                |
| INEGI    | National Institute of Statistics and Geography (formerly National Institute of Statistics, Geography and Informatics) |
| NWL      | National Water Law                                                                                                    |
| FDL      | Federal Duties Law for water resources                                                                                |
| NASA     | National Aeronautics and Space Administration                                                                         |
| NOM      | Official Mexican Standard                                                                                             |
| WHO      | World Health Organization                                                                                             |
| UN       | United Nations                                                                                                        |
| GDP      | Gross Domestic Product                                                                                                |
| NWP      | National Water Program                                                                                                |
| PROFEPA  | Attorney General's Office for Environmental Protection                                                                |
| REPDA    | Public Registry of Water Rights                                                                                       |
| SECTUR   | Ministry of Tourism                                                                                                   |
| SEDESOL  | Ministry of Social Development                                                                                        |
| SEGOB    | Ministry of the Interior                                                                                              |
| SEMAR    | Ministry of the Navy                                                                                                  |
| SEMARNAT | Ministry of the Environment and Natural Resources                                                                     |
| SHCP     | Ministry of Finance and Public Credit                                                                                 |
| SS       | Ministry of Health                                                                                                    |
| TSS      | Total Suspended Solids                                                                                                |
| UNDESA   | United Nations Department of Economic and Social Affairs                                                              |

# Annex I. Units of measurement

The units used in this document are expressed according to the Official Mexican Standard NOM-008-SCFI-1993-General Measurement Unit Systems, except as regards the use of the comma to separate whole numbers from decimals; in this case, the period is used.

# Units accepted by the NOM-008-SCFI-1993

| Symbol          | Unit               | Equivalence in Basic units                       |
|-----------------|--------------------|--------------------------------------------------|
| cm              | centimeter         | l cm = 0.01 m                                    |
| mm              | millimeter         | 1 mm = 0.001 m                                   |
| km²             | square kilometer   | 1 km <sup>2</sup> = 1 000 000 m <sup>2</sup>     |
| km <sup>3</sup> | cubic kilometer    | 1 km <sup>3</sup> = 1 000 000 000 m <sup>3</sup> |
| km/h            | kilometer per hour | 1 km/h = 0.2778 m/s                              |
| hm³             | cubic hectometer   | 1 hm <sup>3</sup> = 1 000 000 m <sup>3</sup>     |
| t               | ton                | 1 t = 1 000 kg                                   |
| ha              | hectare            | $1 ha = 10\ 000\ m^2 = 2.47\ acres$              |
| L/s = I/s       | liter per second   | $1 L/s = 0.001 m^3/s$                            |
| W               | watt               | $l W = l m^2 kg/s^3$                             |

Units not included in the NOM-008-SCFI-1993

| Symbol                                                                                                                                                                          | Unit                    | Equivalence in Basic units                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|--|
| msnm                                                                                                                                                                            | meters above sea level  |                                                              |  |
| pesos                                                                                                                                                                           | Mexican pesos           | 1 Mexican peso = 0.097 United States dollars = 0.058 euros * |  |
| USD                                                                                                                                                                             | United States dollar    | 1 United States dollar = 10.25 Mexican pesos *               |  |
| MAF                                                                                                                                                                             | million acres-feet      | 1 MAF = 1.23 km³                                             |  |
| AF                                                                                                                                                                              | acre-feet               | 1 AF = 1234 m <sup>3</sup>                                   |  |
| m <sup>3</sup>                                                                                                                                                                  | cubic meter             | 1 m <sup>3</sup> = 0.000810 AF                               |  |
| in                                                                                                                                                                              | inch                    | 1 in = 25.4 mm                                               |  |
| mm                                                                                                                                                                              | millimeter              | 1 mm = 0.0394 in                                             |  |
| ft                                                                                                                                                                              | foot                    | 1 ft = 0.3048 m                                              |  |
| m                                                                                                                                                                               | meter                   | 1 m = 3.281 ft                                               |  |
| gal                                                                                                                                                                             | gallon                  | 1 gal = 3.785 L                                              |  |
| L                                                                                                                                                                               | Liter                   | 1 L = 0.2642 gal                                             |  |
| cfs                                                                                                                                                                             | cubic feet per second   | 1 cfs = 0.0283 m <sup>3</sup> /s                             |  |
| m³/s                                                                                                                                                                            | cubic meters per second | 1 m³/s = 35.3 cfs                                            |  |
| * An approximate exchange rate from June 2008 was considered.<br>Examples of measurement:<br>I m <sup>3</sup> = I 000 liters<br>I hm <sup>3</sup> = I 000 000 de m <sup>3</sup> |                         |                                                              |  |

 $\label{eq:masses} \begin{array}{l} I \ km^3 = I \ billion \ hm^3 \\ TWh = I \ 000 \ GWh = I \ 000 \ 000 \ MWh \end{array}$ 

| Prefixes to formulate multiples |       |                 |  |
|---------------------------------|-------|-----------------|--|
| Symbol                          | Name  | Value           |  |
| Т                               | tera  | 1012            |  |
| G                               | giga  | 10°             |  |
| Μ                               | mega  | 106             |  |
| k                               | kilo  | 10 <sup>3</sup> |  |
| h                               | hecto | 10 <sup>2</sup> |  |

#### Annex J. Analytical Index

#### Α

Agricultural use, 59, 153 Aqueducts, 4, 65, 66, 81 Aquifers with salt-water intrusion, 43 Aquifers, 21-24, 42, 43, 51, 54, 59, 81, 95, 97, 98, 113, 116 117, 120, 130, 140, 141, 156 Aquifers, overexploitation of, 42, 43 Availability zones for charging duties, 100, 101 Availability zones, 15, 16, 25, 26, 42, 61, 62, 100, 101

## В

Biochemical Oxygen Demand, 44-47, 49, 86, 119, Biodiversity, 128, 130, 150 Blue water, 156 Budget of the CONAGUA, 93, 94, 106, 107

#### С

Catchments / River basins ("cuencas hidrograficas"), 7, 14, 15, 22-24, 35-38, 41, 44, 61, 95, 150 Charging duties, 100, 101 Chemical Oxygen Demand, 44-47 Chlorination 125, 126 Chlorination efficiency, 125, 126 Clean Beach Committees, 51, 52, 113, 117, 118 Climate change, 141, 143, 149-151 Climate stations, 23, 24 Colorado River, 22, 36, 38, 39, 72, 81, 113, 114 Concession 26, 96, 97, 141, COTAS, see Technical Groundwater Committees CRAE, see Regional Emergency Attention Centers Cutzamala System, 70, 81-84

#### D

Dams, 4, 23, 40, 46-48, 65-70, 80-82, 95, 113, 114, 119, 141, 143, 155, 156 Deforestation, 44, 127 Degree of marginalization, 7, 12, 13 Diarrhoeal diseases, 121, 123-125, 150, 159, 162 Disinfection of water, 125 Drinking water, 9, 59, 65, 66, 78-82, 84-89, 92-95, 101, 106-109, 120, 123, 125, 139-141, 159, 160, 162, 164 Drought, 21, 33-35, 40, 95, 150 Duties for material withdrawal, 100-102, 106 Duties for the use of the nation's waters, 100-102, 104, 141

#### Е

Economic indicators, 11 Emergency attention, 92 Erosion, 44, 130, 150, 151 Evapotranspiration, 22, 24

#### F

Federal Duties Law, 100-104, 106, 109, 141 Flood protection, 39, 70, 95, 130, 150, 155 Forest fires, 150 Forests, 95, 127, 128, 150

# G

Geographical aspects, 7, 16-18, 25, 152 Green water, 156 Gross Domestic Product, 11, 12, 15-19, 59, 143, 146, 150, 151, 153 Groundwater, 21, 23, 26, 42-44, 51, 53, 54, 74, 84, 93, 96-98, 113, 116, 128, 138, 146, 147

#### Н

Health, 4, 12, 94, 121, 123, 124, 150, 155, 159, 162, 164 Hurricanes, 21, 30-32, 152 Hydro-agricultural infrastructure, 71, 106, 141 Hydroclimate stations, 23 Hydroelectric, 96, 98, 104-106 Hydrologic cycle, 4, 21, 22, 24, 141, 146, 147, 149, 150 Hydrological regions, 22, 98, 111 Hydrological-Administrative Regions, 7, 14-16, 22, 23, 25, 31, 43, 52, 55, 60-62, 68, 71, 88, 92, 96-99, 103, 105, 106, 111-117, 128, 129, 131, 133-139 Hydropower, 53, 54, 56, 58, 60, 61, 101, 149, 150, 155

#### I

Industrial wastewater treatment plants, 4, 65, 66, 82, 84-90, 92, 141, 159 Investments, 93, 94, 107, 108, 164 Irrigation Districts, 59, 71-75, 77 Irrigation infrastructure, 54, 59, 143, 154, 155 Irrigation Units, 59, 73, 76, 77 Irrigation, 45, 57, 59, 65, 66, 70, 71-76, 94, 95, 101-103, 139, 141, 153

# L

Lake Chapala, 37, 41, 81, 113 Lakes, 24, 41, 46-48, 54, 59, 78, 81, 95, 101, 113, 114, 146, 147, 156 Land extension, 145 Localities, 9, 81, 110, 119, 134

#### Μ

Mean aquifer recharge, 24 Mean natural surface runoff, 24, 26, 36-38 Meteorological phenomena, 4, 21, 30, 141 Metropolitan zones, 10, 11, 26, 81-83, 135 Monitoring, 44, 46-50, 52, 119, 121 Mortality, 123-125, 150, 159 Municipal wastewater treatment plants, 4, 65, 66, 82-89 Municipalities, 8-13, 15, 17, 18, 51, 55, 81, 82, 84, 92, 94, 100, 117, 135

# Ν

National Development Plan, 140 National Monitoring Network, 44 National Water Deeds, National Water Law, 75, 94, 96, 97, 111, 130, 140, 141 National Water Program, 4, 78, 94, 133, 140 Natural disasters, 30, 152 Natural mean availability, 16, 24-26, 61, 62, 136-139, 148 Natural protected areas, 128, 129, 130

#### 0

Official Mexican Ecological Standards, 51, 97-99, 118-120 Official Mexican Standards of the Ministry of Health, 121 Offstream use, 42, 54-58, 60, 61, 96 Overexploitation of aquifers, 42, 43, 97, 138

#### Ρ

Piping efficiency, 74 Population centers, 10, 12, 135, 136, 145 Population density, 9, 17, 18, 25, 144, 145 Population, 7, 11, 12, 15-18, 25, 26, 51, 59, 78-80, 94, 117, 119, 124, 125, 133, 136, 138, 141, 144, 145, 149-152, 159 Precipitation, 4, 8, 21-27, 29, 30, 33, 34, 66, 143, 147-149 Prohibition zones, 97 Public Registry of Water Rights (REPDA), 53, 54, 56, 58, 96 Public supply, 53, 54, 56-59, 96, 121, 153

#### R

Regional Emergency Attention Centers (CRAE), 92 REPDA, see Public Registry of Water Rights Reuse of water, 65, 86, 91, 119, 139, 141 Revenues, 101-105 Rio Grande (Bravo), 10, 14-17, 25, 27, 37, 39, 42, 56, 60, 61, 67, 69, 70-72, 77, 79, 81, 84, 87, 113, 114 River Basin, see Catchments River Basin Commissions, 113, 114 River Basin Committees, 113, 115, 116 River Basin Councils, 93, 95, 96, 111-113, 117, 118 River Basin Organizations, 14, 15, 44, 81-84, 92, 94, 111 Rivers, 8, 21-24, 35, 39-44, 46-48, 54, 55, 59, 60, 68, 70, 72, 73, 81, 95, 101, 131, 146, 147, 150, 156

#### S

Salinization, 42, 43, 51, 93-95, 106 Salt-water intrusion, 42, 43 Sanitation, 9, 51, 65, 78-81, 84-89, 91, 92, 107-110, 117, 118, 120, 123, 125, 139-141, 159-164 Self-supplying industry, 53, 54, 56-59, 86, 96 Social poverty index, 7, 12, 13 Soils, 42-44, 95, 127, 146, 147, 149, 150, 153 State Departments ("Gerencias Estatales") 15 Storage capacity of dams, 4, 65-70, 82, 155, 156 Surface water, 22, 35, 44-49, 74, 93, 96, 97

# т

Technical Groundwater Committees (COTAS), 116 Technified Rainfed Districts, 77 Temperature, 23, 33, 150, 151 Thermoelectric, 53-60, 91, 153 Total Dissolved Solids, 84, 85, 101 Total Suspended Solids, 44-46, 48, 51, 84, 85, 119 Transboundary catchments, 36, 38, 95 Transferring of Irrigation Districts, 75, 77 Treatment plants, 4, 65, 66, 82, 84-90, 92 Tropical cyclones, 30, 32

#### U

Units of measurement, 226 Uses of water, 4, 42, 51, 53-61, 63, 65, 69-71, 74, 77-80, 84, 86, 91, 94-97, 100-106, 108-110, 118, 120, 121, 133, 139-141, 143, 146, 152, 153, 155-157

#### V

Vegetation, 127, 128, 150 Virtual water, 53, 63, 64, 143, 156, 157

#### W

Wastewater discharges, 44, 45, 86, 96, 101-103, 118, 119, 141 Wastewater treatment, 65, 66, 86, 87-91, 108, 139, 159 Wastewater, 4, 26, 44, 86, 91, 139, 141 Water Advisory Council, 95, 118 Water exports, 64, 157 Water footprint, 143, 156 Water imports, 64, 157 Water quality on beaches, 51, 52, 117, 120, 121, 151 Water quality, 44-51, 84, 95, 120, 121, 124, 139-141, 162 Water stress, 53, 61, 62, 143, 150, 152, 157-159 Water tariffs, 93, 108-110, 162 Water utilities, 108, 118, 120 Water-related standards, 95, 97-99, 118-121, 130 Watersheds ("cuencas hidrologicas"), 22, 39, 94, 95, 97, 98, 111, 117, 120, 140, 141 Wetlands, 89, 119, 128, 130, 131, 147

This publication was printed in October 2008 By Impresora Eclipse, S.A. de C.V. 1 500 copies were printed.



www.conagua.gob.mx